
Class Notes for November 02, 2021

Agenda

A������������

H������ ��� H��� T�����

Hashing and Hash Tables

Midterm 2 : Moved to next week, will be take home

Final Exam : also take home (there is scheduled time if you want on the last Friday

of Finals week @ 9:00am)

Summary of Previous Sorted Sets

Limitations

Issues:

fundamental to all of these implementation is that we are able to sort elements.

That there is some ordering of elements.

how can we store elements that can't be sorted?

Idea: Use randomness to assign random numerical values to elements, and then

"sort" according to these values.

example : lets try mapping colors to random numbers

we can then use this ordering with some sorted set implementation

[red , orange , blue , pink]

[2,6,1,3]

the ordering would then be blue < red < pink < orange , and now we can

sort according to the random values we chose

Suppose we associated a "random looking" value (an integer) to each object instance

with the properties:

Question : Given getVal method, how could we implement an unsorted set as

efficiently as a sorted set?

how do you determine the orders from the colors?

how do we give things random values to avoid collisions (repetitions of values)?

we might have semantic equivalence issues (ex: we need Blue and blue to be

associated to the same value)

we can relate this to the balls in bins assignment that showed us that collisions

happen very quickly, but the expected number of collisions is predictable

say we add brown , we'd have to check all colors to see what the value is. Then

we're essentially looping through a whole list and having operations

we ideally want the ordering to be deterministic so we get the same value

from each color name.

if we want a deterministic result, we could maybe convert each character into

a number, and then concatenate them!

but then what if we have very large names, or non-strings (like objects)

O(n)

if there are lots of collisions, then we have to spend alot of time to look at all

elements with the same value

1. getVal(obj) gives value associated to object

2. values appear to be random - it is hard to find correlation between getVal(0) and

getVal(p)

3. values are reproducible : multiple calls to getVal(0) will be the same

4. getVal() respects semantic equivalence, ie if 0.equals(p) then getVal(0) ==

getVal(p)

store a pair of <object, getVal(obj) >, and compare on the output of getVal

store these pairs in an AVL tree, and then we get all operations in time

assuming that getVal runs in

O(log(n))

O(1)

Can we do better? faster? simpler?

Question: if an array of size n stores n elements, what is the expected time to find?

have an array and use getVal(x) to determine the index at which x should be

stored.

- example with colors

- suppose we have red ; orange ; yellow ; green ; blue ; violet

- if we add(red) , we just do getVal(red) = 5 , and then store red at index 5

- the issue is if we have a collision, (like we get the same value for violet), we

could maybe just store it like a Skiplist

- chaining each index of an array to refer to a linked list of elements

- add : search for the element

1) go to associated index

2) search list

3) append element if not found

- find : simply do 1 + 2 as above

- remove : do 1+2 as above, but remove element from list if found

- the hope is that if our array is large enough, the number of collisions will be very

small

if we throw n balls into n bins, the longest "list" (list of collisions) will be log(n)

the expected occupancy is going to be 1

E(n) = n0 ∗ P(0) + n1P(1)+. . . +nn−1 ∗ P(n − 1)∗

E(n) = (n0+. . . nn−1)1/n

conclusion: Expected time to find / add / remove is !!!!

This data structure is called a hash table and the function getVal is a hash function,

and the general process of assigning values to objects is called hashing.

E(n) = (n) ∗ 1/n = 1

O(1)

this falls if we expect there to be lots of collisions

the next step is to figure out how to define the getVal function, because it needs

to be truly random, but that is difficult!

