Class Notes for October 28, 2021

Agenda

Skiplist Analysis
Hash Tables

ANNOUNCEMENTS

midterm pushed back a week (week of 11/9)

SKIPLIST ANALYSIS

Last class we found that the expected height of a node is 1, and the average

references per node is 2
Today we'll analyze the expected tallest node, and the expected search time

Note that we have no control over the order in which the user adds elements
Question: What is the expected max height of skiplist with n nodes?

Back of envelope calculation:

if | have n nodes, how many have height > 0?
alln

how many have height > 17
n/2

how many have height > 27
n/4

how many have height > k?
n/2k

when is the number of nodes with height & less than 1?

n/2* <1 < n<2F < log(n) <k

Thus, the expected max height is O(log(n))
Formalizing this Argument

Let H be a random variable that represents the max height in a list of length n
For each k =0,1,2..., L, = length of list at height kK = number of nodes with
height > k

Observe the expected value of L,

n
E(Ly) = o

Therefore if k = log(n) + 7, (§ > 0) (ie. the number of nodes with height greater

than log(n))

n n 1

- 9log(n)+j - olog(n) 95 97

E(Llog(n)+j)

To analyze E(H), write it as the sum of simpler variables.

Jk:{l ifH>k

0 otherwise

Therefore,

H=J+Jy+ Js+...
E(H) = E(J)) + E(Jy) + E(J;)+. ..

Two facts about Jj, :

Ji, < 1 always
Jp < Ly, (ie, if L = 0, then J, = 0)
E(H) = E(J;) + E(J3) + E(J3)+. ..
E(H) = E(J1) + E(J2)+. . . +E(Jiog(n)) + E(Jiog(n)+1)+- - -
EH)=141+...41+1/2+1/4+1/8+...

<log(n) +1

This is because for J, k < log(n), L, > 1, and thereafter we have 1/2

This is good because we see that the max height of our skiplist does not grow

too quickly with size

Question: How long is search on average?

Trick : Analyze search in reverse

j >
'—b:! — v
= ’ — '_! —_— - —
b = - —*i—? i_-) — -.D-r
\ | ' z 1 ’ ‘ 7 "' aulls
sgnﬂnc[

In the reverse direction, if | can go up, go up, if | can't, go left.

If each step takes O(1), the total running time of the find procedure is
total#ofsteps = #up + #left

We know that #up is always the max height of the list

—_— R é
e 7
Y SE— . S 5
- -—’D"’ :’“El" d I
1 9 1 5 ¢ 7
‘ * \' Vlu\ls \/
: Mty 1 cen s 2 o
senﬂne(find (4) : fe Tcofm‘olhT ¢ 9o uf :
Hws e larv ‘04-‘71'\.‘(‘{ 1 30 !c'P~f (s k/?«.

- H (74 be sk 'Hﬂﬁ'(E (chsS s iéj (V’) t C 3 Fﬂ “uwl':‘

o &fn«'lw CN-'J‘[.

At the same time, we know that at each node, the probability of going up is 1/2,

and the probability of going left is 1/2

This structure mimics the analysis of going up, thus it can be shown that
E(#left) =log(n) + C
See ODS 4.4 for details

So the total expected time to find is
E(H) + E(#left) = 2 xlog(n) + O(1)

this is the same speed as an AVL tree!

For empirical runtimes see Rosenbaum's website

https://willrosenbaum.com/teaching/2021f-cosc-211/slides/lec17/

