
Class Notes for October 28, 2021

Agenda

A������������

S���L��� A�������

Question: What is the expected max height of skiplist with nodes?

Skiplist Analysis

Hash Tables

midterm pushed back a week (week of 11/9)

Last class we found that the expected height of a node is 1, and the average

references per node is 2

Today we'll analyze the expected tallest node, and the expected search time

Note that we have no control over the order in which the user adds elements

n

Back of envelope calculation:

if I have nodes, how many have height ?

how many have height ?

how many have height ?

how many have height ?

when is the number of nodes with height less than 1?

n ≥ 0

all n

≥ 1

n/2

≥ 2

n/4

≥ k

n/2k

k

Formalizing this Argument

Thus, the expected max height is

n/2k < 1 ⟺ n < 2k
⟺ log(n) < k

O(log(n))

Let be a random variable that represents the max height in a list of length

For each , length of list at height number of nodes with

height

Observe the expected value of

Therefore if (ie. the number of nodes with height greater

than)

To analyze , write it as the sum of simpler variables.

Therefore,

Two facts about :

H n

k = 0, 1, 2.. . Lk = k =

≥ k

Lk

E(Lk) =
n

2k

k = log(n) + j, (j ≥ 0)

log(n)

E(Llog(n)+j) =
n

2log(n)+j
=

n

2log(n) ∗ 2j
=

1

2j

E(H)

Jk = {1 ifH ≥ k
0 otherwise

H = J1 + J2 + J3+. . .

E(H) = E(J1) + E(J2) + E(J3)+. . .

Jk

1. always

2. (ie, if , then)

Jk ≤ 1

Jk ≤ Lk Lk = 0 Jk = 0

E(H) = E(J1) + E(J2) + E(J3)+. . .

E(H) = E(J1) + E(J2)+. . . +E(Jlog(n)) + E(Jlog(n)+1)+. . .

E(H) = 1 + 1+. . . +1 + 1/2 + 1/4 + 1/8+. . .

≤ log(n) + 1

This is because for , , , and thereafter we have

This is good because we see that the max height of our skiplist does not grow

Jk k ≤ log(n) Lk ≥ 1 1/2j

Question: How long is search on average?

Trick : Analyze search in reverse

too quickly with size

In the reverse direction, if I can go up, go up, if I can't, go left.

If each step takes , the total running time of the find procedure isO(1)

total#ofsteps = #up + #left

We know that is always the max height of the list

At the same time, we know that at each node, the probability of going up is ,

and the probability of going left is

#up

1/2

1/2

This structure mimics the analysis of going up, thus it can be shown that

So the total expected time to find is

E(#left) = log(n) + C

See ODS 4.4 for details

E(H) + E(#left) = 2 ∗ log(n) + O(1)

this is the same speed as an AVL tree!

For empirical runtimes see Rosenbaum's website

https://willrosenbaum.com/teaching/2021f-cosc-211/slides/lec17/

https://willrosenbaum.com/teaching/2021f-cosc-211/slides/lec17/

