
Tutorial 10 Exercises

COMP526: Efficient Algorithms

09–10 December, 2024

Exercise 1. In our lectures on parallel algorithms, we saw a PRAM algorithm that solves
string matching for searching for a pattern P [0..m) in a text T [0..n) with spanΘ(m) and
work Θ(n). The output of this algorithm, however, was different from the original set-
ting of pattern matching we discussed earlier in the semester. In particular, the output
of a parallel algorithm was an array M [0..n) such that M [i ] = 1 if T contains a match to
P at index i and M [i ] = 0 otherwise.

(a) Devise a PRAM algorithm that modifies the array M such that after applying your
algorithm, M [n − 1] stores the total number of matches of P in T . The span of
your procedure should be O(logn) and its work should be O(n).
(Hint: try a divide and conquer approach.)

(b) Explain how your procedure from part (a) can be modified (or extended) to pro-
duce the index of the first instance of P in T (assuming there is a match). The
span and work of the updated procedure should be (asymptotically) no worse
than your first procedure.

For simplicity, you may assume that n, the length of the text, is a power of 2, say n = 2k .

Exercise 2. Consider the text T = abbabbaa$. What is n here? (Exactly follow the con-
vention from the lecture!) Construct/draw the

(a) standard (not compacted) trie of all suffixes of T ,

(b) suffix tree of T (human version) with string labels on edges and leaves,

(c) suffix tree of T (computer version) as it is stored, i.e., offsets in nodes, starting
index in leaves, first characters on edges.

1


