
Tutorial 6 Exercise Solutions

COMP526: Efficient Algorithms

11–12 November, 2024

Exercise 1. Suppose you are given an array A = A[0..n) containing the price history of
shares of a stock of the Acme Corporation. That is, A[i ] stores the price of a share of
Acme stock on day i . Given this price history, you would like to find the maximum
profit achievable by buying and selling a single share of Acme stock during the time
interval 0..n −1. That is, you wish to find the maximum possible value of P [s]−P [b]
where b ≤ s is the day on which you buy the stock and s is the day on which you sell the
stock.

(a) Explain how this problem can be solved in Θ(n2) time using a brute force ap-
proach.

(b) Devise a divide an conquer algorithm for this problem. Be sure to:

• explain how the array A is divided;

• describe how sub-solutions can be combined to an overall solution;

• analyze the running time of your procedure.

(c) (Challenge.) Can you solve the profit maximization problem in O(n) time?

Solution. For the brute force approach, consider the following procedure:

1: procedure BRUTEFORCEMAX(P [0..n))
2: max ← 0
3: for b = 0,1, . . . ,n −1 do
4: for s = b,b +1, . . . ,n −1 do
5: if P [s]−P [b] > max then
6: max ← P [s]−P [b]
7: end if
8: end for
9: end for

10: return max
11: end procedure

For the divide and conquer approach, we make the following observation: in order
to find the maximum profit achievable during the time interval [i ..k] with j = (i +k)/2,
one of the three cases must occur:

1. the maximum occurs with i ≤ b, s ≤ j (i.e., buying and selling in the left half of
the sub-interval),

1



2. the maximum occurs with j ≤ b, s ≤ k,

3. the maximum occurs with i ≤ b ≤ j ≤ s ≤ k.

To devise a divide and conquer procedure, we can solve cases 1 and 2 by recursion (with
a base case of profit 0 when i = k). For case 3, we observe that maximum profit is found
by taking b to be the index of the minimum value in P [i .. j ] taking s to be the index of
the maximum value in P [ j ..k]. This approach suggests the following algorithm:

1: procedure DCMAX(P [i ..k])
2: if i = k return 0
3: j ← (i +k)/2
4: m ← max

{
DCMAX(P [i .. j ]), DCMAX(P [ j ..k])

}
5: b ← i
6: for b′ = i +1, i +2, . . . , j do
7: if P [b′] < P [b] then
8: b ← b′

9: end if
10: end for
11: s ← j
12: for s′ = j +1, j +2, . . . ,k do
13: if P [s′] > P [s] then
14: s ← s′

15: end if
16: end for
17: return max{m,P [s]−P [b]}
18: end procedure

For the analysis of this procedure, we claim that if T (n) denotes the running time DC-
MAX on an input of size n = k − i , then T satisfies T (n) = 2T (n/2)+Θ(n). To see this,
note that the two recursive calls in Line 4 have a running time of at most T (n/2) each.
The remaining code in lines 5–17 takes timeΘ(n) as the procedure iterates over the val-
ues of P [i .. j ] once. Since the running time satisfies T (n) ≤ 2T (n/2)+Θ(n), the overall
running time isΘ(n logn) as in our analysis of MERGESORT.

For the final part of the problem, consider the following approach: each day, s =
0,1, . . . ,n −1, you wish to determine whether or not selling on day s would maximize
your profit in the interval P [0..s]. In order to do so, you should compare the maximum
value achievable in P [0..s −1] to the maximum achievable by selling on day s. In order
to compute the latter value, note that we only need to store the index b of the minimum
value in P [0..s]. Then P [s]−P [b] is the maximum value achievable by selling on day s.
We can formalize this approach with the following algorithm:

1: procedure FASTMAX(P [0..n))
2: max,b ← 0
3: for s = 0,1, . . . ,n −1 do
4: if P [s] < P [b] then
5: b ← s
6: else if P [s]−P [b] > max then
7: max ← P [s]−P [b]

2



8: end if
9: end for

10: return max
11: end procedure

Exercise 2. Consider the the pattern P = ABACADABA on the alphabet Σ= {A,B,C,D}.

(a) Compute the deterministic finite automaton (DFA) for searching for the pattern
P in a text T

(b) Compute the look-up table δ[][] corresponding to the DFA you found in part (1).

(c) Use your DFA or lookup table to search for P in the text T = [0,30) below.

T = ABABACABABACADBABABACADABAABAB

For each index i = 0,1, . . . ,29 write the state that the DFA is in after reading the
character at index i in T .

Solution. First, we compute the DFA look-up table using the following algorithm de-
scribed in class:

1: procedure CONSTRUCTDFA(P [0..m))
2: for c ∈Σ do
3: δ[0][c] ← 0
4: end for
5: δ[0][P [0]] ← 1
6: x ← 0
7: for q = 1,2, . . . ,m −1 do
8: for c ∈Σ do
9: δ[q][c] ← δ[x][c]

10: end for
11: δ[q][P [q]] ← q +1
12: x ← δ[x][P [q]]
13: end for
14: end procedure

Applying this procedure to P gives the following table:

0 1 2 3 4 5 6 7 8 9
A 1 1 3 1 5 1 7 1 9 9
B 0 2 0 2 0 2 0 8 0 9
C 0 0 0 4 0 0 0 0 0 9
D 0 0 0 0 0 6 0 0 0 9

From the look-up table it is easier to draw the associated DFA diagram.

3



0 1 2 3 4 5 6 7 8 9

Σ− A

A B A C A D A B A

C ,D B ,C ,D

A

B

D B ,C ,D

A

B

C B ,C ,D

A

C ,D B ,C ,D

Σ

If we apply this DFA to the text T we obtain the following sequence of states:

[1, 2, 3, 2, 3, 4, 5, 2, 3, 2, 3, 4, 5, 6, 0,
1, 2, 3, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9]

4


