Tutorial 5 Exercise Solutions

COMP526: Efficient Algorithms
3-4 November, 2024

Exercise 1. Suppose an array a is “almost sorted” in the sense that if a stores the values
Co<Cp=<c3=<---=<cu-1, then ¢; = a[j] where |j - i| < k. That is, the final (sorted) index
of each value in a is no more than k from its initial index in a. Argue that on input a,
the INSERTIONSORT algorithm will terminate after at most O(nk) steps.

1: procedure INSERTIONSORT(a, 1)

2 fori=1,2,...,n—1do

3 j—i

4 while j >0and a[j] < a[j—1] do
5: SwaP(a, j,j—1)

6 j—Jj-1

7 end while

8 end for

9: end procedure

Solution. Consider the case where a satisfies the condition stated in the exercise de-
scription: every element in a is within distance k of its correct sorted position. In par-
ticular, this means that the k smallest elements in a are initially stored in al[l...2k].
After 2k iterations of the outer for loop of InsertionSort, the first k elements of a are
sorted using 0(k?) operations. Similarly, after k more iterations, the next k elements
are sorted (using another 0(k?) operations). Arguing in this way, we find that every
k iterations of the outer loop, the next k elements are sorted using O(k?) operations.
Thus all elements are sorted after n/k “rounds,” each consisting of O(k?) operations.
Therefore, the total number of operations performed by InsertionSort is (1/ k) O(k?) =
O(kn). O

Exercise 2. Suppose we are given two arrays a and b of size n that store two distinct
permutations of {1,2,..., n}. That is, both a and b store each of the numbers from 1 to
n, but the two arrays differ in their values at at least one index. Consider a sequence
of swap operations S1, S, ..., S;, that are applied to both a and b, where each S; swaps
the values at two indices of the array it is applied to. Argue that after performing the
swap operations, a and b are still distinct. In particular, the same sequence of swaps
cannot sort both arrays.

Solution. We claim that after each swap operation, we have a # b. That is, there exists
some index j; such that alj;] # b[j;]. We argue by induction on m, the number of
swaps applied.

For the base case, m = 0, no swaps are applied, so let jy be an index where al jy] #
b[jol. The index jj exists by the assumption that @ and b are distinct.

For the inductive step, suppose that a and b are distinct after performing that m
swaps, and they differ at index j,,. Consider their state after performing another swap
Sm+1- If Spy41 does not swap the value at index j,,;, with another value, then after per-
forming S;,,+1, we still have alj,] # bljml, as these values did not change. Thus in this
case, we can take j;+1 = j,. On the other hand, suppose S,,+; swaps the values of a at
indices j,, and another index i,,,. Then after the swap, we will have a[i,;] # b[i,;]. Thus
we can take j,+1 = i, in this case. As a and b are distinct after applying S+ in either
case, the claim follows by induction. O

Exercise 3. Suppose we apply RADIXSORT to an array a of size n that stores n dis-
tinct numerical values. Explain why in this scenario the running time of RADIXSORT
is Q(nlogn).

Solution. Recall that the running time of RADIXSORT is ©®(Bn), where B is the number
of bits used to represent each value. Thus, it suffices to show that B = Q(logn) in this
scenario. The number of distinct values that can be represented with B bits is 25. Since
a stores n distinct values, we have 28 > n. Taking the log base two of both sides of this
expression gives B = log n, which gives the desired result. O

Exercise 4. Suppose a function T satisfies the recursion relation
P |
T(n)=T(cn)+O0O(n) forsome c satisfying 3 <c<l.

for n =1, and T(1) = O(1). Argue that T(n) = O(n). You may find the following fact
useful: for any value of a < 1, we have

;) iy 1—a®t
a=1l+a+a +---,+a = < . (1)
0 1-a l-a

k
i=

Solution. To start, it is helpful to rewrite the hypothesis as T'(n) < T(cn) + bn for some
constant b. Since this formula holds for all n, we can apply the formula recursively:

T(n)<T(cn)+bn
< (T(c*n) + chn) + bn
=T(c*n)+ (1 +c)bn
<(T(n)+c*bn)+ (1 +c)bn

=T3n)+ 1 +c+c*)bn.

Continuing in this way, we find that after applying the recursive bound k times, we
obtain

k
T(n) < T(c*n)+bn Y el)
i=0

More formally, we can prove () by induction.

k k

In order to apply the base case, we should have c*n = 1, or equivalently, n = ¢™*.
Taking the log, of both sides gives k = —log.(n) =log(n)/log(1/c). Using k =log(n)/log(1/c).
Using this value of k and applying (1), we find that

1
T(n)<TO)+ banc =0(n)

which is the desired result. O

