
Tutorial 5 Exercise Solutions

COMP526: Efficient Algorithms

3–4 November, 2024

Exercise 1. Suppose an array a is “almost sorted” in the sense that if a stores the values
c0 ≤ c0 ≤ c3 ≤ ·· · ≤ cn−1, then ci = a[j] where

∣∣ j − i
∣∣≤ k. That is, the final (sorted) index

of each value in a is no more than k from its initial index in a. Argue that on input a,
the INSERTIONSORT algorithm will terminate after at most O(nk) steps.

1: procedure INSERTIONSORT(a,n)
2: for i = 1,2, . . . ,n −1 do
3: j ← i
4: while j > 0 and a[j] < a[j −1] do
5: SWAP(a, j , j −1)
6: j ← j −1
7: end while
8: end for
9: end procedure

Solution. Consider the case where a satisfies the condition stated in the exercise de-
scription: every element in a is within distance k of its correct sorted position. In par-
ticular, this means that the k smallest elements in a are initially stored in a[1 . . .2k].
After 2k iterations of the outer for loop of InsertionSort, the first k elements of a are
sorted using O(k2) operations. Similarly, after k more iterations, the next k elements
are sorted (using another O(k2) operations). Arguing in this way, we find that every
k iterations of the outer loop, the next k elements are sorted using O(k2) operations.
Thus all elements are sorted after n/k “rounds,” each consisting of O(k2) operations.
Therefore, the total number of operations performed by InsertionSort is (n/k)O(k2) =
O(kn).

Exercise 2. Suppose we are given two arrays a and b of size n that store two distinct
permutations of {1,2, . . . ,n}. That is, both a and b store each of the numbers from 1 to
n, but the two arrays differ in their values at at least one index. Consider a sequence
of swap operations S1,S2, . . . ,Sm that are applied to both a and b, where each Si swaps
the values at two indices of the array it is applied to. Argue that after performing the
swap operations, a and b are still distinct. In particular, the same sequence of swaps
cannot sort both arrays.

Solution. We claim that after each swap operation, we have a ̸= b. That is, there exists
some index ji such that a[ji] ̸= b[ji]. We argue by induction on m, the number of
swaps applied.

1

For the base case, m = 0, no swaps are applied, so let j0 be an index where a[j0] ̸=
b[j0]. The index j0 exists by the assumption that a and b are distinct.

For the inductive step, suppose that a and b are distinct after performing that m
swaps, and they differ at index jm . Consider their state after performing another swap
Sm+1. If Sm+1 does not swap the value at index jm with another value, then after per-
forming Sm+1, we still have a[jm] ̸= b[jm], as these values did not change. Thus in this
case, we can take jm+1 = jm . On the other hand, suppose Sm+1 swaps the values of a at
indices jm and another index im . Then after the swap, we will have a[im] ̸= b[im]. Thus
we can take jm+1 = im in this case. As a and b are distinct after applying Sm+1 in either
case, the claim follows by induction.

Exercise 3. Suppose we apply RADIXSORT to an array a of size n that stores n dis-
tinct numerical values. Explain why in this scenario the running time of RADIXSORT

isΩ(n logn).

Solution. Recall that the running time of RADIXSORT is Θ(Bn), where B is the number
of bits used to represent each value. Thus, it suffices to show that B =Ω(logn) in this
scenario. The number of distinct values that can be represented with B bits is 2B . Since
a stores n distinct values, we have 2B ≥ n. Taking the log base two of both sides of this
expression gives B ≥ logn, which gives the desired result.

Exercise 4. Suppose a function T satisfies the recursion relation

T (n) = T (cn)+O(n) for some c satisfying
1

2
≤ c < 1.

for n ≥ 1, and T (1) = O(1). Argue that T (n) = O(n). You may find the following fact
useful: for any value of a < 1, we have

k∑
i=0

ai = 1+a +a2 +·· · ,+ak = 1−a−k−1

1−a
< 1

1−a
. (1)

Solution. To start, it is helpful to rewrite the hypothesis as T (n) ≤ T (cn)+bn for some
constant b. Since this formula holds for all n, we can apply the formula recursively:

T (n) ≤ T (cn)+bn

≤ (T (c2n)+ cbn)+bn

= T (c2n)+ (1+ c)bn

≤ (T (c3n)+ c2bn)+ (1+ c)bn

= T (c3n)+ (1+ c + c2)bn.

Continuing in this way, we find that after applying the recursive bound k times, we
obtain

T (n) ≤ T (ck n)+bn
k∑

i=0
c i . (2)

More formally, we can prove () by induction.

2

In order to apply the base case, we should have ck n = 1, or equivalently, n = c−k .
Taking the logc of both sides gives k =− logc (n) = log(n)/ log(1/c). Using k = log(n)/ log(1/c).
Using this value of k and applying (1), we find that

T (n) < T (0)+bn
1

1− c
=O(n)

which is the desired result.

3

