memeenLte . BEHY|

00000000000000000F00000000FGCUCFO0O0E000000000060000iI000800000000000000000Fgogoo]
123456 78 910012131 1516 1716192021 2223242526 27 2829 2% 3132 33 74 35 36 37 38 39 40 41 42 41 44 45 46 47 49 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT R ERRRRR! B ERRRRRI [R ERRER AR R R RN R RN R RN R RN R R R RS AR R R R RRRRRERRERRRT!
2202222222222222222222220222
3333233332333[3
A0444480444440404000444400444400444444404448404444404444444404444444042044444044
555555555555 505555505 5055555 QM5 5M555555555555555556555555555555555555555555555

66666666 66M66366666666656R6666666

Lecture 20: Text Indexing Il

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: December 10, 2024 University of Liverpool

1/22

Announcements

1. Today is the final lecture!!!
2. Final exam revision materials soon:

* Practice exam questions
* Solutions

3. Attendance Code:

81314|

2/22

Meeting Goals

1. Finish discussion of text indexing

* Recap of suffix trees

* Introduce suffix arrays

* Introduce LCP arrays

* Discuss efficient computation of suffix and LCP arrays

2. Final exam overview

3/22

Text Indexing

From Last Time

Text Indexing Problem. Given a text T[0..n), preprocess T so that
queries to T can be performed efficiently

* Pattern matching for any P[0..m)
* Approximate matching

* Matching with wildcards

* Find longest repeated substring

5/22

From Last Time

Text Indexing Problem. Given a text T[0..n), preprocess T so that
queries to T can be performed efficiently

* Pattern matching for any P[0..m)
* Approximate matching

* Matching with wildcards

* Find longest repeated substring

Remarkably Useful Tool. Suffix Trees!
* Form compact trie of all suffixes of T: T[0..n], T[1..nl,
T[2..nl,...,T[n..n
* Given the suffix tree 9, all of the examples above can be
computed efficiently!

5/22

From Last Time

Text Indexing Problem. Given a text T[0..n), preprocess T so that
queries to T can be performed efficiently

* Pattern matching for any P[0..m)
* Approximate matching

* Matching with wildcards

* Find longest repeated substring

Remarkably Useful Tool. Suffix Trees!
* Form compact trie of all suffixes of T: T[0..n], T[1..nl,
T[2..nl,...,T[n..n
* Given the suffix tree 9, all of the examples above can be
computed efficiently!

Question. Can we compute 9 from T efficiently?
5/22

From Last Time

Text Indexing Problem. Given a text T[0..n), preprocess T so that
queries to T can be performed efficiently

* Pattern matching for any P[0..m)
* Approximate matching

* Matching with wildcards

* Find longest repeated substring

Remarkably Useful Tool. Suffix Trees!
* Form compact trie of all suffixes of T: T[0..n], T[1..nl,
T[2..nl,...,T[n..n
* Given the suffix tree 9, all of the examples above can be
computed efficiently!

Question. Can we compute J from T efficiently? Today: Yes!
5/22

Banana Example

Example. T = banana$.

6/22

Suffix Trees and Sorting Suffixes

Question. Consider the pre-order traversal of the leaves in the suffix
tree. In what order are the corresponding suffixes?

o |\ 7L
bamn
o n
n

3

a
o
o
(o

5 3 235 5 ¢

s b
a $
o %
a &
o$
o3$
a %

$

7122

Suffix Trees and Sorting Suffixes

Question. Consider the pre-order traversal of the leaves in the suffix
tree. In what order are the corresponding suffixes?

Observation. The suffixes are sorted in lexicographical order.

7122

Suffix Trees and Sorting Suffixes

Question. Consider the pre-order traversal of the leaves in the suffix
tree. In what order are the corresponding suffixes?

Observation. The suffixes are sorted in lexicographical order.
e This is already sufficient to perform string matching with pattern
P[0..m) reasonably efficiently
* O(mlogn) time
* Not much worse than O(m) for string matching with suffix array
* Still want to do better

7122

Suffix Trees and Sorting Suffixes

Question. Consider the pre-order traversal of the leaves in the suffix
tree. In what order are the corresponding suffixes?

Observation. The suffixes are sorted in lexicographical order.
e This is already sufficient to perform string matching with pattern
P[0..m) reasonably efficiently
* O(mlogn) time
* Not much worse than O(m) for string matching with suffix array
* Still want to do better

Question. Can we perform suffix tree-type computations without
computing the full suffix array?

7122

Suffix Trees and Sorting Suffixes

Question. Consider the pre-order traversal of the leaves in the suffix
tree. In what order are the corresponding suffixes?

Observation. The suffixes are sorted in lexicographical order.

e This is already sufficient to perform string matching with pattern
P[0..m) reasonably efficiently
* O(mlogn) time
* Not much worse than O(m) for string matching with suffix array
* Still want to do better

Question. Can we perform suffix tree-type computations without
computing the full suffix array?

Definition. The suffix array, L[0..n] of T[0..n] is the array of indices of
the suffixes of T when the suffixes are sorted in lexicographic order.

* This is the same as pre-order traversal of the leaves of J.

7122

Suffix Array Example

Example. Compute the suffix array L for T = abbabbaa$.

8/22

Suffix Array Example

Example. Compute the suffix array L for T = abbabbaa$.

abbabbaa$ $ 8
bbabbaa$ a$ 7
babbaa$ aa$ 6
abbaa$ abbaa$ 8
bbaa$ abbabbaa$ 0
baa$ baa$ 5

aa$ babbaa$ 2

a$ bbaa$ 4

$ bbabbaa$ 1

So.L=[8,7,6,3,0,5,2,4,1]

8/22

Is Too Much Lost?

Question. Is the suffix array L (together with 7) sufficient to perform
queries efficiently?
* Somewhat for string matching!
* Maybe not for longest repeated substring
¢ required knowledge of internal structure of the suffix tree I~

What additional structure of 9~ might we need to store?

Sufficient Tree Structure. Consider the suffix tree I for a text T[0..7].
The longest common prefix array LCP[1..7] stores at index i the length
of the longest common prefix of T[L[7]..n] and T[L[i—1]..7n]

9/22

LCP Array Example

Example. Compute the LCP array for the text T = banana$.

o\ 2
ban
o n

n

3

oS P20
3 3553

7]
)8

s b
o $
o $
a &
o $
o$
a$

$

10/22

Sufficient Information

Fact. Given T[0..n], L, and LCP, it is possible to compute J in time
O(n).

11/22

Sufficient Information

Fact. Given T[0..n], L, and LCP, it is possible to compute J in time
O(n).

Ilustration. Construct 9 for T = banana$ from L and LCP:

e T =banana$
e 1.=16,5,3,1,0,4,2]
e ICP=10,1,3,0,0,2]

11/22

Sufficient Information

Fact. Given T[0..n], L, and LCP, it is possible to compute J in time
O(n).
Illustration. Construct 9 for T = banana$ from L and LCP:

* T=banana$

e L=1[6,5,3,1,0,4,2]

e ICP=10,1,3,0,0,2]

Consequence. In order to compute J in O(n) time, it suffices to
compute Land LCP in O(n) time.

11/22

One More Definition

Definition. Given a suffix array L, the inverse suffix array or rank
array Ris defined by L[r] =i < RJ[jl =T.

* Ris the inverse permutation of L

* R[i] gives the (sorted) rank of the suffix T'i..n]
* Rand L can be computed from one another in linear time
* Example: L=1[6,5,3,1,0,4,2]

12/22

One More Definition

Definition. Given a suffix array L, the inverse suffix array or rank
array Ris defined by L[r] =i < RJ[jl =T.

* Ris the inverse permutation of L

* R[i] gives the (sorted) rank of the suffix T'i..n]
* Rand L can be computed from one another in linear time
* Example: L=1[6,5,3,1,0,4,2]

* To compute L, it suffices to compute R (efficiently)

So. To compute 9, it suffices to compute R and LCP.

12/22

Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.

13/22

Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.

A Non-obvious Approach.

13/22

Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.

A Non-obvious Approach.
1. Compute a rank array R; » for T; = T'[i..n] with i not divisible by 3
recursively.
* Challenge: make recursive calls smaller instances of original
problem

13/22

Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.

A Non-obvious Approach.
1. Compute a rank array R; » for T; = T[i..n] with i not divisible by 3
recursively.
2. Use Ry to find the rank array Rs for suffix 7; with i divisible by 3

* Trick: to compare Ty and T3, compare first characters. If they’re the
same use Rj » to compare 77 and Ty

13/22

Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.

A Non-obvious Approach.
1. Compute a rank array R; » for T; = T[i..n] with i not divisible by 3
recursively.
2. Use Ry to find the rank array Rs for suffix 7; with i divisible by 3

3. Merge R; » and Ry
¢ Similar to MERGESORT merge, but use Trick above to perform
comparisons in O(1) time

13/22

Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.
A Non-obvious Approach.
1. Compute a rank array R; » for T; = T'[i..n] with i not divisible by 3
recursively.
2. Use Ry, to find the rank array Rs for suffix 7; with i divisible by 3
3. Merge R; » and Ry

Analysis
e Can perform steps 2 and 3 in linear time
¢ Overall running time is

n+2n+(2)2n+ +1<n2(2)i—3n—®(n)
3 3 - 3) T ’

i=0

13/22

Computing LCP, An Overview

Goal. Compute LCP[1..n] where LCP[i] is the length of the longest
common prefix of Ty; and Ty;—1).

14/22

Computing LCP, An Overview

Goal. Compute LCP[1..n] where LCP[i] is the length of the longest
common prefix of Ty; and Ty;—1).

Observation. If LCP[i] = ¢, then there are two other prefixes of length

/-1
e namely, if r = R[i] then T};;; maches some string to at least £ — 1
characters Socked swifixes:
T:= bonenabon? {DN\$

bo\nrmouhodr\é’

14/22

Computing LCP, An Overview

Goal. Compute LCP[1..n] where LCP[i] is the length of the longest
common prefix of Ty; and Ty;—1).

Observation. If LCP[i] = ¢, then there are two other prefixes of length
/-1

e namely, if r = R[i] then T;;; maches some string to at least £ — 1
characters

Efficient Procedure.

e Compute Land R (in O(n)) time

14/22

Computing LCP, An Overview

Goal. Compute LCP[1..n] where LCP[i] is the length of the longest
common prefix of Ty; and Ty;—1).

Observation. If LCP[i] = ¢, then there are two other prefixes of length
/-1
e namely, if r = R[i] then T;;; maches some string to at least £ — 1
characters

Efficient Procedure.
e Compute Land R (in O(n)) time

* Process prefixes in descending length order i =0,1,2,...,n—1

¢ Find the rank r of T;
* Find LCP of T; and T; with j= L[r—1]

* must be at least LCP corresponding 7;_; minus 1

14/22

Computing LCP, An Overview

Goal. Compute LCP[1..n] where LCP[i] is the length of the longest
common prefix of Ty; and Ty;—1).

Observation. If LCP[i] = ¢, then there are two other prefixes of length
/-1
e namely, if r = R[i] then T;;; maches some string to at least £ — 1
characters

Efficient Procedure.
e Compute Land R (in O(n)) time

* Process prefixes in descending length order i =0,1,2,...,n—1

¢ Find the rank r of T;
* Find LCP of T; and T; with j= L[r—1]

* must be at least LCP corresponding 7;_; minus 1

Conclusion. This can be performed in O(n) time!

14/22

Concluding Thoughts

We have shown:

* Suffix trees can be used to preform many queries to T efficiently
* We can compute the following in linear time:

* the suffix array L
* the inverse suffix array (rank array) R
¢ the LCP array LCP

* From these, we can compute J in time O(n)

* These are surprising (and relatively recent) developments!

15/22

Final Exam

From Day 1: Goals & Content

Module Goals:
* build / enhance your toolbox of algorithmic methods and techniques
— focus on practical methods

* enable you to reason about and communicate algorithmic solutions
— level of abstraction, proofs, mathematical analysis, vocabulary

* enable you to apply, combine and extend methods

Units:
1. Module Overview & Proof 6. Compression
Techmiques 7. Error-Correcting Codes
2. Machines & Models 8. Parallel Alzorith
3. Fundamental Data Structures - rarafiel Algorithims
4. Efficient Sorting 9. Textindexing
5. String Matching 10._StreamingmAlgorithms

17/22

From Day 1: Goals & Content

Module Goals:

* build / enhance your toolbox of algorithmic methods and techniques

— focus on practical methods

* enable you to reason about and communicate algorithmic solutions

— level of abstraction, proofs, mathematical analysis, vocabulary

* enable you to apply, combine and extend methods

Units:

1. Module Overview & Proof 6
Techniques 7

Machines & Models

Fundamental Data Structures 8

Efficient Sorting 9

SR

String Matching 10.

. Compression
. Error-Correcting Codes
. Parallel Algorithms

. Text indexing

StreamingrAlgorithms

Exam Purpose. Determine the extent to which you achieved these

goals.

17/22

Exam Format

The Basics.
e Written Exam, Closed Book

® 21/2hours to complete (invigilated)
® no outside resources: just you, pencil, and paper

* 100 marks total
e 5 multi-part questions, each worth 25 marks
e Total mark is sum of 4 highest marks
° only need to answer 4 of 5 questions
e Content from all module units

e Focus on conceptual and computational aspects of module
content

18/22

Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept
* Example: Define the compression ratio of an encoding scheme and
describe a scenario in which one of the compression algorithms
from lecture gives a small compression ratio.

19/22

Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

* Example: What is the worst-case running time of MERGESORT
applied to an array of length n?

19/22

Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

3. Computational: apply a known algorithm to a new input

* Example: apply the Burrows-Wheeler transformation to the text
T =mississippi$.

19/22

Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

3. Computational: apply a known algorithm to a new input

4. Critical Analysis: explain/analyze a concept and how it relates to
another concept
* Example: Consider the task of sorting an array of size n containing
numbers from the range 1 to ¢ for some constant c. Explain why
the O(n) running time of COUNTINGSORT does not contradict the
Q(nlogn) lower bound we proved for comparison based sorting
algorithms.

19/22

Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

3. Computational: apply a known algorithm to a new input
4. Critical Analysis: explain/analyze a concept and how it relates to
another concept

5. Transfer Task: apply concepts or techniques from lecture to solve
a novel problem.

* Example: Two strings S;[0..n) and S;[0..n) are anagrams if they are
rearrangements of precisely the same letters (with multiplicity).
Describe a procedure that determines if two strings are anagrams
in time O(nlogn).

19/22

Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

3. Computational: apply a known algorithm to a new input

4. Critical Analysis: explain/analyze a concept and how it relates to
another concept

5. Transfer Task: apply concepts or techniques from lecture to solve
anovel problem.

Assessment.
* Pass (50-60). Answer types 1-3 with only minor errors.
* Merit (60-70). Answer 1-3, and show some insight on 4-5.
* Distinction (70+). Answer 1-3 with significant progress on 4-5.

19/22

Forthcoming

Lecture Review Materials
* Exhaustive list of topics
e Example questions

* Model solutions

20/22

Forthcoming

Lecture Review Materials PollEverywhere

* Exhaustive list of topics In what format do you find example

i ?
« Example questions solutions most helpful?

. * thorough written (typeset) solution
* Model solutions & s

¢ avideo walking through solutions
(handwritten)

¢ either one is fine

pollev.com/comp526

20/22

Forthcoming

Lecture Review Materials
* Exhaustive list of topics
e Example questions

* Model solutions

Marking
* Programming Assignment 1

* Programming Assignment 2

20/22

Thank You!ll

Scratch Notes

22/22

