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Announcements

1. Today is the final lecture!!!
2. Final exam revision materials soon:

* Practice exam questions
* Solutions

3. Attendance Code:

81314|
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Meeting Goals

1. Finish discussion of text indexing

* Recap of suffix trees

* Introduce suffix arrays

* Introduce LCP arrays

* Discuss efficient computation of suffix and LCP arrays

2. Final exam overview
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Text Indexing



From Last Time

Text Indexing Problem. Given a text T[0..n), preprocess T so that
queries to T can be performed efficiently

* Pattern matching for any P[0..m)
* Approximate matching

* Matching with wildcards

* Find longest repeated substring
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From Last Time

Text Indexing Problem. Given a text T[0..n), preprocess T so that
queries to T can be performed efficiently

* Pattern matching for any P[0..m)
* Approximate matching

* Matching with wildcards

* Find longest repeated substring

Remarkably Useful Tool. Suffix Trees!
* Form compact trie of all suffixes of T: T[0..n], T[1..nl,
T[2..nl,...,T[n..n
* Given the suffix tree 9, all of the examples above can be
computed efficiently!

Question. Can we compute J from T efficiently? Today: Yes!
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Banana Example

Example. T = banana$.
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Suffix Trees and Sorting Suffixes

Question. Consider the pre-order traversal of the leaves in the suffix
tree. In what order are the corresponding suffixes?
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Suffix Trees and Sorting Suffixes

Question. Consider the pre-order traversal of the leaves in the suffix
tree. In what order are the corresponding suffixes?

Observation. The suffixes are sorted in lexicographical order.
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Suffix Trees and Sorting Suffixes

Question. Consider the pre-order traversal of the leaves in the suffix
tree. In what order are the corresponding suffixes?

Observation. The suffixes are sorted in lexicographical order.
e This is already sufficient to perform string matching with pattern
P[0..m) reasonably efficiently
* O(mlogn) time
* Not much worse than O(m) for string matching with suffix array
* Still want to do better
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Suffix Trees and Sorting Suffixes

Question. Consider the pre-order traversal of the leaves in the suffix
tree. In what order are the corresponding suffixes?

Observation. The suffixes are sorted in lexicographical order.

e This is already sufficient to perform string matching with pattern
P[0..m) reasonably efficiently
* O(mlogn) time
* Not much worse than O(m) for string matching with suffix array
* Still want to do better

Question. Can we perform suffix tree-type computations without
computing the full suffix array?

Definition. The suffix array, L[0..n] of T[0..n] is the array of indices of
the suffixes of T when the suffixes are sorted in lexicographic order.

* This is the same as pre-order traversal of the leaves of J.
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Suffix Array Example

Example. Compute the suffix array L for T = abbabbaa$.
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Suffix Array Example

Example. Compute the suffix array L for T = abbabbaa$.

abbabbaa$ $ 8
bbabbaa$ a$ 7
babbaa$ aa$ 6
abbaa$ abbaa$ 8
bbaa$ abbabbaa$ 0
baa$ baa$ 5

aa$ babbaa$ 2

a$ bbaa$ 4

$ bbabbaa$ 1

So.L=[8,7,6,3,0,5,2,4,1]
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Is Too Much Lost?

Question. Is the suffix array L (together with 7) sufficient to perform
queries efficiently?
* Somewhat for string matching!
* Maybe not for longest repeated substring
¢ required knowledge of internal structure of the suffix tree I~

What additional structure of 9~ might we need to store?

Sufficient Tree Structure. Consider the suffix tree I for a text T[0..7].
The longest common prefix array LCP[1..7] stores at index i the length
of the longest common prefix of T[L[7]..n] and T[L[i—1]..7n]
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LCP Array Example

Example. Compute the LCP array for the text T = banana$.
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Sufficient Information

Fact. Given T[0..n], L, and LCP, it is possible to compute J in time
O(n).
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Sufficient Information

Fact. Given T[0..n], L, and LCP, it is possible to compute J in time
O(n).

Ilustration. Construct 9 for T = banana$ from L and LCP:

e T =banana$
e 1.=16,5,3,1,0,4,2]
e ICP=10,1,3,0,0,2]
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Sufficient Information

Fact. Given T[0..n], L, and LCP, it is possible to compute J in time
O(n).
Illustration. Construct 9 for T = banana$ from L and LCP:

* T=banana$

e L=1[6,5,3,1,0,4,2]

e ICP=10,1,3,0,0,2]

Consequence. In order to compute J in O(n) time, it suffices to
compute Land LCP in O(n) time.
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One More Definition

Definition. Given a suffix array L, the inverse suffix array or rank
array Ris defined by L[r] =i < RJ[jl =T.

* Ris the inverse permutation of L

* R[i] gives the (sorted) rank of the suffix T'i..n]
* Rand L can be computed from one another in linear time
* Example: L=1[6,5,3,1,0,4,2]
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One More Definition

Definition. Given a suffix array L, the inverse suffix array or rank
array Ris defined by L[r] =i < RJ[jl =T.

* Ris the inverse permutation of L

* R[i] gives the (sorted) rank of the suffix T'i..n]
* Rand L can be computed from one another in linear time
* Example: L=1[6,5,3,1,0,4,2]

* To compute L, it suffices to compute R (efficiently)

So. To compute 9, it suffices to compute R and LCP.
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Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.
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Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.

A Non-obvious Approach.
1. Compute a rank array R; » for T; = T'[i..n] with i not divisible by 3
recursively.
* Challenge: make recursive calls smaller instances of original
problem
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Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.

A Non-obvious Approach.
1. Compute a rank array R; » for T; = T[i..n] with i not divisible by 3
recursively.
2. Use Ry to find the rank array Rs for suffix 7; with i divisible by 3

* Trick: to compare Ty and T3, compare first characters. If they’re the
same use Rj » to compare 77 and Ty
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Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.

A Non-obvious Approach.
1. Compute a rank array R; » for T; = T[i..n] with i not divisible by 3
recursively.
2. Use Ry to find the rank array Rs for suffix 7; with i divisible by 3

3. Merge R; » and Ry
¢ Similar to MERGESORT merge, but use Trick above to perform
comparisons in O(1) time
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Computing R, An Overview

Goal. Given T[0..n], compute R[0..n] where R[i] is the sorted rank of
Tli..n] among all prefixes of T.
A Non-obvious Approach.
1. Compute a rank array R; » for T; = T'[i..n] with i not divisible by 3
recursively.
2. Use Ry, to find the rank array Rs for suffix 7; with i divisible by 3
3. Merge R; » and Ry

Analysis
e Can perform steps 2 and 3 in linear time
¢ Overall running time is

n+2n+(2)2n+ +1<n2(2)i—3n—®(n)
3 3 - 3) T ’

i=0
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Computing LCP, An Overview

Goal. Compute LCP[1..n] where LCP[i] is the length of the longest
common prefix of Ty; and Ty;—1).

14/22



Computing LCP, An Overview

Goal. Compute LCP[1..n] where LCP[i] is the length of the longest
common prefix of Ty; and Ty;—1).

Observation. If LCP[i] = ¢, then there are two other prefixes of length

/-1
e namely, if r = R[i] then T};;; maches some string to at least £ — 1
characters Socked swifixes:
T:= bonenabon? {DN\$

bo\nrmouhodr\é’
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Goal. Compute LCP[1..n] where LCP[i] is the length of the longest
common prefix of Ty; and Ty;—1).

Observation. If LCP[i] = ¢, then there are two other prefixes of length
/-1
e namely, if r = R[i] then T;;; maches some string to at least £ — 1
characters

Efficient Procedure.
e Compute Land R (in O(n)) time

* Process prefixes in descending length order i =0,1,2,...,n—1

¢ Find the rank r of T;
* Find LCP of T; and T; with j= L[r—1]

* must be at least LCP corresponding 7;_; minus 1
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Computing LCP, An Overview

Goal. Compute LCP[1..n] where LCP[i] is the length of the longest
common prefix of Ty; and Ty;—1).

Observation. If LCP[i] = ¢, then there are two other prefixes of length
/-1
e namely, if r = R[i] then T;;; maches some string to at least £ — 1
characters

Efficient Procedure.
e Compute Land R (in O(n)) time

* Process prefixes in descending length order i =0,1,2,...,n—1

¢ Find the rank r of T;
* Find LCP of T; and T; with j= L[r—1]

* must be at least LCP corresponding 7;_; minus 1

Conclusion. This can be performed in O(n) time!
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Concluding Thoughts

We have shown:

* Suffix trees can be used to preform many queries to T efficiently
* We can compute the following in linear time:

* the suffix array L
* the inverse suffix array (rank array) R
¢ the LCP array LCP

* From these, we can compute J in time O(n)

* These are surprising (and relatively recent) developments!
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Final Exam



From Day 1: Goals & Content

Module Goals:
* build / enhance your toolbox of algorithmic methods and techniques
— focus on practical methods

* enable you to reason about and communicate algorithmic solutions
— level of abstraction, proofs, mathematical analysis, vocabulary

* enable you to apply, combine and extend methods

Units:
1. Module Overview & Proof 6. Compression
Techmiques 7. Error-Correcting Codes
2. Machines & Models 8. Parallel Alzorith
3. Fundamental Data Structures - rarafiel Algorithims
4. Efficient Sorting 9. Textindexing
5. String Matching 10._StreamingmAlgorithms
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From Day 1: Goals & Content

Module Goals:

* build / enhance your toolbox of algorithmic methods and techniques

— focus on practical methods

* enable you to reason about and communicate algorithmic solutions

— level of abstraction, proofs, mathematical analysis, vocabulary

* enable you to apply, combine and extend methods

Units:

1. Module Overview & Proof 6
Techniques 7

Machines & Models

Fundamental Data Structures 8

Efficient Sorting 9

SR

String Matching 10.

. Compression
. Error-Correcting Codes
. Parallel Algorithms

. Text indexing

StreamingrAlgorithms

Exam Purpose. Determine the extent to which you achieved these

goals.
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Exam Format

The Basics.
e Written Exam, Closed Book

® 21/2hours to complete (invigilated)
® no outside resources: just you, pencil, and paper

* 100 marks total
e 5 multi-part questions, each worth 25 marks
e Total mark is sum of 4 highest marks
° only need to answer 4 of 5 questions
e Content from all module units

e Focus on conceptual and computational aspects of module
content
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Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept
* Example: Define the compression ratio of an encoding scheme and
describe a scenario in which one of the compression algorithms
from lecture gives a small compression ratio.

19/22



Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

* Example: What is the worst-case running time of MERGESORT
applied to an array of length n?
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Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

3. Computational: apply a known algorithm to a new input

* Example: apply the Burrows-Wheeler transformation to the text
T =mississippi$.
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Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

3. Computational: apply a known algorithm to a new input

4. Critical Analysis: explain/analyze a concept and how it relates to
another concept
* Example: Consider the task of sorting an array of size n containing
numbers from the range 1 to ¢ for some constant c. Explain why
the O(n) running time of COUNTINGSORT does not contradict the
Q(nlogn) lower bound we proved for comparison based sorting
algorithms.
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Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

3. Computational: apply a known algorithm to a new input
4. Critical Analysis: explain/analyze a concept and how it relates to
another concept

5. Transfer Task: apply concepts or techniques from lecture to solve
a novel problem.

* Example: Two strings S;[0..n) and S;[0..n) are anagrams if they are
rearrangements of precisely the same letters (with multiplicity).
Describe a procedure that determines if two strings are anagrams
in time O(nlogn).
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Question Types

1. Definitional: concisely define a concept from class together with
examples or applications of the concept

2. Factual: recall a pertinent fact about a particular concept or
algorithm from lecture.

3. Computational: apply a known algorithm to a new input

4. Critical Analysis: explain/analyze a concept and how it relates to
another concept

5. Transfer Task: apply concepts or techniques from lecture to solve
anovel problem.

Assessment.
* Pass (50-60). Answer types 1-3 with only minor errors.
* Merit (60-70). Answer 1-3, and show some insight on 4-5.
* Distinction (70+). Answer 1-3 with significant progress on 4-5.
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Forthcoming

Lecture Review Materials
* Exhaustive list of topics
e Example questions

* Model solutions
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Forthcoming

Lecture Review Materials PollEverywhere

* Exhaustive list of topics In what format do you find example

i ?
« Example questions solutions most helpful?

. * thorough written (typeset) solution
* Model solutions & s

¢ avideo walking through solutions
(handwritten)

¢ either one is fine

pollev.com/comp526
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Forthcoming

Lecture Review Materials
* Exhaustive list of topics
e Example questions

* Model solutions

Marking
* Programming Assignment 1

* Programming Assignment 2
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Thank You!ll



Scratch Notes
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