11 1 m 1 m 1]]
00000000000000000F00000000FGCUCFO0O0E000000000060000iI000800000000000000000Fgogoo]
123456 78 910012131 1516 1716192021 2223242526 27 2829 2% 3132 33 74 35 36 37 38 39 40 41 42 41 44 45 46 47 49 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT R ERRRRR! B ERRRRRI [R ERRER AR R R RN R RN R RN R RN R R R RS AR R R R RRRRRERRERRRT!
22022222222222220222222220222
3333233333333333303333333[333333333[333]3
A44444444444400084844444444000044044444044440408444444444444844444444444044444]44
555555555555 5055555 055055555 MB550M5555505555555555555555555555555565555555555555§5

66666666 66M66366666666656R6666666

Lecture 19: Text Indexing |
COMP526: Efficient Algorithms

Will Rosenbaum
Updated: December 5, 2024 University of Liverpool

1/32

Announcements

1. Quiz 07 on Error Correcting Codes
* Complete by 11:59pm, Friday 06 November

\S}

. Grading is slow (sorry)
* Programming assignment 1 grades next week
3. Last lectures:
¢ Text indexing (Today and next Tuesday)
* Final review (next Thursday)

4. Attendance Code:

2/32

Meeting Goals

S

Introduce and analyze Parallel MergeSort
Introduce the text indexing problem
Define the trie data structure

Define suffix trees

Describe applications of suffix trees

3/32

Parallel
MergeSort

Last Time

Parallel Algorithms!
* PRAM model
* Unlimited parallel processing elements (PEs)
* Brent’s Theorem: span T and work W with unlimited PEs
= span O(T + W/p) and work O(W) with p PEs
* Parallel string matching with span T = O(m) and work W = O(n)
* Sorting networks

* span T = O(log® n) and work W = O(nlog? n)
* limited to specialized hardware and/or small arrays

5/32

Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to
parallelism:

1. Divide problem into sub-tasks
2. Solve the subtasks

3. Merge solutions of the subtasks

6/32

Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to
parallelism:
1. Divide problem into sub-tasks
2. Solve the subtasks (independently)
* Parallelize these!
3. Merge solutions of the subtasks

6/32

Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to
parallelism:
1. Divide problem into sub-tasks
2. Solve the subtasks (independently)
* Parallelize these!
3. Merge solutions of the subtasks (...2)
* How to parallelize this?

6/32

Parallel MergeSort?

Revisited: MERGESORT

1: procedure MERGESORT(4, i, k)
2 if i < k then
3 j—Li+Kk)/2]
4 MERGESORT(4, i,)
5: MERGESORT(A4,j+ 1, k)
6 B— CoPY(4,i,))
7 C— CopPY(A,j+1,k)
8: MERGE(B, C, A, i)

9: end if
10: end procedure

7132

Parallel MergeSort?

1: procedure MERGESORT(4, i, k)
2 if i < k then

3 j—Li+Kk)/2]

4 MERGESORT(4, i, j)
5: MERGESORT(A4,j+ 1, k)
6

7

8

PollEverywhere

What is the span of MergeSort with
parallel recursive calls and
sequential merges?

B— CoPY(A4, 1))
C— CopPY(A,j+1,k)

g MERGE(B, C, A, i)
9: end if
10: end procedure

pollev.com/comp526

7132

Parallelizing Merges

Question. How can we parallelize merges?

8/32

Parallelizing Merges

Question. How can we parallelize merges?
e For each x, find the final index of x

* How do we find this?

8/32

Parallelizing Merges

Question. How can we parallelize merges?
e For each x, find the final index of x

* How do we find this?
* index = # elements < x

* #in x’s sub-array
* #in other sub-array

* How to compute these?

8/32

Parallelizing Merges

Question. How can we parallelize merges?
e For each x, find the final index of x

* How do we find this?
* index = # elements < x

* #in x’s sub-array
* #in other sub-array

* How to compute these?
Idea.

* In x’s own sub-array, just use x’s index!

8/32

Parallelizing Merges

Question. How can we parallelize merges?
e For each x, find the final index of x

* How do we find this?
* index = # elements < x

* #in x’s sub-array
* #in other sub-array

* How to compute these?
Idea.
* In x’s own sub-array, just use x’s index!

* For the other sub-array, use binary search!

8/32

Parallelizing Merges

Question. How can we parallelize merges?
e For each x, find the final index of x

* How do we find this?
* index = # elements < x

* #in x’s sub-array
* #in other sub-array

* How to compute these?
Idea.
* In x’s own sub-array, just use x’s index!
* For the other sub-array, use binary search!

* Parallelize: do each x in parallel!

8/32

Parallel MergeSort in Code

1: procedure PARALLELMERGE(A[l..m), A[m..7), B)
2 fori=1/...,m—1in parallel do

3 k — (i—) + BINARYSEARCH (A[m..1), A[i])
4 Blk] — Ali]

5 end for

6: for j=m,m+1,...,r—1in parallel do

7 k — BINARYSEARCH (A[L.m), A[j])

8 Blk] — Aljl

9 end for

0:

10: end procedure

9/32

Parallel MergeSort in Code

1: procedure PARALLELMERGE(A[l..m), A[m..7), B)
2 fori=1/...,m—1in parallel do
3 k — (i—) + BINARYSEARCH (A[m..1), A[i])
4 Blk] — Ali]
5: end for
6 for j=m,m+1,...,r—1in parallel do
7 k — BINARYSEARCH (A[L.m), A[j])
8 Blk] — Alj]
9: end for
10: end procedure

Questions.
* What is the span of PARALLELMERGE?

9/32

Parallel MergeSort in Code

1: procedure PARALLELMERGE(A[l..m), A[m..7), B)
2 fori=1/...,m—1in parallel do
3 k — (i—) + BINARYSEARCH (A[m..1), A[i])
4 Blk] — Ali]
5: end for
6 for j=m,m+1,...,r—1in parallel do
7 k — BINARYSEARCH (A[L.m), A[j])
8 Blk] — Alj]
9: end for
10: end procedure

Questions.
* What is the span of PARALLELMERGE?
* O(logn)
¢ What is the work of PARALLELMERGE?

9/32

Parallel MergeSort in Code

1: procedure PARALLELMERGE(A[l..m), A[m..7), B)
2 fori=1/...,m—1in parallel do
3 k — (i—) + BINARYSEARCH (A[m..1), A[i])
4 Blk] — Ali]
5: end for
6 for j=m,m+1,...,r—1in parallel do
7 k — BINARYSEARCH (A[L.m), A[j])
8 Blk] — Alj]
9: end for
10: end procedure

Questions.
* What is the span of PARALLELMERGE?
* O(logn)
¢ What is the work of PARALLELMERGE?
* O(nlogn)

9/32

Parallel MergeSort Analysis

Overall Procedure
1. Split (sub)array in half
2. Parallel recursive MergeSorts
3. PARALLELMERGE sorted halves

10/32

Parallel MergeSort Analysis

Overall Procedure
1. Split (sub)array in half
2. Parallel recursive MergeSorts
3. PARALLELMERGE sorted halves

Span Analysis
* Merge has span ©(logn)
* Depth of recursion tree is ©(logn)
¢ Total time: ©(log? n)

10/32

Parallel MergeSort Analysis

Overall Procedure
1. Split (sub)array in half
2. Parallel recursive MergeSorts
3. PARALLELMERGE sorted halves

Span Analysis
* Merge has span ©(logn)
* Depth of recursion tree is ©(logn)
¢ Total time: ©(log? n)

Work Analysis
* Merge has work ©(nlogn)
* Summing over recursive calls gives ©(nlog? n)

10/32

Parallel MergeSort Analysis

Overall Procedure
1. Split (sub)array in half
2. Parallel recursive MergeSorts
3. PARALLELMERGE sorted halves

Span Analysis
* Merge has span ©(logn)
* Depth of recursion tree is ©(logn)
¢ Total time: ©(log? n)

Work Analysis
* Merge has work ©(nlogn)
* Summing over recursive calls gives ©(nlog? n)

Improvements. Merge can be improved to ©(n) work! (butit’s

complicated)
10/32

Concluding Thoughts

Parallelism is Necessary
e Computer hardware is naturally parallel
° sequential computing is an illusion!

11/32

Concluding Thoughts

Parallelism is Necessary
e Computer hardware is naturally parallel
° sequential computing is an illusion!

Parallelism is Powerful

* Recent explosion in computing power is due to parallelism!

11/32

Concluding Thoughts

Parallelism is Necessary
e Computer hardware is naturally parallel
° sequential computing is an illusion!

Parallelism is Powerful

* Recent explosion in computing power is due to parallelism!
Parallelism is Subtle

* Reasoning about parallel programs is hard

e Writing correct parallel programs is hard
¢ Idealized models abstract away many challenges

* no perfect synchrony?
* tolerate faults?

11/32

Text Indexing

Text Indexing

Previously: String Matching.
* Given a text T[0..n) and a pattern P[0..m), determine if/where T contains P
* Focus on one shot complexity:
* how long to search T for a single pattern P

13/32

Text Indexing

Previously: String Matching.
* Given a text T[0..n) and a pattern P[0..m), determine if/where T contains P
* Focus on one shot complexity:
* how long to search T for a single pattern P

A Variation. The text T is fixed, but we may wish to search T for many
different (initially) unknown patterns Py, Po,
* ©O(n) may be much too much to pay for each search
* Applications:
* web search engines
* online dictionaries/encyclopedias
* DNA/RNA databases
¢ searching any collection of text documents

13/32

Text Indexing

Previously: String Matching.
* Given a text T[0..n) and a pattern P[0..m), determine if/where T contains P
* Focus on one shot complexity:
* how long to search T for a single pattern P

A Variation. The text T is fixed, but we may wish to search T for many
different (initially) unknown patterns Py, Po,
* ©O(n) may be much too much to pay for each search
* Applications:
* web search engines
* online dictionaries/encyclopedias
* DNA/RNA databases
¢ searching any collection of text documents

An Alternative Approach. Preprocess the text T to make the searches
more efficient
* Pay for preprocessing upfront
* Each query can be much more efficient.
13/32

Inverted Indices

Example Problem. Given a text T of words, implement an index of the
occurrences of that word.

e Like an index of a textbook

* Only store known words (e.g., whitespace/punctuation separated
substrings)

14/32

Inverted Indices

Example Problem. Given a text T of words, implement an index of the
occurrences of that word.

e Like an index of a textbook

* Only store known words (e.g., whitespace/punctuation separated
substrings)

Goal. Implement an efficient map from (possible) keywords P to index
of first occurrence (or all occurrences) of Pin T (if any)

14/32

Inverted Indices

Example Problem. Given a text T of words, implement an index of the
occurrences of that word.

e Like an index of a textbook

* Only store known words (e.g., whitespace/punctuation separated
substrings)

Goal. Implement an efficient map from (possible) keywords P to index
of first occurrence (or all occurrences) of Pin T (if any)

e “Easier” than general string matching:
* Possible (positive) queries are not arbitrary
° must be a word in the text
* Keywords are already given (implicitly) in the text

14/32

Inverted Indices

Example Problem. Given a text T of words, implement an index of the
occurrences of that word.
* Like an index of a textbook

* Only store known words (e.g., whitespace/punctuation separated
substrings)

Goal. Implement an efficient map from (possible) keywords P to index
of first occurrence (or all occurrences) of Pin T (if any)

e “Easier” than general string matching:
* Possible (positive) queries are not arbitrary
° must be a word in the text
* Keywords are already given (implicitly) in the text

Question. How can we implement such a map efficiently?

14/32

The Trie Data Structure

Idea. Store words in a tree
* Each leaf represents a possible word in the text
¢ Each internal node represents prefix of a word in the text
¢ path from root to leaf stores letters in the leaf word

* Append a terminating character to each word to make the tree a prefix tree

15/32

The Trie Data Structure

Idea. Store words in a tree
* Each leaf represents a possible word in the text
¢ Each internal node represents prefix of a word in the text
¢ path from root to leaf stores letters in the leaf word

* Append a terminating character to each word to make the tree a prefix tree

Example: {aa$, aaab$, abaab$, abb$, abbab$, bba$, bbbb$}

15/32

Searching a Trie

Question. Given a pattern P and a trie for the text 7, how do we
determine if T contains the pattern P?

16/32

Searching a Trie

Question. Given a pattern P and a trie for the text 7, how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):

I

Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)
S
4

. If no corresponding edge found or end at an internal node, no mach is found.

If a leaf is reached storing P match is found!

16/32

Searching a Trie

Question. Given a pattern P and a trie for the text 7, how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):

I

PollEverywhere

What is the running
time of searching a
trie?

Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)
S
4

. If no corresponding edge found or end at an internal node, no mach is found.

If a leaf is reached storing P match is found!

pollev.com/comp526

16/32

Searching a Trie

Question. Given a pattern P and a trie for the text 7, how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):

I

Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)
S
4

. If no corresponding edge found or end at an internal node, no mach is found.

If a leaf is reached storing P match is found!

Remarkable fact. The time to search a trie depends only on the length
of P, not the size of T!

* Also: the trie can be computed efficiently from T (in O(n) time).

16/32

Compact Tries

Observation. Tries are potentially wasteful!
¢ Can have long paths with no branching

* Storingthese paths is inefficient

17/32

Compact Tries

Observation. Tries are potentially wasteful!
¢ Can have long paths with no branching

* Storingthese paths is inefficient

Idea. Compress paths without branches!
* Replace a path of unary (single-child) nodes with a single edge
* Label edge with the first character of the corresponding path

e Label each vertex with the index of the next character

17/32

Words, Trie, Compact Trie

Example: {aa$, aaab$, abaab$, abb$, abbab$, bba$, bbbb$}

18/32

Compact Trie Features

Question. How do we search a compact trie?

19/32

Compact Trie Features

Question. How do we search a compact trie?
1. Start at the root of the compact trie
2. Atnode labeled i, follow edge labeled P[i], if any
¢ if no such edge exists, search failed
3. Ifleaf notreached, search failed
4. Ifleafreached, check that P = leaflabel

19/32

Compact Trie Features

Question. How do we search a compact trie?
1. Start at the root of the compact trie
2. Atnode labeled i, follow edge labeled P[i], if any
¢ if no such edge exists, search failed
3. Ifleaf notreached, search failed
4. Ifleafreached, check that P = leaflabel

Example. Search for ababb.

19/32

Compact Trie Features

Question. How do we search a compact trie?
1. Start at the root of the compact trie
2. Atnode labeled i, follow edge labeled P[i], if any
¢ if no such edge exists, search failed
3. Ifleaf notreached, search failed
4. Ifleafreached, check that P = leaflabel

Observation. Searching a compact trie for P[0..m) still takes time
O(m).

19/32

Compact Trie Features

Question. How do we search a compact trie?
1. Start at the root of the compact trie
2. Atnode labeled i, follow edge labeled P[i], if any
¢ if no such edge exists, search failed
3. Ifleaf notreached, search failed
4. Ifleafreached, check that P = leaflabel

Observation. Searching a compact trie for P[0..m) still takes time
O(m).
Useful feature. If a compact trie stores ¢ words, then it has at most
¢ — 1 internal nodes as well.
* The size of the trie is proportional to the number of words it
stores!
* Fact (to prove). If a tree T has ¢ leaves and every internal node
has at least two children, then T has at most 2¢ — 1 vertices.

19/32

Trie Discussion

Advantages of tries:
e Simple data structure!
* Space-efficient (compact tries)!

* Fast lookup!

20/32

Trie Discussion

Advantages of tries:
e Simple data structure!
* Space-efficient (compact tries)!

* Fast lookup!

Disadvantages:
e Cannot handle more general queries
¢ search part of a word
¢ search for a phrase (sequence of words)
* Requires the text to be partitioned into words

* DNA/RNA sequences
* binary text

20/32

Trie Discussion

Advantages of tries:
e Simple data structure!
* Space-efficient (compact tries)!

* Fast lookup!

Disadvantages:
e Cannot handle more general queries

¢ search part of a word
¢ search for a phrase (sequence of words)

* Requires the text to be partitioned into words

* DNA/RNA sequences
* binary text

We need new ideas!!

20/32

Suffix Trees

A New Idea

So Far.
* Goal. A data structure for efficient pattern matching (and more)

e Compact tries: work for text composed of (designated) words

22/32

A New Idea

So Far.
* Goal. A data structure for efficient pattern matching (and more)

e Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from 7) in a trie!
e For any indices i < j, T[i..j) is a possible word
* Add all of them to the trie!

22/32

A New Idea

So Far.
* Goal. A data structure for efficient pattern matching (and more)

e Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from 7) in a trie!
e For any indices i < j, T[i..j) is a possible word
* Add all of them to the trie!

The Good.

¢ (Can search for P[0..m) in O(m) time!

22/32

A New Idea

So Far.
* Goal. A data structure for efficient pattern matching (and more)

e Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from 7) in a trie!
e For any indices i < j, T[i..j) is a possible word
* Add all of them to the trie!

The Good and the Bad.
¢ (Can search for P[0..m) in O(m) time!
e Must store O(n?) possible words

* SoQ(n?) space, even if a compact trie is used

22/32

A New Idea

So Far.
* Goal. A data structure for efficient pattern matching (and more)

e Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from 7) in a trie!
e For any indices i < j, T[i..j) is a possible word
* Add all of them to the trie!

The Good and the Bad.
¢ (Can search for P[0..m) in O(m) time!
e Must store O(n?) possible words

* SoQ(n?) space, even if a compact trie is used

An observation. P[i,i+ 1), P[i,i+2), P[i, i+ 3),...can all just be checked
against P[i, n)

22/32

Suffix Trees

Definition. Given a text T'[0..n) the suffix tree 9 of T is formed by:

* take the compact trie of all suffixes of T'$ (i.e., all T; = T[i..n)$)
¢ exceptreplace the leaflabel T; with just the index i
* must still store T to read from T;

23/32

Suffix Trees

Definition. Given a text T'[0..n) the suffix tree 9 of T is formed by:

* take the compact trie of all suffixes of T'$ (i.e., all T; = T[i..n)$)
¢ exceptreplace the leaflabel T; with just the index i
¢ must still store T to read from T;

Example. T =banana$

bowono $ 2 b
onana $. a
nwana $
oomx$ Q n
naé n
od N
$

23/32

Suffix Trees

Definition. Given a text T'[0..n) the suffix tree 9 of T is formed by:

* take the compact trie of all suffixes of T'$ (i.e., all T; = T[i..n)$)
¢ exceptreplace the leaflabel T; with just the index i
¢ must still store T to read from T;
Example. T =banana$

$

bonana $
anona $
nwana $
awnad
na$

oé

$

23/32

Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size

24/32

Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size

PollEverywhere

Given T10..n), what is
the total size of the

associated suffix tree
g

pollev.com/comp526

24/32

Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size O (n).

* The size of the suffix tree is only a (small) constant factor larger
than T.

24/32

Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size O (n).

* The size of the suffix tree is only a (small) constant factor larger
than T.

Speed. Given T[0..n), we can compute J in time

24/32

Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size O (n).

* The size of the suffix tree is only a (small) constant factor larger
than T.

Speed. Given T[0..n), we can compute J in time o(n?) by a “naive”
algorithm...

24/32

Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size O (n).

* The size of the suffix tree is only a (small) constant factor larger
than T.

Speed. Given T[0..n), we can compute J in time o(n?) by a “naive”
algorithm...

...but 9 can be computed in time O(n) by a clever (and practical)
algorithm!!!

24/32

Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size O (n).

* The size of the suffix tree is only a (small) constant factor larger
than T.

Speed. Given T[0..n), we can compute J in time o(n?) by a “naive”
algorithm...
...but 9 can be computed in time O(n) by a clever (and practical)
algorithm!!!
* This result is wild, and should be surprising!

e We'll give an overview of the algorithm on Tuesday

24/32

Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size O (n).

* The size of the suffix tree is only a (small) constant factor larger
than T.

Speed. Given T[0..n), we can compute J in time o(n?) by a “naive”
algorithm...
...but 9 can be computed in time O(n) by a clever (and practical)
algorithm!!!
* This result is wild, and should be surprising!
e We'll give an overview of the algorithm on Tuesday

For now. Take it as given that 9~ can be computed in O(n) time.

24/32

Suffix Tree
Applications

Application 1: String Matching

Observation. P occurs in T <= Pis a prefix of a suffix of 7.

26/32

Application 1: String Matching

Observation. P occurs in T <= Pis a prefix of a suffix of 7.

e I stores (references to) all suffixesin T

26/32

Application 1: String Matching

Observation. P occurs in T <= Pis a prefix of a suffix of 7.

e I stores (references to) all suffixesin T
e To search for P, try follow a path with label P until

1. we get stuck

* internal node without next character
° mismatch along an edge

2. wereach end of pattern P
* all descendent leaves contain P!
3. reach aleaf ¢ with part of P left (no match)

26/32

String Matching Example

Bananas. T=b ananaban$

Human readible suffix tree:

$ a ba n
n
(@]

[9] AN @) o)
n $3 $ a
$ R 6 3 0

a
PN & Ve
Ja Y
a b [0] %
N

27132

String Matching Example

Bananas. T=b ananaban$

Human readible suffix tree:

Note. Operations on “human readable” tree can be simulated in true
suffix tree.
* each internal node stores pointer to left-most descendant index

27132

String Matching Example

Bananas. T=b ananaban$

Human readible suffix tree:

$ a ban n
o
[9] AN @) o
& U
$ R @ a O
b
a
d o) b%
Ja 1 b
a b [0] %
$ n
$

Search P = ann

27132

String Matching Example

Bananas. T=b ananaban$

Human readible suffix tree:

$ a ban n
o
[9] AN @) o
& U
$ R @ a O
b
a
d o) b%
Ja 1 b
a b [0] %
$ n
$

Search P = baa

27132

String Matching Example

Bananas. T=b ananaban$

Human readible suffix tree:

$ a ban n
o
[9] AN @) o
& U
$ R @ a O
b
a
d o) b%
Ja 1 b
a b [0] %
$ n
$

Search P = ana

27132

String Matching Example

Bananas. T=b ananaban$

Human readible suffix tree:

$ a ban n
o
[9] AN @) o
& U
$ R @ a O
b
a
d o) b%
Ja 1 b
a b [0] %
$ n
$

Search P =ba

27132

String Matching Discussion

Using Suffix Trees
* Pre-process a text T[0..n) in O(n) time once

e Search for P[0..m) in time O(m) time

28/32

String Matching Discussion

Using Suffix Trees
* Pre-process a text T[0..n) in O(n) time once

e Search for P[0..m) in time O(m) time

Compare to KMP.
* Pre-process P[0..m) in O(m) time (per pattern)

¢ Search in O(n+ m) time for each pattern

28/32

String Matching Discussion

Using Suffix Trees
* Pre-process a text T[0..n) in O(n) time once

e Search for P[0..m) in time O(m) time

Compare to KMP.
* Pre-process P[0..m) in O(m) time (per pattern)

¢ Search in O(n+ m) time for each pattern

Comparison. If T is large and static, and we expect to perform many
searches, the suffix tree construction is much more efficient!

28/32

Application 2: Repeated Substring

Problem. Given T, compute the longest repeated substring of T

¢ find the largest ¢ such that there are distinct indices i and j with
Tl i+ 1 =TIj,j+ 1.

29/32

Application 2: Repeated Substring

Problem. Given T, compute the longest repeated substring of T

¢ find the largest ¢ such that there are distinct indices i and j with
Tl i+ 1 =TIj,j+ 1.

Example. T=b ananaban

29/32

Application 2: Repeated Substring

Problem. Given T, compute the longest repeated substring of T
¢ find the largest ¢ such that there are distinct indices i and j with
T, i+ 4] ="TI[jj+?].
Example. T=b ananaban

Repeated substrings in the suffix tree?

$ a bah n
[9] Q o o
b n 5
a $2 $ a
$ R @ a 0
$ 2 L
o 23
Ja] F A
nab% [0] $
S %

29/32

Application 2: Repeated Substring

Problem. Given T, compute the longest repeated substring of T

¢ find the largest ¢ such that there are distinct indices i and j with
Tl i+ 1 =TIj,j+ 1.

Example. T=b ananaban
Observation. Repeated substrings correspond to paths of internal
nodes in I .
* Longest repeated substring = longest path of internal nodes in I~
* “longest path” includes weight for compressed edges
* Can be computed in O(n) time!
° use “depth first search” strategy

29/32

More Applications

Using suffix trees we can perform the following tasks efficiently:
1. Longest Common Substring in time O(n; + ny + - - + ng)

¢ Input: texts 11, T»,..., Tk
® Output: the longest substring that is contained in all T;

30/32

More Applications

Using suffix trees we can perform the following tasks efficiently:
1. Longest Common Substring in time O(n; + ny + - - + ng)

¢ Input: texts 11, T»,..., Tk
® Output: the longest substring that is contained in all T;

2. Longest Common Extension in time O(1)!!

¢ Input: text T and indices i, j
® Output: largest ¢ for which TT[i,i+ ¢] = T[j,j+ ¢]

30/32

More Applications

Using suffix trees we can perform the following tasks efficiently:

1. Longest Common Substring in time O(n; + ny + - - + ng)
¢ Input: texts 11, T»,..., Tk
® Output: the longest substring that is contained in all T;
2. Longest Common Extension in time O(1)!!
¢ Input: text T and indices i, j
® Output: largest ¢ for which TT[i,i+ ¢] = T[j,j+ ¢]
3. Approximate Matching

¢ Input: text T[0..n), pattern P[0..m), parameter k € [0..71)
* Qutput: smallest i for which T contains P’ with at most k
mismatches

30/32

More Applications

Using suffix trees we can perform the following tasks efficiently:
1. Longest Common Substring in time O(n; + ny + - - + ng)
¢ Input: texts 11, T»,..., Tk
® Output: the longest substring that is contained in all T;
2. Longest Common Extension in time O(1)!!
¢ Input: text T and indices i, j
® Output: largest ¢ for which TT[i,i+ ¢] = T[j,j+ ¢]
3. Approximate Matching
¢ Input: text T[0..n), pattern P[0..m), parameter k € [0..71)
* Qutput: smallest i for which T contains P’ with at most k
mismatches
4. Matching with Wildcards
¢ Input: text T[0..n), pattern P[0..m) with wildcards
* wildcard character * matches a substring of any length
¢ Output: first appearance of P (with wildcard matches)

30/32

Conclusion

Suffix trees are amazing data structures!
* Tons of applications

e Surprising theoretical results

Next time. Constructing suffix trees efficiently

31/32

Scratch Notes

32/32

