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Announcements

1. Quiz 07 on Error Correcting Codes
* Complete by 11:59pm, Friday 06 November

\S}

. Grading is slow (sorry)
* Programming assignment 1 grades next week
3. Last lectures:
¢ Text indexing (Today and next Tuesday)
* Final review (next Thursday)

4. Attendance Code:
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Meeting Goals

S

Introduce and analyze Parallel MergeSort
Introduce the text indexing problem
Define the trie data structure

Define suffix trees

Describe applications of suffix trees
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Last Time

Parallel Algorithms!
* PRAM model
* Unlimited parallel processing elements (PEs)
* Brent’s Theorem: span T and work W with unlimited PEs
= span O(T + W/p) and work O(W) with p PEs
* Parallel string matching with span T = O(m) and work W = O(n)
* Sorting networks

* span T = O(log® n) and work W = O(nlog? n)
* limited to specialized hardware and/or small arrays
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Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to
parallelism:

1. Divide problem into sub-tasks
2. Solve the subtasks

3. Merge solutions of the subtasks
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Parallel Divide & Conquer?

Observation. The Divide & Conquer strategy can lend itself well to
parallelism:
1. Divide problem into sub-tasks
2. Solve the subtasks (independently)
* Parallelize these!
3. Merge solutions of the subtasks (...2)
* How to parallelize this?
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Parallel MergeSort?

Revisited: MERGESORT

1: procedure MERGESORT(4, i, k)
2 if i < k then
3 j—Li+Kk)/2]
4 MERGESORT(4, i, )
5: MERGESORT(A4,j+ 1, k)
6 B— CoPY(4,i,))
7 C— CopPY(A,j+1,k)
8: MERGE(B, C, A, i)

9: end if
10: end procedure

7132



Parallel MergeSort?

1: procedure MERGESORT(4, i, k)
2 if i < k then

3 j—Li+Kk)/2]

4 MERGESORT(4, i, j)
5: MERGESORT(A4,j+ 1, k)
6

7

8

PollEverywhere

What is the span of MergeSort with
parallel recursive calls and
sequential merges?

B— CoPY(A4, 1))
C— CopPY(A,j+1,k)

g MERGE(B, C, A, i)
9: end if
10: end procedure

pollev.com/comp526
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Parallelizing Merges

Question. How can we parallelize merges?
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Parallelizing Merges

Question. How can we parallelize merges?
e For each x, find the final index of x

* How do we find this?
* index = # elements < x

* #in x’s sub-array
* #in other sub-array

* How to compute these?
Idea.
* In x’s own sub-array, just use x’s index!
* For the other sub-array, use binary search!

* Parallelize: do each x in parallel!

8/32



Parallel MergeSort in Code

1: procedure PARALLELMERGE(A[l..m), A[m..7), B)
2 fori=1/...,m—1in parallel do

3 k — (i— ) + BINARYSEARCH (A[m..1), A[i])
4 Blk] — Ali]

5 end for

6: for j=m,m+1,...,r—1in parallel do

7 k — BINARYSEARCH (A[L.m), A[j])

8 Blk] — Aljl

9 end for

0:

10: end procedure

9/32



Parallel MergeSort in Code

1: procedure PARALLELMERGE(A[l..m), A[m..7), B)
2 fori=1/...,m—1in parallel do
3 k — (i— ) + BINARYSEARCH (A[m..1), A[i])
4 Blk] — Ali]
5: end for
6 for j=m,m+1,...,r—1in parallel do
7 k — BINARYSEARCH (A[L.m), A[j])
8 Blk] — Alj]
9: end for
10: end procedure

Questions.
* What is the span of PARALLELMERGE?

9/32



Parallel MergeSort in Code

1: procedure PARALLELMERGE(A[l..m), A[m..7), B)
2 fori=1/...,m—1in parallel do
3 k — (i— ) + BINARYSEARCH (A[m..1), A[i])
4 Blk] — Ali]
5: end for
6 for j=m,m+1,...,r—1in parallel do
7 k — BINARYSEARCH (A[L.m), A[j])
8 Blk] — Alj]
9: end for
10: end procedure

Questions.
* What is the span of PARALLELMERGE?
* O(logn)
¢ What is the work of PARALLELMERGE?

9/32



Parallel MergeSort in Code

1: procedure PARALLELMERGE(A[l..m), A[m..7), B)
2 fori=1/...,m—1in parallel do
3 k — (i— ) + BINARYSEARCH (A[m..1), A[i])
4 Blk] — Ali]
5: end for
6 for j=m,m+1,...,r—1in parallel do
7 k — BINARYSEARCH (A[L.m), A[j])
8 Blk] — Alj]
9: end for
10: end procedure

Questions.
* What is the span of PARALLELMERGE?
* O(logn)
¢ What is the work of PARALLELMERGE?
* O(nlogn)
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Parallel MergeSort Analysis

Overall Procedure
1. Split (sub)array in half
2. Parallel recursive MergeSorts
3. PARALLELMERGE sorted halves
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Parallel MergeSort Analysis

Overall Procedure
1. Split (sub)array in half
2. Parallel recursive MergeSorts
3. PARALLELMERGE sorted halves

Span Analysis
* Merge has span ©(logn)
* Depth of recursion tree is ©(logn)
¢ Total time: ©(log? n)

Work Analysis
* Merge has work ©(nlogn)
* Summing over recursive calls gives ©(nlog? n)

Improvements. Merge can be improved to ©(n) work! (butit’s

complicated)
10/32



Concluding Thoughts

Parallelism is Necessary
e Computer hardware is naturally parallel
° sequential computing is an illusion!
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Concluding Thoughts

Parallelism is Necessary
e Computer hardware is naturally parallel
° sequential computing is an illusion!

Parallelism is Powerful

* Recent explosion in computing power is due to parallelism!
Parallelism is Subtle

* Reasoning about parallel programs is hard

e Writing correct parallel programs is hard
¢ Idealized models abstract away many challenges

* no perfect synchrony?
* tolerate faults?

11/32
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Text Indexing

Previously: String Matching.
* Given a text T[0..n) and a pattern P[0..m), determine if/where T contains P
* Focus on one shot complexity:
* how long to search T for a single pattern P
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A Variation. The text T is fixed, but we may wish to search T for many
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Text Indexing

Previously: String Matching.
* Given a text T[0..n) and a pattern P[0..m), determine if/where T contains P
* Focus on one shot complexity:
* how long to search T for a single pattern P

A Variation. The text T is fixed, but we may wish to search T for many
different (initially) unknown patterns Py, Po, ....
* ©O(n) may be much too much to pay for each search
* Applications:
* web search engines
* online dictionaries/encyclopedias
* DNA/RNA databases
¢ searching any collection of text documents

An Alternative Approach. Preprocess the text T to make the searches
more efficient
* Pay for preprocessing upfront
* Each query can be much more efficient.
13/32



Inverted Indices

Example Problem. Given a text T of words, implement an index of the
occurrences of that word.

e Like an index of a textbook

* Only store known words (e.g., whitespace/punctuation separated
substrings)
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Inverted Indices

Example Problem. Given a text T of words, implement an index of the
occurrences of that word.
* Like an index of a textbook

* Only store known words (e.g., whitespace/punctuation separated
substrings)

Goal. Implement an efficient map from (possible) keywords P to index
of first occurrence (or all occurrences) of Pin T (if any)

e “Easier” than general string matching:
* Possible (positive) queries are not arbitrary
° must be a word in the text
* Keywords are already given (implicitly) in the text

Question. How can we implement such a map efficiently?
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The Trie Data Structure

Idea. Store words in a tree
* Each leaf represents a possible word in the text
¢ Each internal node represents prefix of a word in the text
¢ path from root to leaf stores letters in the leaf word

* Append a terminating character to each word to make the tree a prefix tree
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The Trie Data Structure

Idea. Store words in a tree
* Each leaf represents a possible word in the text
¢ Each internal node represents prefix of a word in the text
¢ path from root to leaf stores letters in the leaf word

* Append a terminating character to each word to make the tree a prefix tree

Example: {aa$, aaab$, abaab$, abb$, abbab$, bba$, bbbb$}
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Searching a Trie

Question. Given a pattern P and a trie for the text 7, how do we
determine if T contains the pattern P?
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Question. Given a pattern P and a trie for the text 7, how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):

I

Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)
S
4

. If no corresponding edge found or end at an internal node, no mach is found.

If a leaf is reached storing P match is found!
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Searching a Trie

Question. Given a pattern P and a trie for the text 7, how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):

I

PollEverywhere

What is the running
time of searching a
trie?

Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)
S
4

. If no corresponding edge found or end at an internal node, no mach is found.

If a leaf is reached storing P match is found!

pollev.com/comp526
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Searching a Trie

Question. Given a pattern P and a trie for the text 7, how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):

I

Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)
S
4

. If no corresponding edge found or end at an internal node, no mach is found.

If a leaf is reached storing P match is found!

Remarkable fact. The time to search a trie depends only on the length
of P, not the size of T!

* Also: the trie can be computed efficiently from T (in O(n) time).
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Compact Tries

Observation. Tries are potentially wasteful!
¢ Can have long paths with no branching

* Storingthese paths is inefficient
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Compact Tries

Observation. Tries are potentially wasteful!
¢ Can have long paths with no branching

* Storingthese paths is inefficient

Idea. Compress paths without branches!
* Replace a path of unary (single-child) nodes with a single edge
* Label edge with the first character of the corresponding path

e Label each vertex with the index of the next character
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Words, Trie, Compact Trie

Example: {aa$, aaab$, abaab$, abb$, abbab$, bba$, bbbb$}
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Compact Trie Features

Question. How do we search a compact trie?
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Compact Trie Features

Question. How do we search a compact trie?
1. Start at the root of the compact trie
2. Atnode labeled i, follow edge labeled P[i], if any
¢ if no such edge exists, search failed
3. Ifleaf notreached, search failed
4. Ifleafreached, check that P = leaflabel

Observation. Searching a compact trie for P[0..m) still takes time
O(m).
Useful feature. If a compact trie stores ¢ words, then it has at most
¢ — 1 internal nodes as well.
* The size of the trie is proportional to the number of words it
stores!
* Fact (to prove). If a tree T has ¢ leaves and every internal node
has at least two children, then T has at most 2¢ — 1 vertices.
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Trie Discussion

Advantages of tries:
e Simple data structure!
* Space-efficient (compact tries)!

* Fast lookup!
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Trie Discussion

Advantages of tries:
e Simple data structure!
* Space-efficient (compact tries)!

* Fast lookup!

Disadvantages:
e Cannot handle more general queries

¢ search part of a word
¢ search for a phrase (sequence of words)

* Requires the text to be partitioned into words

* DNA/RNA sequences
* binary text

We need new ideas!!

20/32
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A New Idea

So Far.
* Goal. A data structure for efficient pattern matching (and more)

e Compact tries: work for text composed of (designated) words
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A New Idea

So Far.
* Goal. A data structure for efficient pattern matching (and more)

e Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from 7) in a trie!
e For any indices i < j, T[i..j) is a possible word
* Add all of them to the trie!

The Good and the Bad.
¢ (Can search for P[0..m) in O(m) time!
e Must store O(n?) possible words

* SoQ(n?) space, even if a compact trie is used

An observation. P[i,i+ 1), P[i,i+2), P[i, i+ 3),...can all just be checked
against P[i, n)
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Suffix Trees

Definition. Given a text T'[0..n) the suffix tree 9 of T is formed by:

* take the compact trie of all suffixes of T'$ (i.e., all T; = T[i..n)$)
¢ exceptreplace the leaflabel T; with just the index i
* must still store T to read from T;
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Suffix Trees

Definition. Given a text T'[0..n) the suffix tree 9 of T is formed by:

* take the compact trie of all suffixes of T'$ (i.e., all T; = T[i..n)$)
¢ exceptreplace the leaflabel T; with just the index i
¢ must still store T to read from T;
Example. T =banana$

$

bonana $
anona $
nwana $
awnad
na$

oé

$
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Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size
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Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size

PollEverywhere

Given T10..n), what is
the total size of the

associated suffix tree
g

pollev.com/comp526
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Suffix Tree Features

Size. Given a text T[0..n), the suffix tree 9 has size O (n).

* The size of the suffix tree is only a (small) constant factor larger
than T.

Speed. Given T[0..n), we can compute J in time o(n?) by a “naive”
algorithm...
...but 9 can be computed in time O(n) by a clever (and practical)
algorithm!!!
* This result is wild, and should be surprising!
e We'll give an overview of the algorithm on Tuesday

For now. Take it as given that 9~ can be computed in O(n) time.
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Suffix Tree
Applications



Application 1: String Matching

Observation. P occurs in T <= Pis a prefix of a suffix of 7.
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Application 1: String Matching

Observation. P occurs in T <= Pis a prefix of a suffix of 7.

e I stores (references to) all suffixesin T
e To search for P, try follow a path with label P until

1. we get stuck

* internal node without next character
° mismatch along an edge

2. wereach end of pattern P
* all descendent leaves contain P!
3. reach aleaf ¢ with part of P left (no match)
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String Matching Example

Bananas. T=b ananaban$

Human readible suffix tree:

$ a ba n
n
(@]

[9] AN @) o)
n $3 $ a
$ R 6 3 0

a
PN & Ve
Ja Y
a b [0] %
N
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String Matching Example

Bananas. T=b ananaban$

Human readible suffix tree:

Note. Operations on “human readable” tree can be simulated in true
suffix tree.
* each internal node stores pointer to left-most descendant index
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String Matching Discussion

Using Suffix Trees
* Pre-process a text T[0..n) in O(n) time once

e Search for P[0..m) in time O(m) time
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String Matching Discussion

Using Suffix Trees
* Pre-process a text T[0..n) in O(n) time once

e Search for P[0..m) in time O(m) time

Compare to KMP.
* Pre-process P[0..m) in O(m) time (per pattern)

¢ Search in O(n+ m) time for each pattern

Comparison. If T is large and static, and we expect to perform many
searches, the suffix tree construction is much more efficient!
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Application 2: Repeated Substring

Problem. Given T, compute the longest repeated substring of T

¢ find the largest ¢ such that there are distinct indices i and j with
Tl i+ 1 =TIj,j+ 1.
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Application 2: Repeated Substring

Problem. Given T, compute the longest repeated substring of T
¢ find the largest ¢ such that there are distinct indices i and j with
T, i+ 4] ="TI[jj+?].
Example. T=b ananaban

Repeated substrings in the suffix tree?

$ a bah n
[9] Q o o
b n 5
a $2 $ a
$ R @ a 0
$ 2 L
o 23
Ja ] F A
nab% [0] $
S %
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Application 2: Repeated Substring

Problem. Given T, compute the longest repeated substring of T

¢ find the largest ¢ such that there are distinct indices i and j with
Tl i+ 1 =TIj,j+ 1.

Example. T=b ananaban
Observation. Repeated substrings correspond to paths of internal
nodes in I .
* Longest repeated substring = longest path of internal nodes in I~
* “longest path” includes weight for compressed edges
* Can be computed in O(n) time!
° use “depth first search” strategy
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More Applications

Using suffix trees we can perform the following tasks efficiently:
1. Longest Common Substring in time O(n; + ny + - - + ng)

¢ Input: texts 11, T»,..., Tk
® Output: the longest substring that is contained in all T;
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More Applications

Using suffix trees we can perform the following tasks efficiently:
1. Longest Common Substring in time O(n; + ny + - - + ng)
¢ Input: texts 11, T»,..., Tk
® Output: the longest substring that is contained in all T;
2. Longest Common Extension in time O(1)!!
¢ Input: text T and indices i, j
® Output: largest ¢ for which TT[i,i+ ¢] = T[j,j+ ¢]
3. Approximate Matching
¢ Input: text T[0..n), pattern P[0..m), parameter k € [0..71)
* Qutput: smallest i for which T contains P’ with at most k
mismatches
4. Matching with Wildcards
¢ Input: text T[0..n), pattern P[0..m) with wildcards
* wildcard character * matches a substring of any length
¢ Output: first appearance of P (with wildcard matches)
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Conclusion

Suffix trees are amazing data structures!
* Tons of applications

e Surprising theoretical results

Next time. Constructing suffix trees efficiently
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Scratch Notes
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