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Announcements
1. Quiz 07 on Error Correcting Codes

• Complete by 11:59pm, Friday 06 November

2. Grading is slow (sorry)
• Programming assignment 1 grades next week

3. Last lectures:
• Text indexing (Today and next Tuesday)
• Final review (next Thursday)

4. Attendance Code:
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Meeting Goals

1. Introduce and analyze Parallel MergeSort

2. Introduce the text indexing problem

3. Define the trie data structure

4. Define suffix trees

5. Describe applications of suffix trees
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Parallel
MergeSort



Last Time
Parallel Algorithms!

• PRAM model
• Unlimited parallel processing elements (PEs)

• Brent’s Theorem: span T and work W with unlimited PEs
=) span O(T +W /p) and work O(W ) with p PEs

• Parallel string matching with span T = O(m) and work W = O(n)
• Sorting networks

• span T = O(log2
n) and work W = O(n log2

n)
• limited to specialized hardware and/or small arrays
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Parallel Divide & Conquer?
Observation. The Divide & Conquer strategy can lend itself well to
parallelism:

1. Divide problem into sub-tasks
2. Solve the subtasks

• Parallelize these!

3. Merge solutions of the subtasks

• How to parallelize this?
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Parallel MergeSort?
Revisited: MERGESORT

1: procedure MERGESORT(A, i,k)
2: if i < k then
3: j √b(i+k)/2c
4: MERGESORT(A, i, j)
5: MERGESORT(A, j+1,k)
6: B √ COPY(A, i, j)
7: C √ COPY(A, j+1,k)
8: MERGE(B,C,A, i)
9: end if

10: end procedure
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Parallel MergeSort?

PollEverywhere

What is the span of MergeSort with
parallel recursive calls and
sequential merges?

pollev.com/comp526

1: procedure MERGESORT(A, i,k)
2: if i < k then
3: j √b(i+k)/2c
4: MERGESORT(A, i, j)
5: MERGESORT(A, j+1,k)
6: B √ COPY(A, i, j)
7: C √ COPY(A, j+1,k)
8: MERGE(B,C,A, i)
9: end if

10: end procedure
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Parallelizing Merges
Question. How can we parallelize merges?

• For each x, find the final index of x

• How do we find this?
• index = # elements ∑ x

• # in x’s sub-array
• # in other sub-array

• How to compute these?

• In x’s own sub-array, just use x’s index!

• For the other sub-array, use binary search!

• Parallelize: do each x in parallel!
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Parallel MergeSort in Code
1: procedure PARALLELMERGE(A[l..m), A[m..r), B)
2: for i = l, . . . ,m°1 in parallel do
3: k √ (i° l)+BINARYSEARCH(A[m..r),A[i])
4: B[k] √ A[i]
5: end for
6: for j = m,m+1, . . . ,r°1 in parallel do
7: k √ BINARYSEARCH(A[l..m),A[j])
8: B[k] √ A[j]
9: end for

10: end procedure

Questions.
• What is the span of PARALLELMERGE?

• £(logn)
• What is the work of PARALLELMERGE?

• £(n logn)
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Parallel MergeSort Analysis
Overall Procedure

1. Split (sub)array in half

2. Parallel recursive MergeSorts

3. PARALLELMERGE sorted halves

Span Analysis
• Merge has span£(logn)
• Depth of recursion tree is£(logn)
• Total time: £(log2

n)

Work Analysis
• Merge has work£(n logn)
• Summing over recursive calls gives£(n log2

n)

Improvements. Merge can be improved to£(n) work! (but it’s

complicated)
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Concluding Thoughts
Parallelism is Necessary

• Computer hardware is naturally parallel
• sequential computing is an illusion!

Parallelism is Powerful
• Recent explosion in computing power is due to parallelism!

Parallelism is Subtle
• Reasoning about parallel programs is hard

• Writing correct parallel programs is hard
• Idealized models abstract away many challenges

• no perfect synchrony?
• tolerate faults?
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Text Indexing



Text Indexing
Previously: String Matching.

• Given a text T [0..n) and a pattern P[0..m), determine if/where T contains P

• Focus on one shot complexity:
• how long to search T for a single pattern P

A Variation. The text T is fixed, but we may wish to search T for many
different (initially) unknown patterns P1,P2, . . ..

• £(n) may be much too much to pay for each search
• Applications:

• web search engines
• online dictionaries/encyclopedias
• DNA/RNA databases
• searching any collection of text documents

An Alternative Approach. Preprocess the text T to make the searches
more efficient

• Pay for preprocessing upfront
• Each query can be much more efficient.
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Inverted Indices
Example Problem. Given a text T of words, implement an index of the
occurrences of that word.

• Like an index of a textbook

• Only store known words (e.g., whitespace/punctuation separated
substrings)

Goal. Implement an efficient map from (possible) keywords P to index
of first occurrence (or all occurrences) of P in T (if any)

• “Easier” than general string matching:
• Possible (positive) queries are not arbitrary

• must be a word in the text

• Keywords are already given (implicitly) in the text

Question. How can we implement such a map efficiently?
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The Trie Data Structure
Idea. Store words in a tree

• Each leaf represents a possible word in the text

• Each internal node represents prefix of a word in the text

• path from root to leaf stores letters in the leaf word
• Append a terminating character to each word to make the tree a prefix tree

Example: {aa$, aaab$, abaab$, abb$, abbab$, bba$, bbbb$}
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Searching a Trie
Question. Given a pattern P and a trie for the text T , how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):
1. Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)

3. If a leaf is reached storing P match is found!

4. If no corresponding edge found or end at an internal node, no mach is found.

16 / 32

-

o



Searching a Trie
Question. Given a pattern P and a trie for the text T , how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):
1. Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)

3. If a leaf is reached storing P match is found!

4. If no corresponding edge found or end at an internal node, no mach is found.

16 / 32

-

o



Searching a Trie
Question. Given a pattern P and a trie for the text T , how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):
1. Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)

3. If a leaf is reached storing P match is found!

4. If no corresponding edge found or end at an internal node, no mach is found.

PollEverywhere

What is the running
time of searching a
trie?

pollev.com/comp526
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Searching a Trie
Question. Given a pattern P and a trie for the text T , how do we
determine if T contains the pattern P?

Procedure. Given the pattern P[0..m):
1. Start at the root of the trie

2. Read each character of P, and follow the corresponding edge (if any)

3. If a leaf is reached storing P match is found!

4. If no corresponding edge found or end at an internal node, no mach is found.

Remarkable fact. The time to search a trie depends only on the length
of P, not the size of T !

• Also: the trie can be computed efficiently from T (in O(n) time).
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Compact Tries
Observation. Tries are potentially wasteful!

• Can have long paths with no branching

• Storing these paths is inefficient

Idea. Compress paths without branches!

• Replace a path of unary (single-child) nodes with a single edge

• Label edge with the first character of the corresponding path

• Label each vertex with the index of the next character
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Words, Trie, Compact Trie
Example: {aa$, aaab$, abaab$, abb$, abbab$, bba$, bbbb$}
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Compact Trie Features
Question. How do we search a compact trie?
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Compact Trie Features
Question. How do we search a compact trie?

1. Start at the root of the compact trie

2. At node labeled i, follow edge labeled P[i], if any

• if no such edge exists, search failed

3. If leaf not reached, search failed

4. If leaf reached, check that P = leaf label
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• if no such edge exists, search failed

3. If leaf not reached, search failed

4. If leaf reached, check that P = leaf label

Example. Search for ababb.
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3. If leaf not reached, search failed

4. If leaf reached, check that P = leaf label

Observation. Searching a compact trie for P[0..m) still takes time
O(m).
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Compact Trie Features
Question. How do we search a compact trie?

1. Start at the root of the compact trie

2. At node labeled i, follow edge labeled P[i], if any

• if no such edge exists, search failed

3. If leaf not reached, search failed

4. If leaf reached, check that P = leaf label

Observation. Searching a compact trie for P[0..m) still takes time
O(m).
Useful feature. If a compact trie stores ` words, then it has at most
`°1 internal nodes as well.

• The size of the trie is proportional to the number of words it
stores!

• Fact (to prove). If a tree T has ` leaves and every internal node
has at least two children, then T has at most 2`°1 vertices.
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Trie Discussion
Advantages of tries:

• Simple data structure!

• Space-efficient (compact tries)!

• Fast lookup!

Disadvantages:
• Cannot handle more general queries

• search part of a word
• search for a phrase (sequence of words)

• Requires the text to be partitioned into words
• DNA/RNA sequences
• binary text

We need new ideas!!
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Suffix Trees



A New Idea
So Far.

• Goal. A data structure for efficient pattern matching (and more)

• Compact tries: work for text composed of (designated) words

Simple Idea. Put every possible word (from T) in a trie!

• For any indices i < j, T [i..j) is a possible word

• Add all of them to the trie!

The Good.
• Can search for P[0..m) in O(m) time!

• Must store£(n
2) possible words

• So≠(n
2) space, even if a compact trie is used
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• For any indices i < j, T [i..j) is a possible word

• Add all of them to the trie!

The Good and the Bad.
• Can search for P[0..m) in O(m) time!

• Must store£(n
2) possible words

• So≠(n
2) space, even if a compact trie is used

An observation. P[i, i+1), P[i, i+2), P[i, i+3),. . . can all just be checked
against P[i,n)
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Suffix Trees
Definition. Given a text T [0..n) the suffix tree T of T is formed by:

• take the compact trie of all suffixes of T$ (i.e., all Ti = T [i..n)$)
• except replace the leaf label Ti with just the index i

• must still store T to read from Ti

Example. T = banana$

23 / 32



Suffix Trees
Definition. Given a text T [0..n) the suffix tree T of T is formed by:

• take the compact trie of all suffixes of T$ (i.e., all Ti = T [i..n)$)
• except replace the leaf label Ti with just the index i

• must still store T to read from Ti

Example. T = banana$

23 / 32

banana $ aj9
anana $ P 9a
nana$
a na$ ~ in
has it Pa
as in

$ s



Suffix Trees
Definition. Given a text T [0..n) the suffix tree T of T is formed by:

• take the compact trie of all suffixes of T$ (i.e., all Ti = T [i..n)$)
• except replace the leaf label Ti with just the index i

• must still store T to read from Ti
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Suffix Tree Features
Size. Given a text T [0..n), the suffix tree T has size

• This result is wild, and should be surprising!

• We’ll give an overview of the algorithm on Tuesday
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Suffix Tree Features
Size. Given a text T [0..n), the suffix tree T has size

PollEverywhere

Given T [0..n), what is
the total size of the
associated suffix tree
T ?

pollev.com/comp526

• This result is wild, and should be surprising!

• We’ll give an overview of the algorithm on Tuesday
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Suffix Tree Features
Size. Given a text T [0..n), the suffix tree T has size£(n).

• The size of the suffix tree is only a (small) constant factor larger
than T .

Speed. Given T [0..n), we can compute T in time O(n
2) by a “naive”

algorithm. . .
. . . but T can be computed in time O(n) by a clever (and practical)

algorithm!!!

• This result is wild, and should be surprising!

• We’ll give an overview of the algorithm on Tuesday

For now. Take it as given that T can be computed in O(n) time.
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Suffix Tree
Applications



Application 1: String Matching
Observation. P occurs in T () P is a prefix of a suffix of T .

• T stores (references to) all suffixes in T

• To search for P, try follow a path with label P until
1. we get stuck

• internal node without next character
• mismatch along an edge

2. we reach end of pattern P

• all descendent leaves contain P!

3. reach a leaf ` with part of P left (no match)
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String Matching Example
Bananas. T = b a n a n a b a n $

Human readible suffix tree:
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Note. Operations on “human readable” tree can be simulated in true
suffix tree.

• each internal node stores pointer to left-most descendant index
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String Matching Discussion
Using Suffix Trees

• Pre-process a text T [0..n) in O(n) time once

• Search for P[0..m) in time O(m) time

Compare to KMP.
• Pre-process P[0..m) in O(m) time (per pattern)

• Search in O(n+m) time for each pattern

Comparison. If T is large and static, and we expect to perform many
searches, the suffix tree construction is much more efficient!
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Application 2: Repeated Substring
Problem. Given T , compute the longest repeated substring of T

• find the largest ` such that there are distinct indices i and j with
T [i, i+`] = T [j, j+`].

Example. T = b a n a n a b a n
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Example. T = b a n a n a b a n
Repeated substrings in the suffix tree?
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Application 2: Repeated Substring
Problem. Given T , compute the longest repeated substring of T

• find the largest ` such that there are distinct indices i and j with
T [i, i+`] = T [j, j+`].

Example. T = b a n a n a b a n
Observation. Repeated substrings correspond to paths of internal
nodes in T .

• Longest repeated substring = longest path of internal nodes in T
• “longest path” includes weight for compressed edges

• Can be computed in O(n) time!
• use “depth first search” strategy
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More Applications
Using suffix trees we can perform the following tasks efficiently:

1. Longest Common Substring in time O(n1 +n2 +·· ·+nk)
• Input: texts T1,T2, . . . ,Tk

• Output: the longest substring that is contained in all Ti

2. Longest Common Extension in time O(1)!!
• Input: text T and indices i, j

• Output: largest ` for which T [i, i+`] = T [j, j+`]

3. Approximate Matching
• Input: text T [0..n), pattern P[0..m), parameter k 2 [0..m)
• Output: smallest i for which T contains P

0 with at most k

mismatches

4. Matching with Wildcards
• Input: text T [0..n), pattern P[0..m) with wildcards

• wildcard character § matches a substring of any length

• Output: first appearance of P (with wildcard matches)
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Conclusion
Suffix trees are amazing data structures!

• Tons of applications

• Surprising theoretical results

Next time. Constructing suffix trees efficiently
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