
Lecture 18: Parallel Algorithms
COMP526: Efficient Algorithms

Updated: December 3, 2024
Will Rosenbaum
University of Liverpool

1 / 32



Announcements
1. Quiz 07 on Error Correcting Codes

• Complete by 11:59pm, Friday 06 November

2. Grading is slow (sorry)

3. Last lectures:
• Parallel Algorithms (today)
• Text indexing (Thursday, next Tuesday)
• Final review (next Thursday)

4. Attendance Code:
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Meeting Goals

1. Discuss parallel algorithms!

2. Formalize cost measures for parallel algorithms

3. Argue Brent’s theorem

4. Describe parallel searching algorithms
5. Describe parallel sorting algorithms

• Sorting networks
• Parallel MERGESORT
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Parallel
Algorithms



From Last Time
Parallel Algorithms

• Modern computers can perform many operations simultaneously
• SIMD: single instruction, multiple data (e.g., GPU)

• MIMD: multiple instructions, multiple data (e.g., multicore CPU)

• To achieve maximal performance, parallelism of hardware must
be exploited
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PRAMModel
Parallel RAM

• Unbounded number of processing elements (PEs) think cores

• Access shared memory

• PEs run in lock-step synchronization

Contention Resolution. How do we deal with conflicting operations?
• EREW (exclusive read, exclusive write)

• parallel access to same memory cell is forbidden

• CREW (concurrent read, exclusive write)
• parallel write access is forbiden

• CRCW (concurrent read, concurrent write)
• need further contention resolution rules

Bottom Line. No single model is well-suited for all applications

• we’ll assume CREW

• reasoning about parallel programs can be incredibly subtle!
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Measuring PRAM Efficiency
Main cost metrics

• space: the total amount of accessed memory
• time: the number of steps until all processes terminate

• also known as depth or span

• work: total number of instructions executed by all processes

Goal:

• minimal span (= time)
• work is (asymptotically) no worse than the best sequential

algorithm
• called work-efficient algorithms
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Models vs Reality
Idealization. The PRAM model does not limit the number of possible
PEs (processing elements)

• “multithreaded” computing allows generation of unlimited
threads

Reality. More threads does not magically speed up computation
• hardware limits the amount of parallel computation

• e.g. limited to number of cores

Questions.

• How relevant/applicable is the PRAM model if it assumes access
to an unlimited number of PEs?

• Can every task be performed efficiently in PRAM?
• are there problems that are inherently sequential?
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Brent’s Theorem
Theorem (Brent). If an algorithm has span T and work W for an
arbitrary number of processors, then the algorithm can be run on a
PRAM with p PEs in time O(T +W /p) using work W .

• Proof Idea: schedule parallel steps in a “round-robin” fashion on
the p PEs.
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Enough Generalities!
Parallel Algorithms

• Searching
• Sorting

• Sorting Networks (SIMD)
• sorting short lists

• Parallel MergeSort
• sorting long lists
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Parallel
Searching



Embarassingly Parallel Computation
A computational problem is embarassingly parallel if it can be split
into many small subtasks that can be solved independently of each
other.

• Example: vector sums C[i] = A[i]+B[i]
• Non-examples?

• Sorting
• the final value of A[i] depends on other values stored in A
• not obvious how to employ parallelism

• LZW compression (“P-complete”)
• Input: string S phrase p
• Output: does LZW add p to the dictionary?
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Parallel String Matching
Recall the string matching problem:

• Text T , length n

• Pattern P, length m
• Goal: find all occurrences of P in T

• return array M of length n where M[i] = 1 if P matches T at index i,
and M[i] = 0 otherwise

Question. Is this problem embarrassingly parallel?

• can check each index i independently!
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Parallel String Matching: Brute Force
Idea. Use the brute force
procedure to check each i in
parallel.
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Parallel String Matching: Brute Force
Idea. Use the brute force
procedure to check each i in
parallel.

PollEverywhere

What is the span of this
computation?

pollev.com/comp526
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Parallelizing KMP
Recall the KMP (Knuth-Morris-Pratt)

string matching algorithm

• compute failure link array

• apply FLA to search for
matches

• partition T into segments

• apply KMP to each segment

• why doesn’t this work?

• use overlapping segments!

• Span:
• Work:

• this is work efficient!
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• why doesn’t this work?

• use overlapping segments!

PollEverywhere

What is the running time of KMP to
search for a pattern of length m in
a text of length n?

pollev.com/comp526
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• this is work efficient!
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Parallel String Matching Discussion
Assessment

• very simple methods

• can be run in a distributed setting

• parallel speedup only for m ≪ n

Questions

• What if we only want to find if there is a single occurrence of P in
T?

• What if m large? State of the art:
• O(logm) & work efficient for CREW-PRAM
• CRCW-PRAM O(1) matching part in O(1) time, withΘ(loglogm)

preprocessing
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Sorting Networks



Comparitors
Recall. In-place sorting algorithms
modified the array according to the
following pattern:

• check if A[i] and A[j] are out of
order

• if so, swap their values
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Question. Which comparator operations of INSERTIONSORT can be
performed in parallel (while still ensuring correct output)?
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Comparator Networks
Visual Representation.

• Inputs/indices are represented by wires (horizontal lines)
• Comparators are vertical line segments between wires

• interpretation: wire between wire i and j performs comp to indices
i and j input

• Execution: Scan diagram from left to right and apply comparators
in order they are encountered

Example. Consider the following comparator network on 4 wires.
What is the output on input [4,3,2,1]?

0

1

2

3

19 / 32



Comparator Networks
Visual Representation.

• Inputs/indices are represented by wires (horizontal lines)
• Comparators are vertical line segments between wires

• interpretation: wire between wire i and j performs comp to indices
i and j input

• Execution: Scan diagram from left to right and apply comparators
in order they are encountered

Example. Consider the following comparator network on 4 wires.
What is the output on input [4,3,2,1]?

0

1

2

3

19 / 32



Sorting Algorithms to Networks
Consider INSERTIONSORT on
inputs of size 5. What are the
(possible) comparator operations
performed by the algorithm?

• Which comparator operations
could be performed in
parallel?

1: procedure INSERTIONSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: j ← i
4: while j > 0 and a[j] < a[j−1] do
5: SWAP(a, j, j−1)
6: j ← j−1
7: end while
8: end for
9: end procedure
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Sorting Network Terminology
Definitions.

• A comparator network is defined by a set of wires and a sequence
of comparators (left to right).

• A comparator network is a sorting network if for all wire inputs,
the resulting outputs are sorted.

• The depth of a comparator network is the maximum number of
comparators touched on any path from input to output
(including crossed comparators).
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• A comparator network is defined by a set of wires and a sequence
of comparators (left to right).

• A comparator network is a sorting network if for all wire inputs,
the resulting outputs are sorted.

• The depth of a comparator network is the maximum number of
comparators touched on any path from input to output
(including crossed comparators).

Sorting networks and parallel algorithms.
• Each comparator is a process element
• The depth is the span (running time) of the network
• The work is the number of comparators

Question. What is the smallest/shallowest sorting network for a given
input size?

• Optimal size sorting networks are only known for up to 12 inputs
• Optimal depth is only known up to 18 inputs
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Some Optimal Sorting Networks
Example. n = 4 wires. What is the depth?
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Some Optimal Sorting Networks

Example. n = 5 wires.
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PollEverywhere

What is the depth of this
sorting network?

pollev.com/comp526

22 / 32

https://pollev.com/comp526


Sorting Network Discussion
Applications

• Hardware-level implementations
• comparators implemented with simple circuits
• operations in one/few clock cycles

• Sorting with GPUs
• apply many (software) comparators in parallel (SIMD)
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Sorting Network Discussion
Applications

• Hardware-level implementations
• comparators implemented with simple circuits
• operations in one/few clock cycles

• Sorting with GPUs
• apply many (software) comparators in parallel (SIMD)

General Construction. Bitonic Merge Sort

• Mimic recursive structure of MERGESORT

• Size O(n log2 n)

• Depth O(log2 n)

• Not work-efficient, but still practical

23 / 32



Parallel
MergeSort



Parallel Divide & Conquer?
Observation. The Divide & Conquer strategy can lend itself well to
parallelism:

1. Divide problem into sub-tasks

2. Solve the subtasks

• Parallelize these!

3. Merge solutions of the subtasks

• How to parallelize this?

25 / 32



Parallel Divide & Conquer?
Observation. The Divide & Conquer strategy can lend itself well to
parallelism:

1. Divide problem into sub-tasks

2. Solve the subtasks (independently)
• Parallelize these!

3. Merge solutions of the subtasks

• How to parallelize this?

25 / 32
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Observation. The Divide & Conquer strategy can lend itself well to
parallelism:

1. Divide problem into sub-tasks

2. Solve the subtasks (independently)
• Parallelize these!

3. Merge solutions of the subtasks (...?)
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Parallel MergeSort?
Revisited: MERGESORT

1: procedure MERGESORT(A, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(A, i, j)
5: MERGESORT(A, j+1,k)
6: B ← COPY(A, i, j)
7: C ← COPY(A, j+1,k)
8: MERGE(B,C,A, i)
9: end if

10: end procedure
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Parallel MergeSort?

PollEverywhere

What is the span of MergeSort with
parallel recursive calls and
sequential merges?

pollev.com/comp526

1: procedure MERGESORT(A, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(A, i, j)
5: MERGESORT(A, j+1,k)
6: B ← COPY(A, i, j)
7: C ← COPY(A, j+1,k)
8: MERGE(B,C,A, i)
9: end if

10: end procedure
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Parallelizing Merges
Question. How can we parallelize merges?

• For each x, find the final index of x

• How do we find this?
• index = # elements ≤ x

• # in x’s sub-array
• # in other sub-array

• How to compute these?

• In x’s own sub-array, just use x’s index!

• For the other sub-array, use binary search!

• Parallelize: do each x in parallel!
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Parallel MergeSort in Code
1: procedure PARALLELMERGE(A[l..m), A[m..r), B)
2: for i = l, . . . ,m−1 in parallel do
3: k ← (i− l)+BINARYSEARCH(A[m..r),A[i])
4: B[k] ← A[i]
5: end for
6: for j = m,m+1, . . . ,r−1 in parallel do
7: k ← BINARYSEARCH(A[l..m),A[j])
8: B[k] ← A[j]
9: end for

10: end procedure

Questions.
• What is the span of PARALLELMERGE?

• Θ(logn)

• What is the work of PARALLELMERGE?

• Θ(n logn)
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Parallel MergeSort Analysis
Overall Procedure

1. Split (sub)array in half

2. Parallel recursive MergeSorts

3. PARALLELMERGE sorted halves

Span Analysis
• Merge has spanΘ(logn)
• Depth of recursion tree isΘ(logn)
• Total time: Θ(log2 n)

Work Analysis
• Merge has workΘ(n logn)
• Summing over recursive calls givesΘ(n log2 n)

Improvements. Merge can be improved toΘ(n) work! (but it’s

complicated)
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Concluding Thoughts
Parallelism is Necessary

• Computer hardware is naturally parallel
• sequential computing is an illusion!

Parallelism is Powerful

• Recent explosion in computing power is due to parallelism!

Parallelism is Subtle

• Reasoning about parallel programs is hard

• Writing correct parallel programs is hard
• Idealized models abstract away many challenges

• no perfect synchrony?
• tolerate faults?
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Next Time
• Text Indexing
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Scratch Notes
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