|"|I |||I| "||I| ; ||I| | ‘3; 11,0 |

0000000000000000000000000JOCUOQO000O00000000000001000G500000000000000000QQ0ROVON
125456 78 9100 12131 1516 1161920 21 22232 25 26 21 28 29 3 31 32 33 34 35 36 37 38 39 40 41 42 &0 44 45 46 &7 43 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 67 68 63 70 71 72,73 74 75 75 17 8 79 80
1] ARRRERREEE NI RN RRRRREI Al ARl | Rl ARRRR RN R R R R R R R SRR AR R R R
2202222222222222022222222002222222220022
33333333333333333W3333333333333333P333]3
4444444444444444444444044444040444404J444444404844440404444448444444444440444]44
555555555555 5555550555555 555 Mo9555055555555555555555585555555555555555555555

66666666 66M66366666666656R6666666

Lecture 17: Error Correction; Parallel
Algorithms

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: November 28, 2024 University of Liverpool

1/36

Announcements

1. Programming Assignment 2 posted
* Due 29 November

2. No Quiz This Week!
3. Attendance Code:

{35170

2/36

Meeting Goals

1. Finish discussion error correcting codes

* Parity checking
* Hamming Codes

2. Introduce parallel algorithms

3/36

Error Correcting
Codes

From Last Time

Communcation Model.

* Goal: send a text S€ {0,1}*
(bitstream) across a communication
channel

° Any bit transmitted through the
channel might flip

®*0—lorl—0
® noerasures or insertions

* To cope with errors:

* compute and send an
encoded bitstream C(S)
* receiver decodes C to get S

Block Codes. Assumptions

* Messages consists of fixed sized
blocks

* k=messagelength
« me 0,10

* Encode each message separate as
C(m) € {0, 1
* C(m) is codeword for ml
¢ nis the block length

Q: Ouool ANNANA——D OIO(O‘ B

-

—j

5/36

Requirements for Detecting and Correcting

Detecting Requirement. Suppose(Ccan detect errors of flipping up to
g pping up

b bits. Then C has distance d = b+ 1.
— VM%:}S 8 fp (O\l\cf"(’l
n

4 & oa
W ~ ¥
(cedew 049 s)
Acklec

easow™ % Y cobeds
b p o Cliged

Mice sends X ~—> Bob i g

6/36

Requirements for Detecting and Correcting

Detecting Requirement. Suppose C can detect errors of flipping up to
bbits. Then C has distance d = b+ 1.!

Correcting Requirement. Sup can correct errors of flipping up
to bbits. Then C has distance M CQ&U,JM&

Genetol Stealeqy o 3

— — AN 2
- VAN |
; S N K
, % z cloest y
[\ ¢ NIY
| e e T\%ufuou}\ ek e
N Teaseqe et ey
O pewk WY WMot Codewor

oS cdases v

e steck decodia
’cb 0 % Nas QE_Q(&{UJO‘Q\ 6/36

Lower Bounds for Block Codes

Question. For what values of n, k, d.is it possible to have a block code
of distance d? /‘_% VV\.\U# d&&' o \OQ{—(,UM
bloce Lungtn ™ s gt o
ex\ooM

WASY

7136

Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block WHV\“
of distance d? QO\ 7
Singleton Bound. 2 < 27~ (@-D, hence'n >k+d-1 ! L Q\LQQ\-&
V5SS
n z ket 572 %
- Lk2

7136

Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible tg have a block c:fe

of distance d? a Possc\p(L_ SR "
S.
Singleton Bound@@hence nzk+d-1 Wscj
—_/_’
Proof sketch.

* Consider the deleting the first d — 1 bits of each codeword.

* Remaining codewords are still pair-wise distinct
* There are only 2"~ (@D possibE shorter bjggtrings dfs\’*c'\—

| ot bel
C, &_“\\. j QQQ&UUO@
Co KN 1
Co WX J
Lt I O T £

Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2% < 27~(@-1), hence _C\'
Woose

v\ C
Hamming bound. 2* <2"/ZM—1)/2J (f) &? \ % fm&ﬂb
- & sd’o(l‘

S
n e \ewend
N

l

7136

Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1

S L(d-1)/2] (n)

Hamming bound. 2* < 2"/ P ’

Proof sketch.

IL n
2% Noluwe \ £ 2 ol
Ya\l \
ot b\l —&"Q 5 a

Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1

Hamming bound. 2* < 2"/ Z]Lc(zdo_l)/zJ (}t)

Question. These are impossibility results. What is possible?

7136

Error Detection &
Correction

Error Detection: Parity Bits

Question. How can we detect a single error?

9/36

Error Detection: Parity Bits

Question. How can we detect a single error?
Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1
* the parity of the string changes

O)l:_l_lo PO o@o

9/36

Error Detection: Parity Bits

Question. How can we detect a single error?
Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1
* the parity of the string changes
Idea. Form C by adding an extra bit to message m that encodes the

parity of m 7 (Q,Lc‘ \(('
* the extra bit is called a parity bit / ‘ Wa‘; bis ng>
* which strings are valid codewords? w| eJden (FM d‘/
(even & of

olloony —> W 5.

aq &
s Paldry

9/36

. . . G el
Error Detection: Parity Bits

Question. How can we detect a single error?
Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1
* the parity of the string changes
Idea. Form C by adding an extra bit to message m that encodes the
parity of m
¢ the extra bit is called a parity bit
* which strings are valid codewords?
* the parity of valid codewords is always{) !

9/36

Parity Bit Example

Small Example. Consider k=2, so
that n = 3 with parity bits.

* Messages {00,01,10,11}

10/36

Parity Bit Example

Small Example. Consider k=2, so
that n = 3 with parity bits.

* Messages {00,07,[10] 1

10/36

Parity Bit Example

Small Example. Consider k=2, so

that r2=3 with parity bits. PollEverywhere Question

7 BileseaEs (0L U, 110 L Consider the code C with k=2 bit
* % =1000,011,101,110} - messages and one parity bit. What
\}\ool‘g’:‘(c\ is the Histance d|of C?
\ .
\

A éﬂé“”AdL
Yoo

o ?m&(
oé CDéﬁ-\ponh

pollev.com/comp526

10/36

Parity Bit Example

Small Example. Consider k=2, so
that@with parity bits.

* Messages {00,01,10,11}

* ¢ ={000,011,101,110}

* What is the distance of C?

000 __ 3
¢ Ao
—
/l\o P
O(o o\ l

\ (00 —f| —dAst
7~ e

00Q_— ONb |

10/36

Parity Bit Example

Small Example. Consider k=2, so
that n = 3 with parity bits.

* Messages {00,01,10,11}
e ¥ =1{000,011,101,110}
* What is the distance of C2 — l

* How do we detect errors?

Ol pacidy Wb cecaiven
MS
_ ok e /

B oodd Kwow Hew

WS e((w.(

10/36

Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?

11/36

Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3

* C(b) =(bbb|

* How do we decode a message? < e/u:\d{.é)\
Aecode
Wajalc

SR s \/ojﬁre j‘\c/ﬁ\-

\o‘ \"‘J

11/36

Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3
* C(b) = bbb
* How do we decode a message?

* View on Hamming cube!

11/36

Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3
e C(b)= bbb

* How do we decode a message?

Inefficiency. To correct a single error, we must triple the length of the
message?!

11/36

Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3
e C(b)= bbb

* How do we decode a message?

Inefficiency. To correct a single error, we must triple the length of the
message?!

A Puzzle. How can we correct a single error more efficiently?
* Don’t need to duplicate every bit! e—

e [Idea: use parity checks on parts of the string to identify the index
where error occurred!

11/36

Hamming Codes

How to Locate Errors?

Idea. Use several parity bits!
e Each parity bit detects an error on a part of the input

* Choose parts so that parity checks uniquely specify location of
error

e Error may be in one of the parity bits itselﬂ)

13/36

How to Locate Errors?

Idea. Use several parity bits!
e Each parity bit detects an error on a part of the input

* Choose parts so that parity checks uniquely specify location of
error

* Error may be in one of the parity bits itself!

Binary Trick. Blocks of size its: B = B;BsBs;ByB3 B> B;
* Write indices in binary' -
° '1_111 110, 101, 100, 011, 21’0, O_Q_(
* Have a parity check for each bit of the index where the error could
have occurred
* was the error at an index whose jth bit is 1?
* 111,110, 101, 100,011, 010,001 &—)
* 111,110,101, 100,011,010,001 ¢—j * &
* 111,110, 101, 100, 011, 010, 001 S

-
=

13/36

How to Locate Errors?

Idea. Use several parity bits!
e Each parity bit detects an error on a part of the input

* Choose parts so that parity checks uniquely specify location of
error

* Error may be in one of the parity bits itself!

Binary Trick. Blocks of size n = 7 bits: B= B;BsB5 B4 B3 B2 By

* Write indices in binary
e 111,110,101, 100,011,010, 001

* Have a parity check for each bit of the index where the error could
have occurred

* was the error at an index whoa%h bitis 1?2
01

* @1D110,¢0) 100, f1D 010,

e 111,110,101, 100,011, 010, 001
e 111,110,101, 100, 011,010, 001

* Question. Where do we store parity/message bits?

13/36

(7, 4) Hamming Code

Parity Values. Store parity bits at indices j = 100,,010,,0015.

¢ Use other 4 bits for me D
~ L
i 11 1%00\ 011 [j010\Fo0d

14/36

(7, 4) Hamming Code

Parity Values. Store parity bits at indices j = 100,,010,,0015.

* Use other 4 bits for messages l J/ (_L

index 111 110 101 /100 011 | 010 001

bit B, Bg Bs By B; By B;
Question. Why use these three bits for parity checks?

111,110, 101, 100, 011, 010, 001

* They are independent of the other parity checks!
* 111,110, 101,[100) 011,100 D)
¢ 111,110,101,/1004011,

011,

14/36

Encoding (7, 4) Hamming Code

Procedure. To encode m = mgmymy my:

1. write the bits of m to indices 7, 6,5, 3 of the codeword

index 111 110 101 | 100 011 ' 010 001
bit ms nmyp Ny my

15/36

Encoding (7, 4) Hamming Code

Procedure. To encode m = mgmymy my:

1. write the bits of m to indices 7,6,5, 3 of the codeword

2. compute the parity bits: P Y=< \\“}(OW“!"‘)(
* pr=mzgenmem — CQ*&L\WS;J(b(‘)
® p2=m3®myd nmy

S pr=mz®m &m ¥ L L

index 11 110 10f) F166N o1 F6T6001

o 7
bit - m3 mpy mu [pa mo [P2 (P
1 i) a) ’f

= &
N

=Q

1

—oc — O
o @

cy —_—
("

15/36

Encoding (7, 4) Hamming Code

Procedure. To encode m = mgmymy my:

1. write the bits of m to indices 7, 6,5, 3 of the codeword
2. compute the parity bits:

¢ pa=1mg Ny ény

'mzm@m@m)é

* m=mzemom L

index 111 110 101 011
bit mzg mp m my

Example. Encode the message m =101 1

index 111 100 011 010 001

15/36

Hamming Code Distance

Recall. Code distance is the
minimum Hamming distance
between any two codewords.

16 /36

Hamming Code Distance

Recall. Code distance is the

minimum Hamming distance PollEverywhere Question
between any two codewords. 3)
What is the code distance of the
(7,4) Hamming code?

pollev.com/comp526

16 /36

Hamming Code Distance

Recall. Code distance is the
minimum Hamming distance : « 0w 0ol
between any two codewords. \u Mokl jtos P

* Suppose A= A7A6A5A4A3A2A1 and B = { Z - //JE

B= B;BgB5B;yB3B> 31 are codewords - \ \ l [
* A4,A2,A; determined from other k
values (sumlarly for B) I
* Aand B differ on at least one index
7:1112,6:1102,5:1012,3:0112] A oad B
* [Tf A and B differ on exactly one ~NAUSY &\.(:Le_f
message bit, then two parity bits
differ as well MJLA\L

*""Check: if A and B differ on two
message bits, then at least one parity
bit differs as well!

16 /36

Hamming Code Distance

Recall. Code distance is the
minimum Hamming distance
between any two codewords.

Note. Code distance 3 implies correcting 1 error might be possible. ..

Suppose A= A7AsA5 Ay A3A2 Ay and
B = B;BgB5By B3 By By are codewords
Ag,Ar,A; determined from other
values (similarly for B)

Aand B differ on at least one index
7=1115,6=110,,5=1015,3 =011,
If A and B differ on exactly one
message bit, then two parity bits
differ as well

Check: if Aand B differ on two
message bits, then at least one parity
bit differs as well!

16 /36

Decoding (7, 4) Hamming Code

Procedure. Given received message B = B;Bs B; B4 B3 By By :
1. Compute the pag bits/ Q wshon N\v(: ‘5
'EM ofBi| & R or Nolib Codeword

° Zj:B7@B5@BS@Bl : /\'\:\LM\ whee
—2 2. Form index j with binary representation psp,p: 'l&“\,; ?;‘{V\I/
—> 3. Ifj#0, form B by ﬂipping@to 1-B; ‘ QS\M:A-L
4. Decode the message m = B, B;B. B, A N eva
S +o 2Ze(o

Example. Decode the message B =(11)

17/36

—— N\ = Q(t{l(u]aaQ
Decoding (@ Hamming Code e

Procedure. Given received message B = B;BsB; B4 B3 By B;: m\/":S
1. Compute the parity bits . E
® pa=B;®Bs®Bs® By s‘

®* pp=B;9Bs®B3® B>
* pp=B;9B;©B3® By

2. Form index j with binary representation psp» p;
3. If j#0, form B by flipping B; to 1 — B;
4. Decode the message m = B, B B, B,
Example. Decode the message B= 1110101
* m=1011

Note. If j = 0, then Bis a valid codeword. If j # 0, then B' is a valid
codeword at distance 1 from B.

17/36

Error Correction Prospectus

(7, 4) Hamming Codes are perfect:

* m, n, and d match the Hamming lower bound for block codes

18/36

Error Correction Prospectus

(7, 4) Hamming Codes are perfect:
* m, n, and d match the Hamming lower bound for block codes

3
Generalizations. + -7 -
* General Hamming codes: b = 27- |
* Codeword length n=2¢ -1 forany ¢
°* /{ parity bits .
* Message length 2° — ¢ — 1 message length —> ﬁ PQ(§ l“j
* All are perfect! \ \5 ™

Code Wosd ¢

18/36

Error Correction Prospectus

(7, 4) Hamming Codes are perfect:

* m, n, and d match the Hamming lower bound for block codes

Generalizations.
* General Hamming codes:

* Codeword length n=2¢ -1 for any ¢

°* /{ parity bits

* Message length 2/ — ¢ — 1 message length
¢ All are perfect!

e Other optimal values of m, n, d are generally not known

° many efficient schemes use algebraic constructions
* almost all randomly chosen codes are good(!) &—
® ongoing research!

18/36

Parallel
Algorithms

Improving Technology?

Laptop Power.
* My first laptop (ca. 2004)

* Compagq Presario 2100

* $900 new ($1,500 with
inflation)

* now %used

* Recent laptop (ca. 2021)

* Apple MacBook Pro, 2020
* $1,400 ($1,500 with

inflation
* Now (800 jused

Question. Is my old laptop (in a landfill somewhere) faster than my
current computer?

20/36

Improving Technology?

Laptop Power.

* My firstlaptop (ca. 2004) PollEverywhere Question

: ggggl; ngl)(rssels’z;r(;g 3\711?}? How much fasteris a new
inflation) mid/high range laptop computer
e now < $15 used today than a comparable model
from 20 years ago?
* Recent laptop (ca. 2021)
* Apple MacBook Pro, 2020
* $1,400 ($1,500 with
inflation)
* Now $800 used

pollev.com/comp526

Question. Is my old laptop (in a landfill somewhere) faster than my
current computer?

20/36

Improving Technology?

Laptop Power.
* My first laptop (ca. 2004)

* Compagq Presario 2100

* $900 new ($1,500 with
inflation)

* now < $15 used

¢ Intel Celeron CPU

* Recent laptop (ca. 2021)
* Apple MacBook Pro, 2020
* $1,400 ($1,500 with
inflation)
* Now $800 used
¢ Intel Core i5 CPU,
Question. Is my old laptop (in a landfill somewhere) faster than my
current computer?

20/36

Processor Speed is Not Increasing

Year | Transistors | Clock speed CPU model
1979 30k 5MHz & 8088

1985 300 k 20 MHz 386

1989 1M 20 MHz 486

1995 6 M 200 MHz Pentium Pro
2000 40 M 2000 MHZ| Pentium 4
2005 100 M 3000 MHz 2-core Pentium D
2008 700 M 3000 MHz 8-core Nehalem
2014 6B 2000 MHz 18-core Haswell
2017 20B 3000 MHz| | 32-core AMD Epyc
2019 | 40B | 3000 MHz (| 64-core AMD Rome

21/36

Processor Speed is Not Increasing

Year | Transistors | Clock speed CPU model

1979 30k 5 MHz 8088

1985 300 k 20 MHz 386

1989 1M 20 MHz 486

1995 6 M 200 MHz Pentium Pro
2000 40 M 2 000 MHz Pentium 4

2005 | 100 M 3000 MHz | (Q-core Pentium D A4
2008 700 M 3000 MHz @core Nehalem
2014 6B 2000 MHz 18} core Haswell
2017 20B 3 000 MHz -core AMD Epyc
2019 40B 3000 MHz 4} core AMD Rome 4

L —

But the number of transistors is growing exponentially!

21/36

Speed vs Throughput

Measuring Performance

* Processor speed is the number processor clock cycles per second

e Latency of an operation is the time from when the operation
starts to when it completes

* speed determines latency of individual operations
* speed bounded by physical constraints (e.g. speed of light)

22/36

Speed vs Throughput

Measuring Performance

* Processor speed is the number processor clock cycles per second

e Latency of an operation is the time from when the operation
starts to when it completes

* speed determines latency of individual operations
* speed bounded by physical constraints (e.g. speed of light)

* Throughput is the number of (useful) operations performed each
second

22/36

Speed vs Throughput

Measuring Performance

* Processor speed is the number processor clock cycles per second

e Latency of an operation is the time from when the operation
starts to when it completes

* speed determines latency of individual operations
* speed bounded by physical constraints (e.g. speed of light)

* Throughput is the number of (useful) operations performed each
second

Speed =~ Throughput?
* U of L graduates about 6,000 student each year

e — each degree takes 1/6,000 year (= 88 minutes)

22/36

Speed vs Throughput

Measuring Performance

* Processor speed is the number processor clock cycles per second

e Latency of an operation is the time from when the operation
starts to when it completes

* speed determines latency of individual operations
* speed bounded by physical constraints (e.g. speed of light)

* Throughput is the number of (useful) operations performed each
second

Speed =~ Throughput?
e U of L graduates about 6,000 student each year
¢ — each degree takes 1/6,000 year (= 88 minutes)
* WRONG!! ~ 3% y¥s

* how long does a degree take?
* how does U of L have so many graduates?

22/36

Parallelism

Parallelism is the ability to perform multiple operations
simultaneously

23/36

Parallelism

Parallelism is the ability to perform multiple operations
simultaneously

Examples of parallelism in computers [
* Bitlevel parallelism: adding 32-bit numbers }] : l (’7

« [T T

23/36

Parallelism

Parallelism is the ability to perform multiple operations
simultaneously
Examples of parallelism in computers

* Bit level parallelism: adding 32-bit numbers

¢ Single Instruction Multiple Data (SIMD) parallelism:
* vector operations in a GPU <

(Farrarloz 1 b4
i .
v [Z Iz [[ev

S

23/36

Parallelism

Parallelism is the ability to perform multiple operations
simultaneously
Examples of parallelism in computers

* Bit level parallelism: adding 32-bit numbers
¢ Single Instruction Multiple Data (SIMD) parallelism: 3
m:

® vector operations in a GPU
e Multiple Instruction Multiple Data (MIMD) parallelis
* multicore CPUs

CPU
CofesS

23/36

Parallelism

Parallelism is the ability to perform multiple operations
simultaneously

Examples of parallelism in computers

* Bit level parallelism: adding 32-bit numbers

¢ Single Instruction Multiple Data (SIMD) parallelism:
® vector operations in a GPU

e Multiple Instruction Multiple Data (MIMD) parallelism:
¢ multicore CPUs

* Distributed/networked computing
* cluster computing, “cloud” computing, server farms

23/36

The Power of Parallelism o2 Aot

V<N ~— N

peedup Over Native Python
62,806 ")

100,000

10,000

1,000

Speedup

100

10

1
l Python

Modeling Parallel Computing

Restricted Model: SIMD instructions
* Program = sequence of instructions to be performed

e If same operation is performed on multiple data, operations can
be performed simultaneously
\ LV\C(W A\

e Example: {l—(B/ C oS
for i = 0 to n-1: "
{: Cli] = A[i] + B[i;cj e @(‘)

T Slagle SIAD
Opmh"an!

25/36

Modeling Parallel Computing

Restricted Model: SIMD instructions
* Program = sequence of instructions to be performed

e If same operation is performed on multiple data, operations can
be performed simultaneously

e Example:

for i = 0 to n-1:
C[i] = A[i] + BI[il]

25/36

Modeling Parallel Computing

Restricted Model: SIMD instructions

* Program = sequence of instructions to be performed

* If same operation is performed on multiple data, operati(l):és]ca
be performed simultaneously

e Example:

for i = 0 to n-1:
C[i] = A[i] + BI[il

General Model: PRAM (Parallel RAM)
* Program can spawn processes/processing elements (PEs) that

run in parallel
‘\}\V\\'\'l ,\)\,\J '-“*6"")‘

* each process is like its own program

* Processes have shared memory

25/36

Modeling Parallel Computing

Restricted Model: SIMD instructions
* Program = sequence of instructions to be performed

e If same operation is performed on multiple data, operations can
be performed simultaneously

e Example:

for i = 0 to n-1:
C[i] = A[i] + BI[il]

General Model: PRAM (Parallel RAM)

* Program can spawn processes/processing elements (PEs) that
run in parallel

* each process is like its own program
* Processes have shared memory

Warning. PRAM programs can be incredibly subtle to reason

25/36

Measuring PRAM Efficiency

Main cost metrics

* space: the total amount of accessed memory
e time: the number of steps until all processes terminate
¢ also known as depth or span

e work: total number of instructions executed by all processes

26/36

Measuring PRAM Efficiency

Main cost metrics

* space: the total amount of accessed memory
e time: the number of steps until all processes terminate

¢ also known as depth or span

e work: total number of instructions executed by all processes

Goal:
* minimal span (= time)

e work is (asymptotically) no worse than the best sequential
algorithm

¢ called work-efficient algorithms

26/36

Models vs Reality

Idealization. The PRAM model does not limit the number of possible
PEs (processing elements)

* “multithreaded” computing allows generation of unlimited
threads

27136

Models vs Reality

Idealization. The PRAM model does not limit the number of possible
PEs (processing elements)
* “multithreaded” computing allows generation of unlimited
threads

Reality. More threads does not magically speed up computation
* hardware limits the amount of parallel computation
° e.g. limited to number of cores

27136

Models vs Reality

Idealization. The PRAM model does not limit the number of possible
PEs (processing elements)
* “multithreaded” computing allows generation of unlimited
threads

Reality. More threads does not magically speed up computation
* hardware limits the amount of parallel computation
° e.g. limited to number of cores

Middle Ground (Brent’s Theorem). If an algorithm has span T and
work W for an arbitrary number of processors, then the algorithm can
be run on a PRAM with p PEs in time O(T + W/ p) using work W.

27136

Models vs Reality

Idealization. The PRAM model does not limit the number of possible
PEs (processing elements)
* “multithreaded” computing allows generation of unlimited
threads

Reality. More threads does not magically speed up computation
* hardware limits the amount of parallel computation
° e.g. limited to number of cores

Middle Ground (Brent’s Theorem). If an algorithm has span T and
work W for an arbitrary number of processors, then the algorithm can
be run on a PRAM with p PEs in time O(T + W/ p) using work W.
* Idea: schedule parallel steps in a “round-robin” fashion on the p
PEs.

27136

Enough Generalities!

Parallel Algorithms
* Sorting
* Sorting Networks (SIMD)
* sorting short lists
* Parallel MergeSort
* sorting long lists

e Searching

28/36

Sorting Networks

Comparitors

Recall. In-place sorting algorithms
modified the array according to the
following pattern:
* checkif A[i] and A[j] are out of
order

¢ if so, swap their values

30/36

Comparitors

Recall. In-place sorting algorithms
modified the array according to the 1: procedure INSERTIONSORT(a, 1)

following pattern: ;i fori=12,..,n-1do
. : j—1
e checkif A[i] and A[j] are out of 4. while j> 0 and aljl < alj— 1] do
order 5 SWaAP(a, j,j—1)
. . 6: je—j-1
¢ if so, swap their values - end while
Example. INSERTIONSORT 8 end for
9: end procedure

30/36

Comparitors

Recall. In-place sorting algorithms
modified the array according to the 1: procedure INSERTIONSORT(a, 1)
following pattern: 22 fori=1,2,...,n—1do

. 3k j—1i
e checkif A[i] and A[j] are out of 4. while j> 0 and aljl < alj— 1] do
order 5 SWAP(a, j,j— 1)
. . 6: je—j-1
¢ if so, swap their values - end while
Example. INSERTIONSORT 8 end for
9: end procedure

Abstract View. A comparator is is a PE that takes two values as inputs
and returns the values in sorted order.
* comp(x,y) = (min{x,y}, max{x,y})
e all array modifications of INSERTIONSORT can be performed by
comparators

30/36

Comparitors

Recall. In-place sorting algorithms
modified the array according to the 1: procedure INSERTIONSORT(a, 1)

following pattern: ;i fori=12,..,n-1do
. : j—1
e checkif A[i] and A[j] are out of 4. while j> 0 and aljl < alj— 1] do
order B SWAP(a, j,j— 1)
. . 6: j—j-1
¢ if so, swap their values - end while
Example. INSERTIONSORT 8: endfor

9: end procedure

Abstract View. A comparator is is a PE that takes two values as inputs
and returns the values in sorted order.
* comp(x,y) = (min{x, y}, max{x,y})
e all array modifications of INSERTIONSORT can be performed by
comparators

Question. Which comparator operations of INSERTIONSORT can be

performed in parallel (while still ensuring correct output)? s

Comparator Networks

Visual Representation.
* Inputs/indices are represented by wires (horizontal lines)
e Comparators are vertical line segments between wires
* interpretation: wire between wire i and j performs comp to indices
iand jinput
e Execution: Scan diagram from left to right and apply comparators
in order they are encountered

31/36

Comparator Networks

Visual Representation.

* Inputs/indices are represented by wires (horizontal lines)

e Comparators are vertical line segments between wires

* interpretation: wire between wire i and j performs comp to indices
iand jinput
e Execution: Scan diagram from left to right and apply comparators
in order they are encountered

Example. Consider the following comparator network on 4 wires.
What is the output on input [4,3,2,1]?

w N = O

31/36

Sorting Algorithms to Networks

Consider INSERTIONSORT on
inputs of size 5. What are the
(possible) comparator operations
performed by the algorithm?

* Which comparator operations
could be performed in
parallel?

1: procedure INSERTIONSORT(a, 1)

2 fori=1,2,...,n—1do

3 j—1i

4 while j> 0 and a[j] < alj- 1] do
5: SWAP(a,j,j—1)

6 J=j=1

7 end while

8 end for

9: end procedure

32/36

Sorting Network Terminology

Definitions.

* A comparator network is defined by a set of wires and a sequence
of comparators (left to right).

33/36

Sorting Network Terminology

Definitions.

* A comparator network is defined by a set of wires and a sequence
of comparators (left to right).

* A comparator network is a sorting network if for all wire inputs,
the resulting outputs are sorted.

33/36

Sorting Network Terminology

Definitions.

* A comparator network is defined by a set of wires and a sequence
of comparators (left to right).

* A comparator network is a sorting network if for all wire inputs,
the resulting outputs are sorted.

* The depth of a comparator network is the maximum number of
comparators touched on any path from input to output
(including crossed comparators).

33/36

Sorting Network Terminology

Definitions.

* A comparator network is defined by a set of wires and a sequence
of comparators (left to right).

* A comparator network is a sorting network if for all wire inputs,
the resulting outputs are sorted.

* The depth of a comparator network is the maximum number of
comparators touched on any path from input to output
(including crossed comparators).

Sorting networks and parallel algorithms.
* Each comparator is a process element
* The depth is the span (running time) of the network

* The work is the number of comparators

33/36

Sorting Network Terminology

Definitions.

* A comparator network is defined by a set of wires and a sequence
of comparators (left to right).

* A comparator network is a sorting network if for all wire inputs,
the resulting outputs are sorted.

* The depth of a comparator network is the maximum number of
comparators touched on any path from input to output
(including crossed comparators).

Sorting networks and parallel algorithms.

* Each comparator is a process element

* The depth is the span (running time) of the network

* The work is the number of comparators

Question. What is the smallest/shallowest sorting network for a given
input size?

* Optimal size sorting networks are only known for up to 12 inputs

* Optimal depth is only known up to 18 inputs

33/36

Some Optimal Sorting Networks

Example. n = 4 wires. What is the depth?

0

1

2

34/36

Some Optimal Sorting Networks

Example. n = 5 wires. What is the depth?

0

1

2

34/36

Next Time

* More parallel sorting!

* Parallel searching!

35/36

Scratch Notes

36/36

