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Announcements

1. Programming Assignment 2 posted
* Due 29 November

2. No Quiz This Week!
3. Attendance Code:
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Meeting Goals

1. Finish discussion of data compression

¢ Discuss Burrows-Wheeler inverse analysis
¢ Recap of data compression

2. Give some remarks on Programming Assignment 2

3. Mini-unit on error correcting codes

° Introduce error correcting codes

¢ Define block codes and code distance

* Prove lower bounds for error detection and correction
¢ Introduce Hamming codes
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Burrows-Wheeler Transform

From last time.
1. Start with an input string S

* S=banana$
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Burrows-Wheeler Transform

From last time.
1. Start with an input string S

* S=banana$
2. Form all cyclic shifts of S
3. Sort the cyclic shifts alphabetically

b a n a n a §$ $ Db a n a n a
a n a n a $ b a $ P a n a n
n a n a $ b a a n a $ b a n
a n a $ b a n a n a n a $ b
n a $ b a n a b a n a n a §$
a $ b a n a n n a n a $ b a
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Burrows-Wheeler Transform

From last time.
1. Start with an input string S
* S=banana$
2. Form all cyclic shifts of S
3. Sort the cyclic shifts alphabetically
4. Return the last column

* B=annb$aa

b a n a n a §$ $
a n a n a $ b a
n a n a $ b a a
a n a $ b a n a
n a $ b a n a b
a $ b a n a n n
$ b a n a n a n

P P BB & o

®“ B B PP O e

T B e B

p A B P OB e

B oM e B

PP Lo BB
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Burrows-Wheeler Transform

From last time.
1. Start with an input string S
* S=banana$
2. Form all cyclic shifts of S
3. Sort the cyclic shifts alphabetically
4. Return the last column

* B=annb$aa

Claim. This process is reversible

¢ Given B, we can find the original input S.
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Inverse Burrows-Wheeler

1. Form character-index pairs

(a
(n
(n
(b
($
(a
(a

0)
1)
2)
3)
4)
5)
6)
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Inverse Burrows-Wheeler

1. Form character-index pairs
2. Sort pairs stably alphabetically by first character

(a
(n
(n
(b
($
(a
(a

0)
1)
2)
3)
4)
5)
6)

D O WN - O

($
(a
(a
(a
(b
(n
(n

4)
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5)
6)
3)
1)
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Inverse Burrows-Wheeler

= 90 N

Repeat
(a 0)
(n 1)
(n 2)
(b 3)
¢ 49
(a b)
(a 6)

D O WN - O
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(a
(a
(a
(b
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(n

Form character-index pairs
Sort pairs stably alphabetically by first character
Starting with $, use index as (sorted) index of next character
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5)
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3)
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2)
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2.

3.
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1.

2.

3.

4. Repeat
(a 0)
(n 1
(n 2)
(b 3)
¢ 9
(a 5)
(a 6)

add W NN O
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($
(a
(a
(a
(b
(n
(n

Form character-index pairs
Sort pairs stably alphabetically by first character
Starting with $, use index as (sorted) index of next character

4)
0)
5)
6)
3)
1)
2)

Question. Why does this work?

* cacharacter in B, consider c¢’'s row
* where is ¢’'s next character in S?

B BT O &

Mo P BB e o
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o B e B

M A B e o B e
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Inverse Burrows-Wheeler

1.

2.

3.

4. Repeat
(a 0)
(n 1
(n 2)
(b 3)
¢ 9
(a 5)
(a 6)

add W NN O

6

($
(a
(a
(a
(b
(n
(n

Form character-index pairs
Sort pairs stably alphabetically by first character
Starting with $, use index as (sorted) index of next character

4)
0)
5)
6)
3)
1)
2)

Question. Why does this work?

* cacharacter in B, consider c¢’'s row
* where is ¢’'s next character in S?

B BT O &

Mo P BB e o

€“ B B O E

o B e B

M A B e o B e

B oM e p B

M P LT BB

* when we sort the last column, ¢’s next character ends up in ¢’s

original row!
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BWT Discussion

What do we know about the Burrows-Wheeler Transform?
* Running time ©(n)
¢ encoding uses suffix sorting (future reference)

* decoding can be done in ©(n) time with counting sort
* decoding is simpler/faster!

¢ Typically slower than other methods
* Needs access to entire text (or apply to smaller blocks)

* WBT — MTF — RLE — Huffman has great compression!
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Summary of Compression

Huffman Variable-width, single-character (optimal in this case)
RLE Variable-width, multiple-character encoding

LZW Adaptive, fixed-width, multiple-character encoding
Augments dictionary with repeated substrings

MTF Adaptive, transforms to smaller integers
should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF
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Going farther. Compression is an active area of research!

* Improved compression schemes can have immediate impact.

* Hutter Prize 5,000 euro per 1% improvement of compression of a
single 1GB English text file (from Wikipedia).
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Summary of Compression

Huffman Variable-width, single-character (optimal in this case)
RLE Variable-width, multiple-character encoding

LZW Adaptive, fixed-width, multiple-character encoding
Augments dictionary with repeated substrings

MTF Adaptive, transforms to smaller integers
should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF

Going farther. Compression is an active area of research!

* Improved compression schemes can have immediate impact.

* Hutter Prize 5,000 euro per 1% improvement of compression of a
single 1GB English text file (from Wikipedia).

* made to encourage research in artificial intelligence
¢ what does compression have to do with AI?

8/26



Programming
Assignment 2



Your Assignment

Three Pieces:
* B= B[0..20) the correct solutions to the exam
¢ expressed in binary 1 for true, 0 for false
¢ known only to your hacker friend
* M = M][0..10) the message your friend sends you
¢ also expressed in binary
e A= A[0..20) the answers your record for the exam, in binary
Two Procedures:
* Encode the correct exam solutions B to a message M
* preformed by your hacker friend
* Decodethe message M to exam solutions A
¢ performed by you during the exam
One Goal: Achieve the maximum guaranteed score.
* 20-max{dy(A B)| Be {0,1}*}
* dy(A B) is Hamming distance = number of indices where
solutions differ
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Two Suggestions

1. Abstract away from algorithms and message semantics

° messages partition possible exams (B)
* each message gives one solution A
* what should the “parts” have in common?
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Example. It is possible to guarantee a score of 10 with only a
single bit message! (How?)
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Two Suggestions

1. Abstract away from algorithms and message semantics
° messages partition possible exams (B)
* each message gives one solution A
* what should the “parts” have in common?
Example. It is possible to guarantee a score of 10 with only a
single bit message! (How?)
2. Consider concrete smaller cases
* what is special about 20 and 10?

* try solving the problem by hand for smaller cases: 2 questions,
1-bit message, etc.
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Error Correcting
Codes



Motivation: Noisy Communication

Implicit Assumptions. So far:
* Data is never corrupted

e Computer faithfully carries out correct instructions
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Motivation: Noisy Communication

Implicit Assumptions. So far:
* Data is never corrupted
e Computer faithfully carries out correct instructions

Question. Are these assumptions justified?
Weak Point. Communication

¢ reading from disk

* writing to shared memory

* sending data between processors

* sending data between cities? countries? continents? planets?

Question. How do we deal with errors in communication?
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Goals for Error Correction

Two Goals:

* Detect errors in
communication

* Given the sent (intended)
message M and received
message M’, how can we
determine if M # M’
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* Given the sent (intended)
message M and received
message M’, how can we
determine if M # M’
* Correct errors automatically
* Given received message M’,
how could we automatically
determine the sent message
M even if M’ # M?
Question. How much noise can
the system tolerate?

* Some redundancyis
necessary.

14/26
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Two Goals:
* Detect errors in
communication

* Given the sent (intended)
message M and received
message M’, how can we
determine if M # M’

e Correct errors automatically

* Given received message M’,
how could we automatically
determine the sent message
M even if M’ # M?

Question. How much noise can
the system tolerate?

* Some redundancyis
necessary.

PollEverywhere Question

Suppose we wish to send a string S
of size 100 bits. How many
additional bits must we send to
detect a 1 bit error in the
transmitted message?

pollev.com/comp526
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Goals for Error Correction

Two Goals:
* Detect errors in
communication

* Given the sent (intended)
message M and received
message M’, how can we
determine if M # M’

e Correct errors automatically

* Given received message M’,
how could we automatically
determine the sent message
M even if M’ # M?

Question. How much noise can
the system tolerate?

* Some redundancyis
necessary.
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Suppose we wish to send a string S
of size 100 bits. How many
additional bits must we send to
detect a 1 bit error in the
transmitted message?
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Modeling Errors
and Correction



Model & Block Codes

Communcation Model.

* Goal: send a text S€ {0,1}*
(bitstream) across a communication
channel
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Model & Block Codes

Communcation Model.

* Goal: send a text S€ {0,1}*
(bitstream) across a communication
channel

° Any bit transmitted through the
channel might flip

®*0—lorl—0
® noerasures or insertions

* To cope with errors:

* compute and send an
encoded bitstream C(S)
* receiver decodes C to get S

Block Codes. Assumptions

* Messages consists of fixed sized

blocks
* k=messagelength
* me{0,1}F

* Encode each message separate as
C(m) € {0,1}"
* C(m) is codeword for m
¢ nis the block length
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Hamming Distance

Definition. Given two texts

x,y € {0,1}", the Hamming
distance dp (x, y) between x and y
is the number of indices at which x
and y differ.
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Hamming Distance

Definition. Given two texts

n .
7€ 9, 1), s [F ooy PollEverywhere Question

distance d(x, y) between x and y ; ) -
is the number of indices at which x What is the Hamming distance
between 1001011001 and

and y differ.
10110101017

pollev.com/comp526
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Hamming Distance

Definition. Given two texts

x,y € {0,1}", the Hamming
distance dp (x, y) between x and y
is the number of indices at which x
and y differ.

Geometric View. Hamming
distance allows us to think about
binary strings geometrically.

* Hamming cube of dimension
nis the set of all bit strings x of
length n

* xand yare neighbors if they
differ on exactly one bit
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Hamming Distance

Definition. Given two texts

x,y € {0,1}", the Hamming
distance dp (x, y) between x and y
is the number of indices at which x
and y differ.

Geometric View. Hamming
distance allows us to think about
binary strings geometrically.

* Hamming cube of dimension
nis the set of all bit strings x of

length n

* xand yare neighbors if they

differ on exactly one bit

* Hamming ball of radius d
centered at x contains all
bitstrings y whose Hamming
distance from x is at most d.
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Code Distance

Block Codes, Geometrically. Recall a block code is a function from
k-bit messages to n-bit encoded messages: C: {0,1}* — {0,1}"

* Cmust be injective
Define € = C({0, l}k) to be the set of all codewords.
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Define € = C({0, l}k) to be the set of all codewords.

Example. k= 1,n=3. Define C(b) = (b, b, b).

Decoding. To decode C(M), find the closest valid codeword x and take
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Code Distance

Block Codes, Geometrically. Recall a block code is a function from
k-bit messages to n-bit encoded messages: C: {0,1}* — {0,1}"

* Cmust be injective
Define € = C({0, l}k) to be the set of all codewords.
Example. k=1,n=3. Define C(b) = (b, b, b).

Decoding. To decode C(M), find the closest valid codeword x and take
S=Cl(x).

Definition. The code distance of C is the minimum (Hamming)
distance between any two valid codewords:

°* d= minx,ye%’" dp(x, V)

Intuition. Larger code distances should be able to detect/correct more
errors.
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Requirements for Detecting and Correcting

Detecting Requirement. Suppose C can detect errors of flipping up to
bbits. Then Chas distance d = b+ 1.
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Requirements for Detecting and Correcting

Detecting Requirement. Suppose C can detect errors of flipping up to
bbits. Then Chas distance d = b+ 1.

Correcting Requirement. Suppose C can correct errors of flipping up
to b bits. Then C has distance d = 2b+ 1
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Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?
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Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1

Proof sketch.
* Consider the deleting the first d — 1 bits of each codeword.
* Remaining codewords are still pair-wise distinct

* There are only 2"~ @~D possible shorter bitstrings
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Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1
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Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1

L(d-1)/2] (n)

Hamming bound. 2¥ <2"/¥. 7)-

=0
Proof sketch.
* Codewords must be at distance d away
e Thus balls centered at codewords of radius |(d— 1)/2] must be
disjoint
* Number of balls x volume of each ball must be at most 2"
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Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1

Hamming bound. 2* < 2"/ Z]Lc(zdo_l)/zJ (}t)

Question. These are impossibility results. What is possible?

21/26



Error Detection: Parity Bits

Question. How can we detect a single error?
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Error Detection: Parity Bits

Question. How can we detect a single error?
Obsevation. If a single bit gets flipped, the number of 1s increases or
decreases by exactly 1

* the parity of the string changes
Idea. Form C by adding an extra bit to message m that encodes the
parity of m

¢ the extra bit is called a parity bit

* which strings are valid codewords?

¢ the parity of valid codewords is always 1!

Example. k=2, n=3. What is d? How do we detect errors?
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Parity Bit Example

Small Example. Consider k= 2, so
that n = 3 with parity bits.

* Messages {00,01,10,11}
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Small Example. Consider k= 2, so
that n = 3 with parity bits.
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Parity Bit Example

Small Example. Consider k= 2, so

et o= 8wt jpeteliy (i, PollEverywhere Question

* Messages {00,01,10, 11} Consider the code C with k=2 bit
* % =1000,011,101,110} messages and one parity bit. What
is the distance d of C?

pollev.com/comp526
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Parity Bit Example

Small Example. Consider k= 2, so
that n = 3 with parity bits.
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Parity Bit Example

Small Example. Consider k= 2, so
that n = 3 with parity bits.

* Messages {00,01,10,11}
e ¥ =1{000,011,101,110}
* What is the distance of C?

* How do we detect errors?
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Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
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* How do we decode a message?
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Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3
* C(b) = bbb
* How do we decode a message?

* View on Hamming cube!

24/26



Error Correction through Duplication
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Inefficiency. To correct a single error, we must triple the length of the
message?!
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Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3
e C(b)= bbb

* How do we decode a message?

Inefficiency. To correct a single error, we must triple the length of the
message?!

A Puzzle. How can we correct a single error more efficiently?
* Don’t need to duplicate every bit!

e Idea: use parity checks on parts of the string to identify the index
where error occurred!
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Next Time

* Finish error correcting codes!

e Start parallel algorithms!
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Scratch Notes
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