
Lecture 16: Error Correcting Codes
COMP526: Efficient Algorithms

Updated: November 26, 2024

Will Rosenbaum
University of Liverpool

1 / 26

389591

Announcements
1. Programming Assignment 2 posted

• Due 29 November

2. No Quiz This Week!

3. Attendance Code:

2 / 26

- this Friday

389591

Meeting Goals
1. Finish discussion of data compression

• Discuss Burrows-Wheeler inverse analysis

• Recap of data compression

2. Give some remarks on Programming Assignment 2

3. Mini-unit on error correcting codes

• Introduce error correcting codes

• Define block codes and code distance

• Prove lower bounds for error detection and correction

• Introduce Hamming codes

3 / 26

- Thursday

Burrows-
Wheeler
Transform

Burrows-Wheeler Transform
From last time.

1. Start with an input string S

• S = banana$

2. Form all cyclic shifts of S

3. Sort the cyclic shifts alphabetically

4. Return the last column
• B = annb$aa

b a n a n a $

5 / 26

#
·

terminating char
first alphabetical char.

Burrows-Wheeler Transform
From last time.

1. Start with an input string S

• S = banana$

2. Form all cyclic shifts of S

3. Sort the cyclic shifts alphabetically

4. Return the last column
• B = annb$aa

b a n a n a $
a n a n a $ b
n a n a $ b a
a n a $ b a n
n a $ b a n a
a $ b a n a n
$ b a n a n a

5 / 26

Burrows-Wheeler Transform
From last time.

1. Start with an input string S

• S = banana$

2. Form all cyclic shifts of S

3. Sort the cyclic shifts alphabetically

4. Return the last column
• B = annb$aa

b a n a n a $
a n a n a $ b
n a n a $ b a
a n a $ b a n
n a $ b a n a
a $ b a n a n
$ b a n a n a

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a n a $ b a
n a $ b a n a

5 / 26

Frous

sort
=
>
-

3
swap for sorting

Burrows-Wheeler Transform
From last time.

1. Start with an input string S

• S = banana$

2. Form all cyclic shifts of S

3. Sort the cyclic shifts alphabetically

4. Return the last column
• B = annb$aa

b a n a n a $
a n a n a $ b
n a n a $ b a
a n a $ b a n
n a $ b a n a
a $ b a n a n
$ b a n a n a

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a n a $ b a
n a $ b a n a

5 / 26

-

0

Burrows-Wheeler Transform
From last time.

1. Start with an input string S

• S = banana$

2. Form all cyclic shifts of S

3. Sort the cyclic shifts alphabetically

4. Return the last column
• B = annb$aa

Claim. This process is reversible

• Given B, we can find the original input S.

5 / 26

Inverse Burrows-Wheeler
1. Form character-index pairs

2. Sort pairs stably alphabetically by first character

3. Starting with $, use index as (sorted) index of next character

4. Repeat

(a 0)
(n 1)
(n 2)
(b 3)
($ 4)
(a 5)
(a 6)

• c a character in B, consider c’s row

• where is c’s next character in S?

• when we sort the last column, c’s next character ends up in c’s

original row!

6 / 26

transformed
text

Inverse Burrows-Wheeler
1. Form character-index pairs

2. Sort pairs stably alphabetically by first character

3. Starting with $, use index as (sorted) index of next character

4. Repeat

(a 0)
(n 1)
(n 2)
(b 3)
($ 4)
(a 5)
(a 6)

0 ($ 4)
1 (a 0)
2 (a 5)
3 (a 6)
4 (b 3)
5 (n 1)
6 (n 2)

• c a character in B, consider c’s row

• where is c’s next character in S?

• when we sort the last column, c’s next character ends up in c’s

original row!

6 / 26

orig
index

d

Inverse Burrows-Wheeler
1. Form character-index pairs

2. Sort pairs stably alphabetically by first character

3. Starting with $, use index as (sorted) index of next character

4. Repeat

(a 0)
(n 1)
(n 2)
(b 3)
($ 4)
(a 5)
(a 6)

0 ($ 4)
1 (a 0)
2 (a 5)
3 (a 6)
4 (b 3)
5 (n 1)
6 (n 2)

• c a character in B, consider c’s row

• where is c’s next character in S?

• when we sort the last column, c’s next character ends up in c’s

original row!

6 / 26

⑨.
banase

Inverse Burrows-Wheeler
1. Form character-index pairs

2. Sort pairs stably alphabetically by first character

3. Starting with $, use index as (sorted) index of next character

4. Repeat

(a 0)
(n 1)
(n 2)
(b 3)
($ 4)
(a 5)
(a 6)

0 ($ 4)
1 (a 0)
2 (a 5)
3 (a 6)
4 (b 3)
5 (n 1)
6 (n 2)

Question. Why does this work?

• c a character in B, consider c’s row

• where is c’s next character in S?

• when we sort the last column, c’s next character ends up in c’s

original row!

6 / 26

Inverse Burrows-Wheeler
1. Form character-index pairs

2. Sort pairs stably alphabetically by first character

3. Starting with $, use index as (sorted) index of next character

4. Repeat

(a 0)
(n 1)
(n 2)
(b 3)
($ 4)
(a 5)
(a 6)

0 ($ 4)
1 (a 0)
2 (a 5)
3 (a 6)
4 (b 3)
5 (n 1)
6 (n 2)

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a n a $ b a
n a $ b a n a

Question. Why does this work?

• c a character in B, consider c’s row

• where is c’s next character in S?

• when we sort the last column, c’s next character ends up in c’s

original row!

6 / 26

22Quext
-D #
-

$'s next char is

first in its row

bis next char is a

Inverse Burrows-Wheeler
1. Form character-index pairs

2. Sort pairs stably alphabetically by first character

3. Starting with $, use index as (sorted) index of next character

4. Repeat

(a 0)
(n 1)
(n 2)
(b 3)
($ 4)
(a 5)
(a 6)

0 ($ 4)
1 (a 0)
2 (a 5)
3 (a 6)
4 (b 3)
5 (n 1)
6 (n 2)

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a n a $ b a
n a $ b a n a

Question. Why does this work?

• c a character in B, consider c’s row

• where is c’s next character in S?

• when we sort the last column, c’s next character ends up in c’s

original row!

6 / 26

Wi
($4

BWT Discussion
What do we know about the Burrows-Wheeler Transform?

• Running time£(n)

• encoding uses suffix sorting (future reference)

• decoding can be done in£(n) time with counting sort

• decoding is simpler/faster!

• Typically slower than other methods

• Needs access to entire text (or apply to smaller blocks)

• WBT ! MTF ! RLE ! Huffman has great compression!

7 / 26

-- "Naive"alg. Q (n2logn)
Slowwww.

-
-

B 15 f

Huffman
more run length
to

front encoding

Summary of Compression

Huffman Variable-width, single-character (optimal in this case)

RLE Variable-width, multiple-character encoding

LZW Adaptive, fixed-width, multiple-character encoding

Augments dictionary with repeated substrings

MTF Adaptive, transforms to smaller integers

should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF

Going farther. Compression is an active area of research!

• Improved compression schemes can have immediate impact.

• Hutter Prize 5,000 euro per 1% improvement of compression of a

single 1GB English text file (from Wikipedia).

• made to encourage research in artificial intelligence

• what does compression have to do with AI?

8 / 26

-

Summary of Compression

Huffman Variable-width, single-character (optimal in this case)

RLE Variable-width, multiple-character encoding

LZW Adaptive, fixed-width, multiple-character encoding

Augments dictionary with repeated substrings

MTF Adaptive, transforms to smaller integers

should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF

Going farther. Compression is an active area of research!

• Improved compression schemes can have immediate impact.

• Hutter Prize 5,000 euro per 1% improvement of compression of a

single 1GB English text file (from Wikipedia).

• made to encourage research in artificial intelligence

• what does compression have to do with AI?

8 / 26

f

Summary of Compression

Huffman Variable-width, single-character (optimal in this case)

RLE Variable-width, multiple-character encoding

LZW Adaptive, fixed-width, multiple-character encoding

Augments dictionary with repeated substrings

MTF Adaptive, transforms to smaller integers

should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF

Going farther. Compression is an active area of research!

• Improved compression schemes can have immediate impact.

• Hutter Prize 5,000 euro per 1% improvement of compression of a

single 1GB English text file (from Wikipedia).

• made to encourage research in artificial intelligence

• what does compression have to do with AI?

8 / 26

Programming
Assignment 2

Your Assignment
Three Pieces:

• B = B[0..20) the correct solutions to the exam

• expressed in binary 1 for true, 0 for false

• known only to your hacker friend

• M = M[0..10) the message your friend sends you

• also expressed in binary

• A = A[0..20) the answers your record for the exam, in binary

Two Procedures:
• Encode the correct exam solutions B to a message M

• preformed by your hacker friend

• Decode the message M to exam solutions A

• performed by you during the exam

One Goal: Achieve the maximum guaranteed score.

• 20°max
©
dH (A,B)

ØØB 2 {0,1}
20

™

• dH (A,B) is Hamming distance = number of indices where

solutions differ

10 / 26

Exam
answer

~ 0110011)
- -

3

incorrect sol'n
-Ecreachievare

Two Suggestions
1. Abstract away from algorithms and message semantics

• messages partition possible exams (B)

• each message gives one solution A

• what should the “parts” have in common?

Example. It is possible to guarantee a score of 10 with only a

single bit message! (How?)

2. Consider concrete smaller cases

• what is special about 20 and 10?

• try solving the problem by hand for smaller cases: 2 questions,

1-bit message, etc.

11 / 26

de(x))

a
messages
20 = 1000 all exams

all exams again
220 IM Want : make

poss
inet solns partitionaS close

M

to all examspart

Two Suggestions
1. Abstract away from algorithms and message semantics

• messages partition possible exams (B)

• each message gives one solution A

• what should the “parts” have in common?

Example. It is possible to guarantee a score of 10 with only a

single bit message! (How?)

2. Consider concrete smaller cases

• what is special about 20 and 10?

• try solving the problem by hand for smaller cases: 2 questions,

1-bit message, etc.

11 / 26

"
-

Majority :

Msy 1: if #As FO]
enda

·t respond t
O ->

respond 100
.... 0) =

Two Suggestions
1. Abstract away from algorithms and message semantics

• messages partition possible exams (B)

• each message gives one solution A

• what should the “parts” have in common?

Example. It is possible to guarantee a score of 10 with only a

single bit message! (How?)

2. Consider concrete smaller cases

• what is special about 20 and 10?

• try solving the problem by hand for smaller cases: 2 questions,

1-bit message, etc.

11 / 26

-

-

Error Correcting
Codes

Motivation: Noisy Communication
Implicit Assumptions. So far:

• Data is never corrupted

• Computer faithfully carries out correct instructions

Question. Are these assumptions justified?

Weak Point. Communication

• reading from disk

• writing to shared memory

• sending data between processors

• sending data between cities? countries? continents? planets?

Question. How do we deal with errors in communication?

13 / 26

Motivation: Noisy Communication
Implicit Assumptions. So far:

• Data is never corrupted

• Computer faithfully carries out correct instructions

Question. Are these assumptions justified?

Weak Point. Communication

• reading from disk

• writing to shared memory

• sending data between processors

• sending data between cities? countries? continents? planets?

Question. How do we deal with errors in communication?

13 / 26

~
One 1

Aerospace

Motivation: Noisy Communication
Implicit Assumptions. So far:

• Data is never corrupted

• Computer faithfully carries out correct instructions

Question. Are these assumptions justified?

Weak Point. Communication

• reading from disk

• writing to shared memory

• sending data between processors

• sending data between cities? countries? continents? planets?

Question. How do we deal with errors in communication?

13 / 26

-
#Memory

Motivation: Noisy Communication
Implicit Assumptions. So far:

• Data is never corrupted

• Computer faithfully carries out correct instructions

Question. Are these assumptions justified?

Weak Point. Communication

• reading from disk

• writing to shared memory

• sending data between processors

• sending data between cities? countries? continents? planets?

Question. How do we deal with errors in communication?

13 / 26

Goals for Error Correction
Two Goals:

• Detect errors in

communication

• Given the sent (intended)

message M and received

message M
0
, how can we

determine if M 6= M
0

• Correct errors automatically

• Given received message M
0
,

how could we automatically

determine the sent message

M even if M
0 6= M?

14 / 26

Alice Bob

⑪
M
->Mi

msg is M = M ?

Goals for Error Correction
Two Goals:

• Detect errors in

communication

• Given the sent (intended)

message M and received

message M
0
, how can we

determine if M 6= M
0

• Correct errors automatically

• Given received message M
0
,

how could we automatically

determine the sent message

M even if M
0 6= M?

14 / 26

①
mi

u

3
find M

from M1

automatically

Goals for Error Correction
Two Goals:

• Detect errors in

communication

• Given the sent (intended)

message M and received

message M
0
, how can we

determine if M 6= M
0

• Correct errors automatically

• Given received message M
0
,

how could we automatically

determine the sent message

M even if M
0 6= M?

Question. How much noise can

the system tolerate?

• Some redundancy is

necessary.

14 / 26

Observation Can't
--

do anything w/
unaltered musgs .

↓
must add additional

into we

redundancy

Goals for Error Correction
Two Goals:

• Detect errors in

communication

• Given the sent (intended)

message M and received

message M
0
, how can we

determine if M 6= M
0

• Correct errors automatically

• Given received message M
0
,

how could we automatically

determine the sent message

M even if M
0 6= M?

Question. How much noise can

the system tolerate?

• Some redundancy is

necessary.

PollEverywhere Question

Suppose we wish to send a string S

of size 100 bits. How many

additional bits must we send to

detect a 1 bit error in the

transmitted message?

pollev.com/comp526

14 / 26

Aus- bob, Singhflip

Goals for Error Correction
Two Goals:

• Detect errors in

communication

• Given the sent (intended)

message M and received

message M
0
, how can we

determine if M 6= M
0

• Correct errors automatically

• Given received message M
0
,

how could we automatically

determine the sent message

M even if M
0 6= M?

Question. How much noise can

the system tolerate?

• Some redundancy is

necessary.

PollEverywhere Question

Suppose we wish to send a string S

of size 100 bits. How many

additional bits must we send to

detect a 1 bit error in the

transmitted message?

pollev.com/comp526

14 / 26

correct

Modeling Errors
and Correction

Model & Block Codes
Communcation Model.

• Goal: send a text S 2 {0,1}
§

(bitstream) across a communication

channel

• Any bit transmitted through the

channel might flip
• 0 7! 1 or 1 7! 0

• no erasures or insertions

• To cope with errors:

• compute and send an

encoded bitstream C(S)

• receiver decodes C to get S

Block Codes. Assumptions

• Messages consists of fixed sized

blocks

• k = message length
• m 2 {0,1}

k

• Encode each message separate as

C(m) 2 {0,1}
n

• C(m) is codeword for m

• n is the block length

16 / 26

-and length bitstream

Model & Block Codes
Communcation Model.

• Goal: send a text S 2 {0,1}
§

(bitstream) across a communication

channel

• Any bit transmitted through the

channel might flip
• 0 7! 1 or 1 7! 0

• no erasures or insertions

• To cope with errors:

• compute and send an

encoded bitstream C(S)

• receiver decodes C to get S

Block Codes. Assumptions

• Messages consists of fixed sized

blocks

• k = message length
• m 2 {0,1}

k

• Encode each message separate as

C(m) 2 {0,1}
n

• C(m) is codeword for m

• n is the block length

16 / 26

toa

Model & Block Codes
Communcation Model.

• Goal: send a text S 2 {0,1}
§

(bitstream) across a communication

channel

• Any bit transmitted through the

channel might flip
• 0 7! 1 or 1 7! 0

• no erasures or insertions

• To cope with errors:

• compute and send an

encoded bitstream C(S)

• receiver decodes C to get S

Block Codes. Assumptions

• Messages consists of fixed sized

blocks

• k = message length
• m 2 {0,1}

k

• Encode each message separate as

C(m) 2 {0,1}
n

• C(m) is codeword for m

• n is the block length

16 / 26

0110 encoded

00111)00

↓ sent

- 0110100

I
decoded

0110

Model & Block Codes
Communcation Model.

• Goal: send a text S 2 {0,1}
§

(bitstream) across a communication

channel

• Any bit transmitted through the

channel might flip
• 0 7! 1 or 1 7! 0

• no erasures or insertions

• To cope with errors:

• compute and send an

encoded bitstream C(S)

• receiver decodes C to get S

Block Codes. Assumptions

• Messages consists of fixed sized

blocks

• k = message length
• m 2 {0,1}

k

• Encode each message separate as

C(m) 2 {0,1}
n

• C(m) is codeword for m

• n is the block length

16 / 26

-]
saydeword

Hamming Distance
Definition. Given two texts

x,y 2 {0,1}
n

, the Hamming
distance dH (x,y) between x and y

is the number of indices at which x

and y differ.

17 / 26

Hamming Distance
Definition. Given two texts

x,y 2 {0,1}
n

, the Hamming
distance dH (x,y) between x and y

is the number of indices at which x

and y differ.

PollEverywhere Question

What is the Hamming distance

between 1001011001 and

1011010101?

pollev.com/comp526

17 / 26

O
VI
3 = dH(x , y)

Hamming Distance
Definition. Given two texts

x,y 2 {0,1}
n

, the Hamming
distance dH (x,y) between x and y

is the number of indices at which x

and y differ.

Geometric View. Hamming

distance allows us to think about

binary strings geometrically.

• Hamming cube of dimension

n is the set of all bit strings x of

length n

• x and y are neighbors if they

differ on exactly one bit

• Hamming ball of radius d

centered at x contains all

bitstrings y whose Hamming

distance from x is at most d.

17 / 26

01

n = 1 p- D

10-11
S (

·"
n=

00-01

n=3 : Do

Hamming Distance
Definition. Given two texts

x,y 2 {0,1}
n

, the Hamming
distance dH (x,y) between x and y

is the number of indices at which x

and y differ.

Geometric View. Hamming

distance allows us to think about

binary strings geometrically.

• Hamming cube of dimension

n is the set of all bit strings x of

length n

• x and y are neighbors if they

differ on exactly one bit

• Hamming ball of radius d

centered at x contains all

bitstrings y whose Hamming

distance from x is at most d.

17 / 26

⑳

Code Distance
Block Codes, Geometrically. Recall a block code is a function from

k-bit messages to n-bit encoded messages: C : {0,1}
k ! {0,1}

n

• C must be injective

Define C = C({0,1}
k

) to be the set of all codewords.

Example. k = 1,n = 3. Define C(b) = (b,b,b).

Decoding. To decode C(M), find the closest valid codeword x and take

S = C
°1

(x).

Definition. The code distance of C is the minimum (Hamming)

distance between any two valid codewords:

• d = minx,y2C dH (x,y)

Intuition. Larger code distances should be able to detect/correct more

errors.

18 / 26

Code Distance
Block Codes, Geometrically. Recall a block code is a function from

k-bit messages to n-bit encoded messages: C : {0,1}
k ! {0,1}

n

• C must be injective

Define C = C({0,1}
k

) to be the set of all codewords.

Example. k = 1,n = 3. Define C(b) = (b,b,b).

Decoding. To decode C(M), find the closest valid codeword x and take

S = C
°1

(x).

Definition. The code distance of C is the minimum (Hamming)

distance between any two valid codewords:

• d = minx,y2C dH (x,y)

Intuition. Larger code distances should be able to detect/correct more

errors.

18 / 26

(10) -
000 -

Code Distance
Block Codes, Geometrically. Recall a block code is a function from

k-bit messages to n-bit encoded messages: C : {0,1}
k ! {0,1}

n

• C must be injective

Define C = C({0,1}
k

) to be the set of all codewords.

Example. k = 1,n = 3. Define C(b) = (b,b,b).

Decoding. To decode C(M), find the closest valid codeword x and take

S = C
°1

(x).

Definition. The code distance of C is the minimum (Hamming)

distance between any two valid codewords:

• d = minx,y2C dH (x,y)

Intuition. Larger code distances should be able to detect/correct more

errors.

18 / 26

111 = (h)

Co)-0
⑳

Code Distance
Block Codes, Geometrically. Recall a block code is a function from

k-bit messages to n-bit encoded messages: C : {0,1}
k ! {0,1}

n

• C must be injective

Define C = C({0,1}
k

) to be the set of all codewords.

Example. k = 1,n = 3. Define C(b) = (b,b,b).

Decoding. To decode C(M), find the closest valid codeword x and take

S = C
°1

(x).

Definition. The code distance of C is the minimum (Hamming)

distance between any two valid codewords:

• d = minx,y2C dH (x,y)

Intuition. Larger code distances should be able to detect/correct more

errors.

18 / 26

=

Code Distance
Block Codes, Geometrically. Recall a block code is a function from

k-bit messages to n-bit encoded messages: C : {0,1}
k ! {0,1}

n

• C must be injective

Define C = C({0,1}
k

) to be the set of all codewords.

Example. k = 1,n = 3. Define C(b) = (b,b,b).

Decoding. To decode C(M), find the closest valid codeword x and take

S = C
°1

(x).

Definition. The code distance of C is the minimum (Hamming)

distance between any two valid codewords:

• d = minx,y2C dH (x,y)

Intuition. Larger code distances should be able to detect/correct more

errors.

18 / 26

Lower Bounds

Requirements for Detecting and Correcting
Detecting Requirement. Suppose C can detect errors of flipping up to

b bits. Then C has distance d ∏ b+1.

Correcting Requirement. Suppose C can correct errors of flipping up

to b bits. Then C has distance d ∏ 2b+1

20 / 26

↳
N

us can detected
b bits

error

corrupted

Proof by contraposition. %Y
Suppose dEb

consider

(1) A sends y , Breceives y Chorrors

(2) A sends X ,
B receives y (1berrors)

Bob cannot distinguish es error dele (2)

Requirements for Detecting and Correcting
Detecting Requirement. Suppose C can detect errors of flipping up to

b bits. Then C has distance d ∏ b+1.

Correcting Requirement. Suppose C can correct errors of flipping up

to b bits. Then C has distance d ∏ 2b+1

20 / 26

-

-

Do for Thursday.

Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code

of distance d?

21 / 26

Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code

of distance d?

Singleton Bound. 2
k ∑ 2

n°(d°1)
, hence n ∏ k+d°1

21 / 26

Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code

of distance d?

Singleton Bound. 2
k ∑ 2

n°(d°1)
, hence n ∏ k+d°1

Proof sketch.
• Consider the deleting the first d°1 bits of each codeword.

• Remaining codewords are still pair-wise distinct

• There are only 2
n°(d°1)

possible shorter bitstrings

21 / 26

Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code

of distance d?

Singleton Bound. 2
k ∑ 2

n°(d°1)
, hence n ∏ k+d°1

Hamming bound. 2
k ∑ 2

n
±Pb(d°1)/2c

f =0

°
n

f

¢
.

21 / 26

Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code

of distance d?

Singleton Bound. 2
k ∑ 2

n°(d°1)
, hence n ∏ k+d°1

Hamming bound. 2
k ∑ 2

n
±Pb(d°1)/2c

f =0

°
n

f

¢
.

Proof sketch.
• Codewords must be at distance d away

• Thus balls centered at codewords of radius b(d°1)/2c must be

disjoint

• Number of balls £ volume of each ball must be at most 2
n

21 / 26

Lower Bounds for Block Codes
Question. For what values of n,k,d is it possible to have a block code

of distance d?

Singleton Bound. 2
k ∑ 2

n°(d°1)
, hence n ∏ k+d°1

Hamming bound. 2
k ∑ 2

n
±Pb(d°1)/2c

f =0

°
n

f

¢
.

Question. These are impossibility results. What is possible?

21 / 26

Error Detection: Parity Bits
Question. How can we detect a single error?

Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1

• the parity of the string changes

Idea. Form C by adding an extra bit to message m that encodes the

parity of m

• the extra bit is called a parity bit
• which strings are valid codewords?

• the parity of valid codewords is always 1!

Example. k = 2, n = 3. What is d? How do we detect errors?

22 / 26

Error Detection: Parity Bits
Question. How can we detect a single error?

Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1

• the parity of the string changes

Idea. Form C by adding an extra bit to message m that encodes the

parity of m

• the extra bit is called a parity bit
• which strings are valid codewords?

• the parity of valid codewords is always 1!

Example. k = 2, n = 3. What is d? How do we detect errors?

22 / 26

Error Detection: Parity Bits
Question. How can we detect a single error?

Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1

• the parity of the string changes

Idea. Form C by adding an extra bit to message m that encodes the

parity of m

• the extra bit is called a parity bit
• which strings are valid codewords?

• the parity of valid codewords is always 1!

Example. k = 2, n = 3. What is d? How do we detect errors?

22 / 26

Error Detection: Parity Bits
Question. How can we detect a single error?

Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1

• the parity of the string changes

Idea. Form C by adding an extra bit to message m that encodes the

parity of m

• the extra bit is called a parity bit
• which strings are valid codewords?

• the parity of valid codewords is always 1!

Example. k = 2, n = 3. What is d? How do we detect errors?

22 / 26

Error Detection: Parity Bits
Question. How can we detect a single error?

Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1

• the parity of the string changes

Idea. Form C by adding an extra bit to message m that encodes the

parity of m

• the extra bit is called a parity bit
• which strings are valid codewords?

• the parity of valid codewords is always 1!

Example. k = 2, n = 3. What is d? How do we detect errors?

22 / 26

Parity Bit Example
Small Example. Consider k = 2, so

that n = 3 with parity bits.

• Messages {00,01,10,11}

• C = {000,011,101,110}

• What is the distance of C?

• How do we detect errors?

23 / 26

Parity Bit Example
Small Example. Consider k = 2, so

that n = 3 with parity bits.

• Messages {00,01,10,11}

• C = {000,011,101,110}

• What is the distance of C?

• How do we detect errors?

23 / 26

Parity Bit Example
Small Example. Consider k = 2, so

that n = 3 with parity bits.

• Messages {00,01,10,11}

• C = {000,011,101,110}

• What is the distance of C?

• How do we detect errors?

PollEverywhere Question

Consider the code C with k = 2 bit

messages and one parity bit. What

is the distance d of C?

pollev.com/comp526

23 / 26

Parity Bit Example
Small Example. Consider k = 2, so

that n = 3 with parity bits.

• Messages {00,01,10,11}

• C = {000,011,101,110}

• What is the distance of C?

• How do we detect errors?

23 / 26

Parity Bit Example
Small Example. Consider k = 2, so

that n = 3 with parity bits.

• Messages {00,01,10,11}

• C = {000,011,101,110}

• What is the distance of C?

• How do we detect errors?

23 / 26

Error Correction through Duplication
Suppose we want to correct a single error. How is this even possible?

Simple Solution. Duplicate each bit 3 times and send the duplicates!

• k = 1, n = 3

• C(b) = bbb

• How do we decode a message?

• View on Hamming cube!

24 / 26

Error Correction through Duplication
Suppose we want to correct a single error. How is this even possible?

Simple Solution. Duplicate each bit 3 times and send the duplicates!

• k = 1, n = 3

• C(b) = bbb

• How do we decode a message?

• View on Hamming cube!

24 / 26

Error Correction through Duplication
Suppose we want to correct a single error. How is this even possible?

Simple Solution. Duplicate each bit 3 times and send the duplicates!

• k = 1, n = 3

• C(b) = bbb

• How do we decode a message?

• View on Hamming cube!

24 / 26

Error Correction through Duplication
Suppose we want to correct a single error. How is this even possible?

Simple Solution. Duplicate each bit 3 times and send the duplicates!

• k = 1, n = 3

• C(b) = bbb

• How do we decode a message?

• View on Hamming cube!

Inefficiency. To correct a single error, we must triple the length of the

message?!

24 / 26

Error Correction through Duplication
Suppose we want to correct a single error. How is this even possible?

Simple Solution. Duplicate each bit 3 times and send the duplicates!

• k = 1, n = 3

• C(b) = bbb

• How do we decode a message?

• View on Hamming cube!

Inefficiency. To correct a single error, we must triple the length of the

message?!

A Puzzle. How can we correct a single error more efficiently?

• Don’t need to duplicate every bit!

• Idea: use parity checks on parts of the string to identify the index

where error occurred!

24 / 26

Next Time
• Finish error correcting codes!

• Start parallel algorithms!

25 / 26

Scratch Notes

26 / 26

