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Lecture 16: Error Correcting Codes
COMP526: Efficient Algorithms

Will Rosenbaum
Updated: November 26, 2024 University of Liverpool
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Announcements

1. Programming Assignment 2 posted

* Due 29 November == -\/\/L(S Fndu-\{
2. No Quiz This Week!
3. Attendance Code:

28959 1
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Meeting Goals

1. Finish discussion of data compression

¢ Discuss Burrows-Wheeler inverse analysis
¢ Recap of data compression

2. Give some remarks on Programming Assignment 2

3. Mini-unit on error correcting codes

° Introduce error correcting codes
* Define block codes and code distance
* Prove lower bounds for error detection and correction

* Introduce Hammingeodes  ThuSdoy
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Burrows-
Wheeler
Transform



Burrows-Wheeler Transform

From last time.
1. Start with an input string S
o §= banan
N Lefominak Aq ol
- C.
-(lt rs{' Q\\OM\O{&\.QU-( hen
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Burrows-Wheeler Transform

From last time.
1. Start with an input string S
* S=banana$

2. Form all cyclic shifts of S

b a n a n a §$
a n a n a $ b
n a n a $ b a
a n a $ b a n
n a $ b a n a
a $ b a n a n
$ b a n a n a
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Burrows-Wheeler Transform

From last time.

1. Start with an input string S

2. Form all cyclic shifts of S
3. Sort the cyclic shifts alphabetically

“ B e B e O

* S=banana$

T e BB e

P T L B e B

W

R oo
a n a §$
n a $ b
a $ b a
$ b a n
b a n a
a n a n
n a n a

$ b a n a
a $§ b a n
a n a $ b
a n a n a
b a n a n
n a n a $

B
»
o
o

a

T o e B

n

p M SO BB e

SudaR L gorﬁ\”vw&
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Burrows-Wheeler Transform

From last time.
1. Start with an input string S
* S=banana$
2. Form all cyclic shifts of S
3. Sort the cyclic shifts alphabetically
4. Return the last column

* B=annb$aa
T

b a n a n a §$ $
a n a n a $ b a
n a n a $ b a a
a n a $ b a n a
n a $ b a n a b
a $ b a n a n n
$ b a n a n a n

P BB & o

®“ B B PP O e

T B e B

P B P OB e

B oM e B

P P Lo BB
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Burrows-Wheeler Transform

From last time.
1. Start with an input string S
* S=banana$
2. Form all cyclic shifts of S
3. Sort the cyclic shifts alphabetically
4. Return the last column

* B=annb$aa

Claim. This process is reversible

¢ Given B, we can find the original input S.
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Inverse Burrows-Wheeler

1. Form character-index pairs

—\"foMS“’OfM( W{’ B

!

(a
(n
(n
(b
($
(a
(a

0)
1)
2)
3)
4)
5)
6)
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Inverse Burrows-Wheeler

1. Form character-index pairs

2. Sort pairs stably alphabetically by first character

(a
(n
(n
(b
($
(a
(a

0)
1)
2)
3)
4)
5)
6)

O WN - O

($
(a
(a
(a
(b
(n
(n

<
4)
0)
5)
6)
3)
1)
2)

OJQX VY- T %4
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Inverse Burrows-Wheeler

= 90N

Form character-index pairs
Sort pairs stably alphabetically by first character
Starting with $, use index as (sorted) index of next character

Repeat
banowo $

(a 0)
(n 1)
(n 2)
(b 3)
¢ 49
(a b)
(a 6)
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Inverse Burrows-Wheeler

1.

2.

3.

4. Repeat
(a 0)
(n 1
(n 2)
(b 3)
¢ 9
(a 5)
(a 6)

add W NN~ O

6

($
(a
(a
(a
(b
(n
(n

Form character-index pairs
Sort pairs stably alphabetically by first character
Starting with $, use index as (sorted) index of next character

4)
0)
5)
6)
3)
1)
2)

Question. Why does this work?
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Inverse Burrows-Wheeler

1. Form character-index pairs
2. Sort pairs stably alphabetically by first character
3. Starting with $, use index as (sorted) index of next character
4. Repeat
(a 0) o ¢ 49 $ b a a ,A
(o 1) 1 (a 0) @m@ &
(n 2) 2 (a 5) a n a $ b a n
b 3) 3 (a 6) —5]a2) n a n a §$ [b]
¢ 4 4 (b 3) (/] a n a n a §
(a 5) 5 (@ 1) n a n a $ b a
(a 6) 6 (@ 2) n a $ b a n a
. . . .
Question. Why do.es this wo.rk. 5}\5 ok xS
* cacharacter in B, consider c’s row :

JIPSU N U N

* where is ¢’'s next character in S? .
bs Wt Chad 1S &
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Inverse Burrows-Wheeler

1. Form character-index pairs

2. Sort pairs stably alphabetically by first character

3. Starting with $, use index as (sorted) index of next character

4. Repeat
(a 0) o ($ 4 $ b a n a n |a)®
(n 1 1 (a 0) a $§ b a n a|n]
@ 2) 2 (a 5) a n a $ b a|n[
(b 3) 3 (a 6) a n a n a $ |b|] ?
¢ 4 4 (b 3) a—n—a—n—s— (3| Eu
(a 5) 5 (@ 1) n a n a $ a
(a 6) 6 (@ 2) n a $ b a nla

Question. Why does this work? ( 5 Y )

* cacharacter in B, consider c’s row

* where is ¢’s next character in S?

* when we sort the last column, ¢’s next character ends up in ¢’s
original row!
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BWT Discussion

What do we know about the Burrows-Wheeler Transform?
* Running time ©(n) — "No;\\m_,“ O”\‘ﬂ @ (Vl" (ch n S
¢ encoding uses suffix sorting (future reference) g\oud'vuwv"

* decoding can be done in ©(n) time with counting sort
* decoding is simpler/faster!

¢ Typically slower than other methods
. N?S{ls access to entire text (or apply to smaller blocks)
. — MTF — RLE — Huffman has great compression! &

I G ~
“‘g:L Cun g
S;(‘c ¢ ‘Q"M’G&FAK

Hw"{"""-c‘“
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Summary of Compression

Huffman Variable-width, single-character (optimal in this case)
RLE Variable-width, multiple-character encoding

— LZW Adaptive, fixed-width, multiple-character encoding
Augments dictionary with repeated substrings

MTF Adaptive, transforms to smaller integers
should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF
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Summary of Compression

Huffman Variable-width, single-character (optimal in this case)
RLE Variable-width, multiple-character encoding

LZW Adaptive, fixed-width, multiple-character encoding
Augments dictionary with repeated substrings

MTF Adaptive, transforms to smaller integers
should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF

Going farther. Compression is an active area of research!

* Improved compression schemes can have immediate impact.

* Hutter Prize 5,000 euro per 1% improvement of compression of a
single 1GB English text file (from Wikipedia).

° made to encourage research in artificial intelligence &—
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Summary of Compression

Huffman Variable-width, single-character (optimal in this case)
RLE Variable-width, multiple-character encoding

LZW Adaptive, fixed-width, multiple-character encoding
Augments dictionary with repeated substrings

MTF Adaptive, transforms to smaller integers
should be followed by variable-width integer encoding

BWT Block compression method, should be followed by MTF

Going farther. Compression is an active area of research!

* Improved compression schemes can have immediate impact.

* Hutter Prize 5,000 euro per 1% improvement of compression of a
single 1GB English text file (from Wikipedia).

* made to encourage research in artificial intelligence
¢ what does compression have to do with AI?
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Programming
Assignment 2



Your Assignment

,E = oS wo§

Three Pieces:
* B= B[0..20) the correct solutions to the exam ~ piled (i
¢ expressed in binary 1 for true, 0 for false
¢ known only to your hacker friend
* M= M][0..10) the message your friend sends yoﬂ

¢ also expressed in binary
e A= A[0..20) the answers your record for the exam, in binary
Two Procedures:
e Encode the correct exam solutions B to a message M
* preformed by your hacker friend
* Decodethe message M to exam solutions A

\\
A
¢ performed by you during the exam . (u.& So
\[\(.,Q{

One Goal: Achieve the maximum guaranteed score. ' RO G

W st—Seade
20 —!max{dH(A,B)|B€ {0,1}20}1 oo ol oxanS
* dy(4 B) is Hamming distance = number of indices where

solutions differ
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Two Suggestions

1. Abstract away from algorithms and message semantics
° messages partition possible exams (B) ( b‘\)
* each message gives one solution A d L
* what should the “parts” havg in common?

o\ (;’:fj:ms o WY
X
Lssasld
q® 2 000 o R YoM
ol Llaws ager
'ﬁ” & \ M \Uod\\'t odee =)
Qoss W=\ Qaxntiun ok 1\7—(&;/:3,& s
CQ(J‘O,CA’ §0 Lo W pot Yok 15 lose



Two Suggestions

00 ol
1. Abstract away from algorithms and message semantics
° messages partition possible exams (B)
* each message gives one solution A \\
* what should the “parts” have in common? (O
Example. It is possible to guarantee a score 0f(1_va1'th only a
single bit message! (How?)

Mq)a\iiz_y :,L: -\_c —&& /LS > lb Q/\(\Q)OAJV
I o: % k0 7 S
- NG

WS . .
X Q_wc\.\‘(\(& '2 CQS?CV\-(& Q\ L eeC
A

. O &
g o — caspond (007 )

N E
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Two Suggestions

1. Abstract away from algorithms and message semantics
° messages partition possible exams (B)
* each message gives one solution A
* what should the “parts” have in common?

Example. It is possible to guarantee a score of 10 with only a
single bit message! (How?)
2. Consider concrete smaller cases
* what is special about 20 and 10?

* try solving the problem by hand for smaller cases: 2 questions,
1-bit message, etc.
T —

——F
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Error Correcting
Codes



Motivation: Noisy Communication

Implicit Assumptions. So far:
* Data is never corrupted

e Computer faithfully carries out correct instructions
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Motivation: Noisy Communication

Implicit Assumptions. So far:
* Data is never corrupted

e Computer faithfully carries out correct instructions SUN

Question. Are these assumptions justified? Q

(—l 20 SPu
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Motivation: Noisy Communication

Implicit Assumptions. So far:
* Data is never corrupted

e Computer faithfully carries out correct instructions

Question. Are these assumptions justified? L(:?u CPU
Weak Point. Communication

* reading from disk =— __dV

* writing to shared memory <— Mamary

* sending data between processors

* sending data between cities? countries? continents? planets?
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Motivation: Noisy Communication

Implicit Assumptions. So far:
* Data is never corrupted
e Computer faithfully carries out correct instructions

Question. Are these assumptions justified?
Weak Point. Communication

¢ reading from disk

* writing to shared memory

* sending data between processors

* sending data between cities? countries? continents? planets?

Question. How do we deal with errors in communication?
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Goals for Error Correction

Two Goals: Q—\(U« (\;0‘0

¢ Detect errorsin
communication @
* Given the sent (intended)
message M and received /\/\ \—) J

message M’, how can we N\
determine if M # M’ ™ 503
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Goals for Error Correction

Two Goals:
* Detect errors in
communication { A ‘ @
M 2

* Given the sent (intended) S

message M and received

message M’, how can we M'
determine if M # M’
* Correct errors automatically é

* Given received message M’,
how could we automatically —(:\ ~& M
determine the sent message \
M even if M # M? CNW .

® \:A’b V“IAHC ax“7/
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Goals for Error Correction

Two Goals:
* Detect errors in
communication
* Given the sent (intended)
message M and received
message M’, how can we
determine if M # M’
* Correct errors automatically
* Given received message M’,
how could we automatically
determine the sent message
M even if M’ # M?
Question. How much noise can
the system tolerate?

* Some redundancyis
necessary.

(
Obseuadion. Cont

Ao awnyfng V/
w ol e ed, WS-

Cec\w\:\c&mu/
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. S“‘N\U‘ g <&
Goals for Error Correction  /~ * yu 3!

Two Goals: P‘\C\d’ < —

* Detect errors in
communication

* Given the sent (intended)
message M and received
message M’, how can we
determine if M # M’

e Correct errors automatically

* Given received message M’,
how could we automatically
determine the sent message
M even if M’ # M?

Question. How much noise can
the system tolerate?

* Some redundancyis
necessary.

B b O b
PollEverywhere Question

Suppose we wish to send a string S
of size 100 bits. How many
additional bits must we send to
detect a 1 bit error in the
transmitted message?

pollev.com/comp526
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Goals for Error Correction

Two Goals:
* Detect errors in
communication
* Given the sent (intended)
message M and received
message M’, how can we
determine if M # M’
e Correct errors automatically
* Given received message M’,
how could we automatically
determine the sent message
M even if M’ # M?
Question. How much noise can
the system tolerate?

* Some redundancyis
necessary.

PollEverywhere Question

Suppose we wish to send a string S

of size 100 bits. How many

additional bits must we send to
offect . .

detect a 1 bit error in the

transmitted message?

pollev.com/comp526
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Modeling Errors
and Correction



Model & Block Codes

) v\
Communcation Model. O,N\ LUMV\ ‘D"\' 5H =

* Goal: send a text S€ {0,1}*
(bitstream) across a communication
channel

16/26



Model & Block Codes

Communcation Model.
* Goal: send a text S€ {0,1}*
(bitstream) across a communication
channel

et 0 ( (0 U] ooo |\

° Any bit transmitted through the
channel might flip L\J
* 0—lorl—0
° noerasures or insertions (lﬁ\ L o\ QlL|oc0o to\
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Model & Block Codes

Communcation Model.

* Goal: send a text S€ {0,1}*
(bitstream) across a communication
channel

° Any bit transmitted through the
channel might flip
* 0—lorl—0
® no erasures or insertions
* To cope with errors:

* compute and send an
encoded|bitstream C(S)
* receiver decodes Cto get S

.Y
o0 (Ll O
T
o (ol 09
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Model & Block Codes

Communcation Model. Block Codes. Assumptions
* Goal: send a text S€ {0,1}* * Messages consists of fixed sized
(bitstream) across a communication blocks
Clauae * k=messagelength
* Any bit transmitted through the ° me{0,1}*
channel might flip

* Encode each message separate as
* 0—1lorl—0 C(m)E{O,l}"

® no erasures or insertions « C(m) is codeword for m

* To cope with errors: ¢ nis the block length
————

* compute and send an
encoded bitstream C(S)
* receiver decodes C to get S

v i k|

enL—
s 1>
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Hamming Distance

Definition. Given two texts

x,y € {0,1}", the Hamming
distance dp (x, y) between x and y
is the number of indices at which x
and y differ.
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Hamming Distance

Definition. Given two texts

n .
Yy 0, 1), ne Earmriing PollEverywhere Question

distance d(x, y) between x and y ; ) -
is the number of indices at which x What is the Hamming distance
between 1001011001 and

and y differ.
10110101017

lO\
lo \ol

\// A
% = C&H(‘ﬁ(j> pollev.com/comp526
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Hamming Distance

Definition. Given two texts

x,y€1{0,1}", the Hamming * Hamming cube of dimension
distance dp (x, y) between x and y nis the set of all bit strings x of
is the number of indices at which x length n
and y differ. * xand yare neighbors if they
differ on exactly one bit
Geometric View. Hamming O I
distance allows us to think about W= ( o
binary strings geometrically. lo— I
— < 2 ( (
7 \(‘O n N 0o — ol
o\0 "'@g (
(
=D (00——(——(0|

Coo)—- 00|
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Hamming Distance

Definition. Given two texts

x,y€1{0,1}", the Hamming * Hamming cube of dimension

distance dp (x, y) between x and y nis the set of all bit strings x of

is the number of indices at which x length n

and y differ. * xand yare neighbors if they
differ on exactly one bit

Geometric View. Hamming * Hamming ball of radius d

distance allows us to think about centered at x contains all

binary strings geometrical bitstrings y whose Hamming

distance from x is at most d.

| =l @ W\
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Code Distance

Block Codes, Geometrically. Recall a block code is a function from
k-bit messages to n-bit encoded messages: C: {0,1}* — {0,1}"

* Cmust be injective
Define 6 = C({0, l}k) to be the set of all codewords.
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Code Distance

Block Codes, Geometrically. Recall a block code is a function from
k-bit messages to n-bit encoded messages: C: {0,1}* — {0,1}"

e Cmust be injective
Define 6 = C({0, l}k) to be the set of all codewords.

Example. k= 1,n=3. Define C(b) = (b, b, b).

= Ly

Clo) = O
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Code Distance

Block Codes, Geometrically. Recall a block code is a function from
k-bit messages to n-bit encoded messages: C: {0,1}* — {0,1}"

e Cmust be injective
Define 6 = C({0, l}k) to be the set of all codewords.
Example. k=1,n=3. Define C(b) = (b, b, b).

Decoding. To decode C(M), @ the closest valid codeword x and take
10

§=CW. (e Oy

&~ L

Clo) = O
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Code Distance

Block Codes, Geometrically. Recall a block code is a function from

k-bit messages to n-bit encoded messages: C: {0,1}* —

* Cmust be injective
Define 6 = C({0, l}k) to be the set of all codewords.

Example. k= 1,n=3. Define C(b) = (b, b, b).

Decoding. To decode C(M), find the closest valid codeword x and take
S=C(x).

Definition. The code distance of Cis the
distance between any two valid codewords:

irfimum (Hamming)

°* d= minx,ye%" dp(x, V)
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Code Distance

Block Codes, Geometrically. Recall a block code is a function from
k-bit messages to n-bit encoded messages: C: {0,1}* — {0,1}"

* Cmust be injective
Define 6 = C({0, l}k) to be the set of all codewords.
Example. k=1,n=3. Define C(b) = (b, b, b).

Decoding. To decode C(M), find the closest valid codeword x and take
S=C(x).

Definition. The code distance of C is the minimum (Hamming)
distance between any two valid codewords:

°* d= minx,ye%’" dp(x, V)

Intuition. Larger code distances should be able to detect/correct more
errors.

18/26



Lower Bounds



Requirements for Detecting and Correcting

Detecting Requirement. Suppo an detect errors of flipping up to
bbits. Then Chas distance|d = b+ 1.

/\/\(\/\9 Con d\b\*d’h&
Yy Uo e
Co(\(\'*gr“k
w %

Past Oy contnuschon -
Somppuse & tb
Consedul

Zu) A sods Y, Beecas Y L‘Qws\

! L
@) B swbs x, Bleus 3 (LY

Xq

Bdo coamnst  Alsknguis Cor> AV d&k@;&i (V)e0/26



Requirements for Detecting and Correcting

Detecting Requirement. Suppose C can detect errors of flipping up to
bbits. Then Chas distance d = b+ 1.

Correcting Requirement. Suppose C can correct errors of flipping up
to b bits. Then C has distance d = 2b+ 1

———

Vo [ac /Wwﬁé“( '
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Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?
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Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1
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Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1

Proof sketch.
* Consider the deleting the first d — 1 bits of each codeword.
* Remaining codewords are still pair-wise distinct

* There are only 2"~ @~D possible shorter bitstrings
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Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1

L(d-1)/2] (n)

Hamming bound. 2* < 2"/ Yo 7)-

21/26



Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1

L(d-1)/2] (n)

Hamming bound. 2¥ <2"/¥. 7)-

=0
Proof sketch.
* Codewords must be at distance d away
e Thus balls centered at codewords of radius |(d— 1)/2] must be
disjoint
* Number of balls x volume of each ball must be at most 2"

21/26



Lower Bounds for Block Codes

Question. For what values of n, k, d is it possible to have a block code
of distance d?

Singleton Bound. 2X < 27@-D hence n=k+d—1

Hamming bound. 2* < 2"/ Z]Lc(zdo_l)/zJ (}t)

Question. These are impossibility results. What is possible?

21/26



Error Detection: Parity Bits

Question. How can we detect a single error?
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Error Detection: Parity Bits

Question. How can we detect a single error?
Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1
* the parity of the string changes
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Error Detection: Parity Bits

Question. How can we detect a single error?
Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1

* the parity of the string changes
Idea. Form C by adding an extra bit to message m that encodes the
parity of m

¢ the extra bit is called a parity bit

* which strings are valid codewords?
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Question. How can we detect a single error?
Obsevation. If a single bit gets flipped, the number of 1s increases or

decreases by exactly 1

* the parity of the string changes
Idea. Form C by adding an extra bit to message m that encodes the
parity of m

¢ the extra bit is called a parity bit

* which strings are valid codewords?
¢ the parity of valid codewords is always 1!
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Error Detection: Parity Bits

Question. How can we detect a single error?
Obsevation. If a single bit gets flipped, the number of 1s increases or
decreases by exactly 1

* the parity of the string changes
Idea. Form C by adding an extra bit to message m that encodes the
parity of m

¢ the extra bit is called a parity bit

* which strings are valid codewords?

¢ the parity of valid codewords is always 1!

Example. k=2, n=3. What is d? How do we detect errors?

22/26



Parity Bit Example

Small Example. Consider k=2, so
that n = 3 with parity bits.

* Messages {00,01,10,11}
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Parity Bit Example

Small Example. Consider k=2, so
that n = 3 with parity bits.

* Messages {00,01,10,11}
* ¢ ={000,011,101,110}
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Parity Bit Example

Small Example. Consider k=2, so

et o= 8wt jpeteliy (i, PollEverywhere Question

* Messages {00,01,10, 11} Consider the code C with k=2 bit
* % =1000,011,101,110} messages and one parity bit. What
is the distance d of C?

pollev.com/comp526
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Parity Bit Example

Small Example. Consider k=2, so
that n = 3 with parity bits.

* Messages {00,01,10,11}
e ¥ =1{000,011,101,110}
* What is the distance of C?
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Parity Bit Example

Small Example. Consider k=2, so
that n = 3 with parity bits.

* Messages {00,01,10,11}
e ¥ =1{000,011,101,110}
* What is the distance of C?

* How do we detect errors?

23/26



Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
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Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3
e C(b)= bbb

* How do we decode a message?
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Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3
* C(b) = bbb
* How do we decode a message?

* View on Hamming cube!
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Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3
e C(b)= bbb

* How do we decode a message?

Inefficiency. To correct a single error, we must triple the length of the
message?!
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Error Correction through Duplication

Suppose we want to correct a single error. How is this even possible?
Simple Solution. Duplicate each bit 3 times and send the duplicates!

e k=1,n=3
e C(b)= bbb

* How do we decode a message?

Inefficiency. To correct a single error, we must triple the length of the
message?!

A Puzzle. How can we correct a single error more efficiently?
* Don’t need to duplicate every bit!

e Idea: use parity checks on parts of the string to identify the index
where error occurred!
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Next Time

* Finish error correcting codes!

e Start parallel algorithms!
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Scratch Notes
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