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Announcements

1. Programming Assignment 2 posted soon
2. Quiz 5 due Friday

* Covers string matching
® 2 questions (multiple choice)
® Usual rules apply

3. Attendance Code:
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Meeting Goals

Discuss data compression!
* Introduce the data compression task
* Define character encoding and related terminology
* Define prefix codes
* Construct Huffman codes

* Prove optimality of Huffmann codes
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Data
Compression



The Story So Far

Emphasis. How do we process data?
¢ Data structures
* How can we organize data perform primitive operations
efficiently?
* Fundamental operations on arbitrary data:
® sorting
* string matching

5/30



The Story So Far

Emphasis. How do we process data?
¢ Data structures

* How can we organize data perform primitive operations
efficiently?

* Fundamental operations on arbitrary data:
® sorting
° string matching
A New Question. How do we store and transmit data efficiently?
New Topics. Fundamental problems
1. Data Compression (starting today)
* how to store data using as little space as possible
2. Error Correction (following topic)
* howto
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The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}
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* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}

* encoding: An algorithm E that maps source texts to coded texts
* E: Z; — Z*C

* decoding: An algorithm D that maps encoded texts to decoded texts
* D:Z;—3¢

Goal. Represent S using as little space as possible.
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The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data C e ZE that is actually stored/transmitted
* typically have ¢ = {0, 1}
° encoding: An algorithm E that maps source texts to coded texts
* E:Zy -3
* decoding: An algorithm D that maps encoded texts to decoded texts
* D:2t—2%
Lossy vs. Lossless Compression.
* Lossless Compression. decoding recovers original text: D(E(S)) = S
¢ Examples: zip (general archive), flac (audio), tiff (image)
* Lossy Compression. decoding approximates original text: D(E(S)) = S
* Examples: mp3 (audio), jpg (image), mpg (video)

Our Focus: lossless compression!

6/30



The Quality of an Encoding Scheme

Goals of Encoding

Efficiency of encoding/decoding
resilience to errors/noise in transmission
security (encryption)

integrity (detect modifications)

size
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The Quality of an Encoding Scheme

Goals of Encoding
* Efficiency of encoding/decoding
* resilience to errors/noise in transmission
* security (encryption)
* integrity (detect modifications)
* size
Our focus. Minimize the size of the encoded text.

* data compression
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Our focus. Minimize the size of the encoded text.
* data compression
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The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.
* data compression

Measure of quality. The compression ratio:

|Cl-log|Zcl  zc=f0,1} |Cl

|S-log|Zsl| - [S|-log|Xs]

Question. Why all of the log|X|s?

* [logo] is the minimum number of bits needed to represent o
distinct values (in binary)

e there are 2? distinct binary strings of length b
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The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.

* data compression

Measure of quality. The compression ratio:

|Cl-log|Zcl  zc=f0,1} |Cl

|S-log|Zsl| - [S|-log|Xs]

Interpretation. Compression ratios:
<1 = compression
¢ smaller values are better
=1 = no compression
>1 =— encoded text is larger(?!)

¢ this is sometimes unavoidable ... foreshadowing to next week
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Data Compression Roadmap

Questions. When, how, and how much can we compress?

* PartI: Exploiting non-uniform character frequencies
* Huffman Codes

* Interlude: Limits of data compression

* Part II: Exploiting repetition in texts

* Run-length encoding
* Lempel-Ziv-Welch (LZW) encoding

* PartIII: Creating repetition in texts

* Move-to-front transform
* Burrows-Wheeler transform
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Character
Encoding



Question. How do computers encoded English language text?
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Question. How do computers encoded English language text?

Historical answer. ASCII use 7 bits per character

e all characters treated equally

e 27 =128 possible characters
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Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

¢ all characters treated equally

¢ 27 =128 possible characters
Modern answer. Unicode

* ~ 150,000 representable characters (different scripts, emoji, etc.)

¢ several encoding schemes character — bits

¢ different characters’ representations can have different lengths

* e.g., ASCII characters represented by 8 bits
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Historical answer. ASCII use 7 bits per character
e all characters treated equally

e 27 =128 possible characters

Modern answer. Unicode
* ~ 150,000 representable characters (different scripts, emoji, etc.)
¢ several encoding schemes character — bits
¢ different characters’ representations can have different lengths
* e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E: X5 — X,
e typically, |Zs| > |Z¢| (= 2), so need several bits per character
¢ for ce Zg, call E(c) the codeword of ¢

* to encode a text, encode individual characters and concatenate
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Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

e all characters treated equally

e 27 =128 possible characters

Modern answer. Unicode
* ~ 150,000 representable characters (different scripts, emoji, etc.)
* several encoding schemes character — bits
¢ different characters’ representations can have different lengths
* e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E: X5 — Z /.
e typically, |Zs| > |Z¢| (= 2), so need several bits per character
e for ce Xg, call E(c) the codeword of ¢
¢ to encode a text, encode individual characters and concatenate
Fixed vs. Variable Length Encoding
* fixed length encoding —> all codewords have the same length
(e.g. ASCII)
* variable length encoding —> different lengths for different
codewords (e.g. Unicode)

10/30



Fixed Length Codes

Advantages of fixed length codes
* fast decoding
* use a lookup-table
® can be as fast as a single array access
* local encoding
¢ if character length is B, ith character starts at index i- B
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Fixed Length Codes

Advantages of fixed length codes
* fast decoding
* use a lookup-table
® can be as fast as a single array access
* local encoding
¢ if character length is B, ith character starts at index i- B
Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100
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Fixed Length Codes

Advantages of fixed length codes
* fast decoding
* use a lookup-table
® can be as fast as a single array access
* local encoding
¢ if character length is B, ith character starts at index i- B
Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100

Disadvantages of fixed length codes
¢ Inflexible (non-extensible)
* how can we represent this awesome new emoji???
* Space inefficient
* infrequently used characters require as much space as common
characters

° common characters are longer than they need to be
11/30



Variable Length Codes

Variable Length
Advantages:

* more flexibility

* compressibility?
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Variable Length Codes

Variable Length
Advantages:

e more flexibility
* compressibility?
An old idea. Morse Code

* encode characters as
“dots” and “dashes”

°* more common
characters are shorter

10N PXOVOZZIrRu—IOTMMITNO®T>
(1
4l
gel
Io

N<XX=<C
Illooo
l..l:i
.Iill
i |
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Variable Length Codes

Variable Length
Advantages:

e more flexibility
* compressibility?
An old idea. Morse Code

* encode characters as
“dots” and “dashes”

°* more common
characters are shorter

Question. How many
characters in the Morse
code encoding?

10N PXOVOZZIrRu—IOTMMITNO®T>
(1
4l
gel
Io

N<XX=<C
eo0o
o0

°
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Codes Misbehaving

PollEverywhere

Consider the following code

c ‘a‘n‘ b ‘ s
E(c) | 0| 10 | 110 | 100

What is the original text
corresponding to the encoded
text 11001001002

pollev.com/comp526
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Codes Misbehaving

Question. What was the issue with this PollEverywhere
code? Consider the following code

* The relationship between
E(n) =10 and E(s) = 100

* If weread 10 in the encoded

c ‘a‘n‘ b ‘ s
E(c) | 0| 10 | 110 | 100

text, are we done reading a What is the original text
character? .
corresponding to the encoded
text 11001001002

pollev.com/comp526
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Codes Misbehaving
Question. What was the issue with this PollEverywhere

code? Consider the following code

* The relationship between
E(n) =10 and E(s) = 100
* Ifweread 10 in the encoded
text, are we done reading a
character?

c ‘a‘n‘ b ‘ s
E(c) | 0| 10 | 110 | 100

What is the original text

corresponding to the encoded
* “Reasonable” codes should avoid oyt 11001001002
this ambiguity!
* We should always know when
we’re done reading a character.

pollev.com/comp526
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Prefix Codes and Tries

Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of another code
Example.—- | A | E | N | 0| T]| .

E(c) | 01 | 101 | 001 | 100 | 11 | 000
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Prefix Codes and Tries

Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of another code

[ AJE|N]O]|T]| .

01 | 101 | 001 | 100 | 11 | 000

c
Example. E©

Representation of prefix codes: the trie data structure!
* binary tree /.\
* one leaf for each character /.\/ )

edges labeled 0 or 1

0
* codewords = paths to leaves /I\/ ' /O\/
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Prefix Codes and Tries

Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of another code

c |[A|E|N]O]|T]| .,
E(c) | 01 | 101 | 001 | 100 | 11 | 000

Example.

Representation of prefix codes: the trie data structure!
* binary tree /.\
* one leaf for each character /.\/ )

edges labeled 0 or 1

0
* codewords = paths to leaves /I\/ ' /O\/

Encoding. Use the table: AN, ANT
Decoding. Use the trie: 111000001010111
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Trie it Yourself

PollEverywhere Question

What is the result of using the trie
on the right to decode the message:
1100100100111

pollev.com/comp526

15/30


https://pollev.com/comp526

Fixed, Static, Adaptive

Note. In order to use a prefix code, we must also store the codewords!
¢ fixed coding uses the same code for all strings
* e.g. ASCII, Unicode encodings (UTF-8)

e static coding uses the same codeword for each instance of a
character in a text

¢ codewords may different for different texts
* must store/transmit the codewords as well as the encoded text!

* adaptive coding may change the codewords as the text is
processed

* codewords are stored implicitly within the coded message
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Variable Length and Compression

Question. How can variable length encoding help with compression?
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Variable Length and Compression

Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
e X={AGH!}
* Fixed length encoding:
c | a6 |H|!
E(0) | 00 |01 |10 | 11
— Total encoded length = 30 (15 chars at 2 bits per char)
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Variable Length and Compression

Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
e X={AGH!}
* Fixed length encoding:
c | a6 |H|!
E(0) | 00 |01 |10 | 11
— Total encoded length = 30 (15 chars at 2 bits per char)

¢ Exploiting frequency of A and G
c |[Ale| H |
E(© | 0] 10 | 110 | 111
— Total encoded length = 22
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Variable Length and Compression

Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
e X={AGH!}
* Fixed length encoding:
c | a6 |H|!
E(0) | 00 |01 |10 | 11
— Total encoded length = 30 (15 chars at 2 bits per char)

¢ Exploiting frequency of A and G
c |[Ale| H |
E(© | 0] 10 | 110 | 111
— Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?
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Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.

Find the prefix code E for X that minimizes Y. w(c) |E(c)|
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Example Weights. Take w(c) to be the number of occurrences of cin S.
* note that Y. w(c) |E(c)| = |E(S)|

* so solving optimization problem gives the shortest possible
(prefix code) encoding of S!
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Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.
Find the prefix code E for X that minimizes Y. w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of cin S.
* note that Y. w(c) |E(c)| = |E(S)|

* so solving optimization problem gives the shortest possible
(prefix code) encoding of S!

Question. Can we solve the optimization problem?
e [ suppose we can with brute force: check all prefix codes
® runs in exponential time in |Z|

e Can we solve it efficiently?

19/30



Huffman Coding: Greed is Good

Idea. Build the character trie greedily from the leaves up.
¢ Prefix codes are binary trees with leaves labeled by =
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Huffman Coding: Greed is Good

Idea. Build the character trie greedily from the leaves up.

¢ Prefix codes are binary trees with leaves labeled by =
* Maintain a collection A of active vertices
* Initially Ais set of leaves, labeled with
1. acharacterce X
2. the weight w(c)
* While |A] > 1:
uand v are two lightest vertices
add parent p to uand v
set w(p) = w(u) + w(v)
add pto A remove u, v

= 89 0 =
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Huffman Coding: Greed is Good

Idea. Build the character trie greedily from the leaves up.

¢ Prefix codes are binary trees with leaves labeled by =
* Maintain a collection A of active vertices
* Initially Ais set of leaves, labeled with
1. acharacterce X
2. the weight w(c)
* While |A] > 1:
1. uand vare two lightest vertices
2. add parent pto uand v
3. set w(p) = w(u) + w(v)
4. add pto A, remove u, v

Example.
* 2={ABCDE
* weights = {0.25,0.15,0.1,0.1,0.4}
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LOSSLESS Example

Example. Find the Huffman encoding for the text LOSSLESS.
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LOSSLESS Example

Example. Find the Huffman encoding for the text LOSSLESS.

Three Steps:
1. Compute frequency counts w(c)
2. Build Huffman tree

3. Write Huffman code from the tree
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Huffman Analysis: Greed Works

Theorem

Given alphabet X and weight function w: X — Rx, the Huffman coding
schemes gives the minimum weighted codeword length
C(E) =Y cex w(c) - |E(c)| among all prefix codes.
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Huffman Analysis: Greed Works

Theorem

Given alphabet X and weight function w: X — Rx, the Huffman coding
schemes gives the minimum weighted codeword length

C(E) =Y ces w(0) - |E(c)| among all prefix codes.

Proof sketch. Induction on ||

Let E* be an optimal encoding/trie
Claim: 3 sibling leaves x, y at max depth
Swap x and y for two min weight leaves, a, b

Optimal code for X' = 2\ {g, b} U {abl} gives optimal
code for X (verify this!)

By inductive hypothesis, Huffman gives optimal code
for &’

So we get an optimal code for = g
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Huffman Computational Efficiency

Question. For an alphabet of size m = |Z| and weights w, how
efficiently can we build the Huffman code?

* Maintain a collection A of active vertices
¢ Initially A is set of leaves, labeled with
1. acharacterceX
2. the weight w(c)
* While |A] > 1:
1. uand vare two lightest vertices
2. add parent pto uand v
3. set w(p) = w(w) + w(v)
4. add pto A remove u, v

¢ Construct the codeword table

23/30



Tie Breaking Rules

So far we have two ambiguities in our Huffman trie description:
1. Which child is right/left child of the parent?
2. What do we do if weights are tied?
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Tie Breaking Rules

So far we have two ambiguities in our Huffman trie description:
1. Which child is right/left child of the parent?
2. What do we do if weights are tied?

Conventions.
e Smaller weight child is on the left

* All ties broken by earliest character in alphabetical order

¢ for internal vertices, the one containing the alphabetically first
character as a descendant is on the left
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Huffman and
Entropy



A Thought Experiment

Suppose I have an alphabet X~ = {¢}, ¢, ..., ¢;} and I choose a character
¢; at random to transmit

* each ¢; is chosen with probability p;.
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A Thought Experiment

Suppose I have an alphabet X~ = {¢}, ¢, ..., ¢;} and I choose a character
¢; at random to transmit

* each ¢; is chosen with probability p;.

Idea. Think of p; as sub-intervals of [0, 1].
* Qutcome is a random point x in [0, 1]
* ¢; corresponds to the interval containing x

* Use binary search to find the interval!
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A Thought Experiment

Suppose I have an alphabet X~ = {¢}, ¢, ..., ¢;} and I choose a character
¢; at random to transmit

each c; is chosen with probability p;.

Idea. Think of p; as sub-intervals of [0, 1].

Outcome is a random point x in [0, 1]
¢; corresponds to the interval containing x
Use binary search to find the interval!

If the interval has width p; need log(1/p;) queries to determine
interval

The expected (average) number of queries is then

J’Zf(Pl» pP2,..., pn) = Z;lzl pllog(%)
/C is the entropy of the distribution over X
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Properties of Entropy

Setup. We choose elements from X = {¢}, ¢, ..., ¢;} randomly, each ¢;
chosen with probability p;.

One can show:

* Entropy . is a lower bound on the average number of bits
needed to transmit a random character from X
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Setup. We choose elements from X = {¢}, ¢, ..., ¢;} randomly, each ¢;
chosen with probability p;.

One can show:

* Entropy . is a lower bound on the average number of bits
needed to transmit a random character from X

* Ifwe use a Huffman encoding of X

¢ weights w(c;) = p;
¢ transmit the Huffman codeword E(c;)

Then the average length ¢(E) of the transmitted word satisfies
A <VCE)<AHA+1
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Properties of Entropy

Setup. We choose elements from X = {¢}, ¢, ..., ¢;} randomly, each ¢;
chosen with probability p;.

One can show:

* Entropy . is a lower bound on the average number of bits
needed to transmit a random character from X

* Ifwe use a Huffman encoding of X

¢ weights w(c;) = p;
¢ transmit the Huffman codeword E(c;)

Then the average length ¢(E) of the transmitted word satisfies
A <VCE)<AHA+1

Conclusion. Huffman coding gives (nearly) the best possible average
compression for randomly generated texts!
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Emprical Entropy

Definitions. For a fixed string S over alphabet Z = {¢}, ¢, ..., ¢}, we
define the relative frequency of character c; in S to be

# occurrances of ¢; in S
pi=
N

The empirical entropy of S is then

JZfb(ED = Jz?(171;l92v---,lh7)-
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Emprical Entropy

Definitions. For a fixed string S over alphabet Z = {¢}, ¢, ..., ¢}, we
define the relative frequency of character c; in S to be

# occurrances of ¢; in S
pi=
N

The empirical entropy of S is then
JZfb(ED = Jz?(171;l92v---,lh7)-

The length of the Huffman encoded text C = E(S) is

g n
|Cl =) 1Sla |E(c))l = n)_ pil E(c))| = né(E).
i=1 =1
Applying the previous slide gives #(S)n < |C| < (A (S) + 1) n.
* Entropy and Huffman coding length are intimately connected
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Next Time

More Compression!
* Limits of Compressibility
e Compressing Repetitive Texts
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Scratch Notes
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