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Lecture 13: Data Compression |

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: November 14, 2024 University of Liverpool
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Announcements

1. Programming Assignment 2 posted soon &
2. Quiz 5 due Friday

* Covers string matching
® 2 questions (multiple choice)
® Usual rules apply

3. Attendance Code:

5086872
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Meeting Goals

Discuss data compression!
* Introduce the data compression task
* Define character encoding and related terminology
* Define prefix codes
* Construct Huffman codes

* Prove optimality of Huffmann codes
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Data
Compression



The Story So Far

Emphasis. How do we process data?
¢ Data structures
* How can we organize data perform primitive operations
efficiently?
* Fundamental operations on arbitrary data:
® sorting
* string matching
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The Story So Far

Emphasis. How do we process data?
¢ Data structures

* How can we organize data perform primitive operations
efficiently?

* Fundamental operations on arbitrary data:
® sorting
° string matching
A New Question. How do we store and transmit data efficiently?
New Topics. Fundamental problems
1. Data Compression (starting today)
* how to store data using as little space as possible

2. Error Correction (following topic)

* howto owbo Moiicuk\\/ ddext and tottect exvore W\ 0w Ao
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The Data Compression Task

* source text: string Se Z; to be stored/transmitted 0\\0““\0 L\,
* Xgissome alphabet, e.g., Roman alphabet i c C\EC\U&
* coded text: encoded data Ce X7, that is actually stored/transmitted O\\ M\—
* typically have ¢ = {0, 1}

Terminology.

l
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The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}

* encoding: An algorithm E that maps source texts to coded texts
A L
* E:Z -2
* decoding: An algorithm D that maps encoded texts to decoded texts
.Yk *
* D:X;— 2
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The Data Compression Task

Terminology.

* source text: string S€ Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet

* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}

* encoding: An algorithm E that maps source texts to coded texts
* E: Z; — Z*C

* decoding: An algorithm D that maps encoded texts to decoded texts
* D:Zp—Z¢

Goal. Represent S using as little space as possible.
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The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}
* encoding: An algorithm E that maps source texts to coded texts
DD 5
* decoding: An algorithm D that maps encoded texts to decoded texts
* D:Zp—Z¢
Lossy vs. Lossless Compression.
* Lossless Compression. decoding recovers original text:
° Examples: zip (general archive), f’lﬁ(audio), ﬁ (image)
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The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}
* encoding: An algorithm E that maps source texts to coded texts
* E: Z; — ZE
* decoding: An algorithm D that maps encoded texts to decoded texts
* D:Zp—Z¢
Lossy vs. Lossless Compression.
* Lossless Compression. decoding recovers original text: D(E(S)) = S
* Examples: zip (general archive), flac (audio), tiff (image)
* Lossy Compression. decoding approximates original text:| D(E(S)) = S

* Examples: mp3 (audio), jpg (image), mpg (video)
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The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data C e ZE that is actually stored/transmitted
* typically have ¢ = {0, 1}
° encoding: An algorithm E that maps source texts to coded texts
* E:Zy—Z2L
* decoding: An algorithm D that maps encoded texts to decoded texts
* D:2t—2%
Lossy vs. Lossless Compression.
* Lossless Compression. decoding recovers original text: D(E(S)) = S
* Examples: zip (general archive), flac (audio), tiff (image)
* Lossy Compression. decoding approximates original text: D(E(S)) = S
* Examples: mp3 (audio), jpg (image), mpg (video) J

Our Focus: lossless compression!
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The Quality of an Encoding Scheme

Goals of Encoding

J

e resilience to errors/noise in transmission

* Efficiency of encoding/decoding

* security (encryption)

* integrity (detect modifications)

° SLe
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The Quality of an Encoding Scheme

Goals of Encoding
* Efficiency of encoding/decoding
* resilience to errors/noise in transmission
* security (encryption)
* integrity (detect modifications)
* size
Our focus. Minimize the size of the encoded text.

* data compression
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The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.
* data compression

Measure of quality. The compression ratio:

|Cl-loglZcl  zc=i0,1} |Cl

|S-log|Zsl| - [S|-log|Xs]
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The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.
* data compression

Measure of quality. The compression ratio:

|Cl-loglZcl  zc=i0,1} |Cl

|S-log|Zsl| - [S|-log|Xs]

Question. Why all of the log|X|s?
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The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.

* data compression @/\CDC&US‘
Measure of quallty The com&r@sgzogomtlo Vext
™ C.\V“ } A ot
Cl- logIch 2c={0,1} 19

¥)

N %t
W) Uoky €
Question. Why all of the log|XZ|s? QQN\* ) 55‘2(5( gyf\q VAR I

* [logo] is the minimum number of bits needed to represent o
distinct values (in binary)

e there are 2? distinct binary strings of length b

o~ 4 7b \,(, uP o ook Chars.
c | b bds
= l(ﬂj 0o -
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The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.

* data compression

Measure of quality. The compression ratio:

|Cl-loglZcl  zc=i0,1} |Cl

|S-log|Zsl| - [S|-log|Xs]

Interpretation. Compression ratios:
<1 = compression
¢ smaller values are better
=1 = no compression
>1 — encoded text is larger(?!)

¢ this is sometimes unavoidable ... foreshadowing to next week
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Data Compression Roadmap

Questions. When, how, and how much can we compress?

* PartI: Exploiting non-uniform character frequenciesl
* Huffman Codes

* Interlude: Limits of data compression

* Part II: Exploiting repetition in texts

* Run-length encoding
* Lempel-Ziv-Welch (LZW) encoding

* PartIII: Creating repetition in texts

* Move-to-front transform
* Burrows-Wheeler transform

8/30



Character
Encoding



Question. How do computers encoded English language text?
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Question. How do computers encoded English language text?

Historical answer. ASCII use 7 bits per character

¢ all characters treated equally

e 27 =128 possible characters
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Question. How do computers encoded English language text?

Historical answer. ASCII use 7 bits per character ,? A
¢ all characters treated equally \K& \‘\
e 27 =128 possible characters V\q

Modern answer. Unicode
* ~ 150,000 representable characters (different scripts, emoji, etc.)
¢ several encoding schemes character — bits
¢ different characters’ representations can have different lengths
° e.g., ASCII characters represented by 8 bits

DSt Longhls
ol OFF
Me(S -
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Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character
¢ all characters treated equally

e 27 =128 possible characters

Modern answer. Unicode
* ~ 150,000 representable characters (different scripts, emoji, etc.)
¢ several encoding schemes character — bits
¢ different characters’ representations can have different lengths
* e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E :@Hza
e typically, |Zs| > |Z¢| (= 2), so need several bits per character
¢ for ce Zg, call E(c) the codeword of ¢

* to encode a text, encode individual characters and concatenate

E(p) = 000] ARB > 000|000l
E \8) = 0019 00O
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Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

e all characters treated equally

e 27 =128 possible characters

Modern answer. Unicode
* ~ 150,000 representable characters (different scripts, emoji, etc.)
* several encoding schemes character — bits
¢ different characters’ representations can have different lengths
* e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E: X5 — X/
e typically, |Zs| > |Z¢| (= 2), so need several bits per character
e for ce Xg, call E(c) the codeword of ¢
¢ to encode a text, encode individual characters and concatenate
Fixed vs. Variable Length Encoding
* fixed length encoding —> all codewords have the same length
(e.g. ASCII)
* variable length encoding —> different lengths for different
codewords (e.g. Unicode)

10/30



Fixed Length Codes

Advantages of fixed length codes
* fast decoding
* use a lookup-table
® can be as fast as a single array access
* local encoding
¢ if character length is B, ith character starts at index i- B
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Fixed Length Codes

Advantages of fixed length codes
* fast decoding
* use a lookup-table
® can be as fast as a single array access

* local encoding

¢ if character length is B, ith character starts at index i- B
Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01_11'(?101011()0101}).111190 1110100
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Fixed Length Codes

Advantages of fixed length codes
* fast decoding
* use a lookup-table
® can be as fast as a single array access
* local encoding
¢ if character length is B, ith character starts at index i- B
Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100

Disadvantages of fixed length codes
¢ Inflexible (non-extensible)
* how can we represent this awesome new emoji???
e Space inefficient
* infrequently used characters require as much space as common
characters

° common characters are longer than they need to be
11/30



Variable Length Codes

Variable Length
Advantages:

* more flexibility

* compressibility?
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Variable Length Codes

Variable Length
Advantages:

more flexibility

compressibility?

An old idea. Morse Code

encode characters as
“dots” and “dashes”

more common
characters are shorter

X@Lvrip-g
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4l
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Illooo
l..l:i
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Variable Length Codes

Variable Length
Advantages:

e more flexibility
* compressibility?
An old idea. Morse Code

* encode characters as

“dots” and “dashes”

¢ more common

characters are shorter

Question. How many
characters in the Morse
code encoding?
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Codes Misbehaving

EQ&MAV\O\ PollEverywhere

Consider the following code

SS
ﬁ%>“v 00 c ‘ a‘ n ‘ b ‘ s
/N E( | o[ 101 110 100
N B 9 What is the original text

corresponding to the encoded
N T100}00100?

BRNANA
RASS

pollev.com/comp526
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Codes Misbehaving

Question. What was the issue with this PollEverywhere
code? Consider the following code
c ‘ a‘ n b ‘)s ]
n \10 E@© | 0 |\1o] 110 W
S \ Q{0 What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526
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Codes Misbehaving

Question. What was the issue with this PollEverywhere
code? Consider the following code

* The relationship between
E(n) =10 and E(s) = 100

* If we read 10 in the encoded

c ‘a‘n‘ b ‘ s
E(c) | 0| 10 | 110 | 100

text, are we done reading a What is the original text
character? .
corresponding to the encoded
text 11001001002

pollev.com/comp526
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Codes Misbehaving
Question. What was the issue with this PollEverywhere

code? Consider the following code

* The relationship between
E(n) =10 and E(s) = 100
¢ Ifweread 10 in the encoded
text, are we done reading a
character?

c ‘a‘n‘ b ‘ s
E(c) | 0| 10 | 110 | 100

What is the original text

corresponding to the encoded
* “Reasonable” codes should avoid oyt 11001001002
this ambiguity!
* We should always know when
we’re done reading a character.

pollev.com/comp526

13/30



Prefix Codes and Tries

Definition. A character encoding E is a prefix code if no codeword E(c)

is a prefix of another code
Example, —* | AL E LN | 0 | 1|
P* “Eo) [ o1 [ 101 [ 001 | 100 | 11 | 000

—_—_ —

Ol (of
i, [01toT]

" Cany e

olot 779

aS  Qumarlsl
Codeudord
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Prefix Codes and Tries

Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of anothe lo oA

c |[a o |T]|u Lol

Example. E(C) 01 H 01” oo1 100 | 11 | 000

Representation of prefix codes: the trie data strucf,ure! cie

* binary tree
* one leaf for each character
* edgeslabeled 0 or 1

* codewords = paths to leaves

14/30



Prefix Codes and Tries

Definition. A character encoding E is a prefix code if no codeword E(c)

is a prefix of another code
2 5 . Prebix

Example. E(c) \L{\ 101 {/Q‘ 100 | 11 | 000 WOP ey

Representation of prefix codes: the trie data strucgure!

: X\ Snass

* binary tree

* one leaf for each character i QaJed .
* edgeslabeled 0 or 1 ¢ 2 AN
* codewords = paths to leaves ﬂ" ’t(\\b

Encoding. Use the table: AN ANT — O\ 00\ 0000100 | \\

Decoding. Use the trie: mmm@@ 11
T O ERT

14/30



Trie it Yourself

PollEverywhere Question

What is the result of using the trie
on the r(i)th to decode the message:

L1goidgras

pollev.com/comp526

BANANAS
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Fixed, Static, Adaptive

Note. In order to use a prefix code, we must also store the codewords!
¢ fixed coding uses the same code for all strings
* e.g. ASCII, Unicode encodings (UTF-8)

“e static coding uses the same codeword for each instance of a
character in a text

¢ codewords may different for different texts
* must store/transmit the codewords as well as the encoded text!

* adaptive coding may change the codewords as the text is
processed

* codewords are stored implicitly within the coded message

16/30



Huffman Codes



Variable Length and Compression

Question. How can variable length encoding help with compression?
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Variable Length and Compression

Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
e X={AGH!}
* Fixed length encoding:
c | a6 |H]|!
E(9 [ 0001 ]10[11
— Total encoded length = 30 (15 chars at 2 bits per char)
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Variable Length and Compression

Question. How can variable length encoding help with compression?

Example. Consider the text!AAAAAAAAAAEEEl! ‘

* T={AGH!} 1 {37

* Fixed length encoding: ;
c | a6 |H]|!
E(0) | 00 |01 | 10 | 11
— Total encoded length = 30 (15 chars at 2 bits per char)

¢ Exploiting frequency of A and G
c |Ale| H |
E(© | 0] 10 | 110 | 111
— Total encoded length =22/
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Variable Length and Compression

Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
e X={AGH!}
* Fixed length encoding:
c | a6 |H]|!
E(0) | 00 |01 | 10 | 11
— Total encoded length = 30 (15 chars at 2 bits per char)

¢ Exploiting frequency of A and G
c |Ale| H |
E(© | 0] 10 | 110 | 111
— Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18/30



Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given éu&
X 2N C0
* astring S over the alphabet %; \,u\(( m
C weights’ w(c) = O[for each ce Z. c
Find the prefix code E for X that minimizes|Y_ . w(c) |E(c)|
e : ok “Cwnesec
T wadwdy -
W) Vowge, wank fo wake |EC swally
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Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.
Find the prefix code E for X that minimizes Y. w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of cin S.

(c) ES|\ — W&N\SV 6S SM\\

(e
* so solving optir izationproblem gives the shortest poss1bll> SS(b
(prefix code) enfoding of 8!

Hwae§ 1eng Wof =
f onp pnt€ Q,d\Q,odJ-d

* note tha
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Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.
Find the prefix code E for X that minimizes Y. w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of cin S.
* note that Y. w(c) |E(c)| = |E(S)|

* so solving optimization problem gives the shortest possible
(prefix code) encoding of S!

Question. Can we solve the optimization problem?
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Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.
Find the prefix code E for X that minimizes Y. w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of cin S.
* note that Y. w(c) |E(c)| = |E(S)|

* so solving optimization problem gives the shortest possible
(prefix code) encoding of S!

Question. Can we solve the optimization problem?
e [ suppose we can with brute force: check all prefix codes

® runs in exponential time in |Z|
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Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.
Find the prefix code E for X that minimizes Y. w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of cin S.
* note that Y. w(c) |E(c)| = |E(S)|

* so solving optimization problem gives the shortest possible
(prefix code) encoding of S!

Question. Can we solve the optimization problem?
* [ suppose we can with brute force: check all prefix codes
® runs in exponential time in |Z|

¢ Can we solve it1efﬁciently?

19/30



Huffman Coding: Greed is Good

Idea. Build the character trie greedily from the leaves up.
* Prefix codes are binary trees with leaves labeled by =

®d 6 ©

WP @) W)
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Huffman Coding: Greed is Good

Idea. Build the character trie greedily from the leaves up.
* Prefix codes are binary trees with leaves labeled by =
* Maintain a collection A of active vertices
* Initially Ais set of leaves, labeled with

1. acharacterceX &
2. the weight w(c) <—
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Huffman Coding: Greed is Good

Idea. Build the character trie greedily from the leaves up.
* Prefix codes are binary trees with leaves labeled by =
* Maintain a collection A of active vertices
* Initially Ais set of leaves, labeled with
1. acharacterce X
2. the weight w(c)
* While |A] > 1:
uand v are two lightest vertices
add parent pto uand v
set w(p) = w(u) + w(v)
add pto A remove u, v = =

= 89 0 =
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Huffman Coding: Greed is Good

* Maintain a collection A of active vertices
* Initially Ais set of leaves, labeled with
1. acharacterce X
2. the weight w(c)
* While |A| > 1:
1. uand vare two lightest vertices
2. add parent pto uand v
3. set w(p) = w(u) + w(v)

L add o AR

Example. ); / / /’ 1

* 2={ABCD,E}
e weights = {0.25,0.15,0.1,0.1,0.4}

20/30



LOSSLESS Example

Example. Find the Huffman encoding for the text LOSSLESS

WUﬂMS [ Wer QuowmowS

c /& DO S & L 00
,e/ O . 0\O
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LOSSLESS Example

Example. Find the Huffman encoding for the text LOSSLESS.

Three Steps: /

1. Compute frequency counts w(c)
2. Build Huffman tree v/
3. Write Huffman code from the tree‘/

(e bl lookmp lble oS WQ,K\

21/30



Huffman Analysis: Greed Works

Theorem

Given alphabet X and weight function w: X — Rx, the Huffman coding
schemes gives the minimum weighted codeword length

C(E) =Y cex w(c) - |E(c)| among all prefix codes.

22/30



Huffman Analysis: Greed Works

Theorem
Given alphabet X and weight function w: X — Rx, the Huffman coding
schemes gives the minimum weighted codeword length 0

C(E) =Y s w(c) - |E(c)| among all prefix codes RN WS
. Tud- \A‘\? 2\ \,
Proof sketch. Induction on [Z] =~ % si&*~ 1

* Let E* be an optimal encoding/trie WASS

* Claim: 3 sibling leaves x, y at max depth #b

* Swap x and y for two min weight leaves, a, b \f,;(sfg(,\q 07\
ptimal code for ' = X\ {a, b} U {labl} gives optimal w (o)
code for X (verify this!) 4 Wl
* By inductive hypothesis, Huffman gives optimal code 9‘”‘*@’ V\Q( C,M\
for 2’ 0 "\\‘l t‘ gSeas
* So we get an optimal code for g 0/ \ Z W C&B \EG)\

0] £ wedged 00

22/30



Huffman Computational Efficiency

Question. For an alphabet of size m = |Z| and weights w, how
efficiently can we build the Huffman code?

M 0\\?\4\ &\()/'»‘K' S

* Maintain a collection A of active vertices &

O_Qm) * Initially A is set of leaves, labeled with
1. acharacter ce X

2. the weight w(c)

’P!‘\Q( \'\'\(’ OD“‘Q" Ve * While A > 1:
21. uand v are two lightest vertices
C") Hﬂ-f'\P 2. add parent pto uand
3 b 3. set w(p) = w(w) + w(v) &L\)
(\M [ w 4. add pto A, remove u, v
\00\\\ ¢ | Construct the codeword table

(‘wO\)a AV

23/30



Tie Breaking Rules

So far we have two ambiguities in our Huffman trie description:
1. Which child is right/left child of the parent?
2. What do we do if weights are tied?

24/30



Tie Breaking Rules

So far we have two ambiguities in our Huffman trie description:
1. Which child is right/left child of the parent?
2. What do we do if weights are tied?

Conventions.
e Smaller weight child is on the left

* All ties broken by earliest character in alphabetical order

¢ for internal vertices, the one containing the alphabetically first
character as a descendant.is on the left

24/30



Huffman and
Entropy



A Thought Experiment

Suppose I have an alphabet X~ = {¢}, ¢, ..., ¢;} and I choose a character
¢; at random to transmit

* each ¢; is chosen with probability p;.

26/30



A Thought Experiment

Suppose I have an alphabet X~ = {¢}, ¢, ..., ¢;} and I choose a character

P AP €0 =

c; at random to transmit

* each ¢; is chosen with probability p;.

Idea. Think of p; as sub-intervals of [0, 1].

* QOutcome is a random point x in [0, 1]

* ¢; corresponds to the interval containing x

* Use binary search to find the interval!

’CV\

o

{0
Y

1
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A Thought Experiment

Suppose I have an alphabet X~ = {¢}, ¢, ..., ¢;} and I choose a character
¢; at random to transmit

each c; is chosen with probability p;.

Idea. Think of p; as sub-intervals of [0, 1].

Outcome is a random point x in [0, 1]
¢; corresponds to the interval containing x

Use binary search to find the interval!

If the interval has width) p; nee%log(l/ p,i queries to determine W\
interval Pe oV o P(c’ 7
% € ks

The expected (average) number of queries isthen

&
FE(P1, P2, Pn) =X, pibiui)](bc&s lled
A is the entropy of the distribution over X A vt

26/30



Properties of Entropy

Setup. We choose elements from X = {¢}, ¢, ..., ¢;} randomly, each ¢;
chosen with probability p;.

One can show:

* Entropy  is a lower bound on the average number of bits
needed to transmit a random character from X
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Properties of Entropy

Setup. We choose elements from X = {¢}, ¢, ..., ¢;} randomly, each ¢;
chosen with probability p;.

One can show:
* Entropy  is a lower bound on the average number of bits
needed to transmit a random character from X
* Ifwe use a Huffman encoding of]Z 2 Cr, | Ch

¢ transmit the Huffman codeword E(c;)

Then the average length ¢(E) of the transmitted word satisfies

@s ¢(E) sé£+1
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Properties of Entropy

Setup. We choose elements from X = {¢}, ¢, ..., ¢;} randomly, each ¢;
chosen with probability p;.

One can show:

* Entropy  is a lower bound on the average number of bits
needed to transmit a random character from X

* Ifwe use a Huffman encoding of X

¢ weights w(c;) = p;
¢ transmit the Huffman codeword E(c;)

Then the average length ¢(E) of the transmitted word satisfies
HA<VCE)<AHA+1

Conclusion. Huffman coding gives (nearly) the best possible average
compression for randomly generated texts!
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Emprical Entropy

Definitions. For a fixed string S over alphabet Z = {¢}, ¢, ..., ¢}, we
define the relative frequency of character c; in S to be

# occurrances of ¢;in S°

S|

The empirical entropy of S is then

JZfb(ED = Jz?(171;l92v---,lh7)- Gf—
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Emprical Entropy

Definitions. For a fixed string S over alphabet Z = {¢}, ¢, ..., ¢}, we
define the relative frequency of character c; in S to be

# occurrances of ¢; in S
pi=
N

The empirical entropy of S is then
HO(S) = A (p1,p2,..., Po).
The length of the Huffman encoded text C = E(S) is
o n
ICl =) 1Sla |E(cdl = n)_ pil E(c))| = {n:é(a. (
=l i=1

Applying the previous slide givesi%dS) nls |C] Sn.
* Entropy and Huffman coding length are intimately connected
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Next Time

More Compression!
* Limits of Compressibility
e Compressing Repetitive Texts
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Scratch Notes
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