mImr A ni S.OBBBL

11 1 m i m 1] 1
0000000000000000000000000JOCUOQO000O00000000000001000G500000000000000000QQ0ROVON
125456 78 9100 12131 1516 1161920 21 22232 25 26 21 28 29 3 31 32 33 34 35 36 37 38 39 40 41 42 &0 44 45 46 &7 43 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 67 68 63 70 71 72,73 74 75 75 17 8 79 80
1] ARRRERREEE NI RN RRRRREI Al ARl | Rl ARRRR RN R R R R R R R SRR AR R R R
2202222222222222022222222002222222220022
33333333333333333W3333333333333333P333]3
4444444444444444444444044444040444404J444444404844440404444448444444444440444]44
555555555555 5555550555555 555 Mo9555055555555555555555585555555555555555555555

66666666 66M66366666666656R6666666

Lecture 13: Data Compression |

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: November 14, 2024 University of Liverpool

1/30

Announcements

1. Programming Assignment 2 posted soon &
2. Quiz 5 due Friday

* Covers string matching
® 2 questions (multiple choice)
® Usual rules apply

3. Attendance Code:

5086872

2/30

Meeting Goals

Discuss data compression!
* Introduce the data compression task
* Define character encoding and related terminology
* Define prefix codes
* Construct Huffman codes

* Prove optimality of Huffmann codes

3/30

Data
Compression

The Story So Far

Emphasis. How do we process data?
¢ Data structures
* How can we organize data perform primitive operations
efficiently?
* Fundamental operations on arbitrary data:
® sorting
* string matching

5/30

The Story So Far

Emphasis. How do we process data?
¢ Data structures

* How can we organize data perform primitive operations
efficiently?

* Fundamental operations on arbitrary data:
® sorting
° string matching
A New Question. How do we store and transmit data efficiently?
New Topics. Fundamental problems
1. Data Compression (starting today)
* how to store data using as little space as possible

2. Error Correction (following topic)

* howto owbo Moiicuk\\/ ddext and tottect exvore W\ 0w Ao

5/30

The Data Compression Task

* source text: string Se Z; to be stored/transmitted 0\\0““\0 L\,
* Xgissome alphabet, e.g., Roman alphabet i c C\EC\U&
* coded text: encoded data Ce X7, that is actually stored/transmitted O\\ M\—
* typically have ¢ = {0, 1}

Terminology.

l
Cawubar
dpm |
4«3?(@\\

30) §

6/30

The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}

* encoding: An algorithm E that maps source texts to coded texts
A L
* E:Z -2
* decoding: An algorithm D that maps encoded texts to decoded texts
.Yk *
* D:X;— 2

6/30

The Data Compression Task

Terminology.

* source text: string S€ Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet

* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}

* encoding: An algorithm E that maps source texts to coded texts
* E: Z; — Z*C

* decoding: An algorithm D that maps encoded texts to decoded texts
* D:Zp—Z¢

Goal. Represent S using as little space as possible.

6/30

The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}
* encoding: An algorithm E that maps source texts to coded texts
DD 5
* decoding: An algorithm D that maps encoded texts to decoded texts
* D:Zp—Z¢
Lossy vs. Lossless Compression.
* Lossless Compression. decoding recovers original text:
° Examples: zip (general archive), f’lﬁ(audio), ﬁ (image)

6/30

The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data Ce Z*C that is actually stored/transmitted
* typically have ¢ = {0, 1}
* encoding: An algorithm E that maps source texts to coded texts
* E: Z; — ZE
* decoding: An algorithm D that maps encoded texts to decoded texts
* D:Zp—Z¢
Lossy vs. Lossless Compression.
* Lossless Compression. decoding recovers original text: D(E(S)) = S
* Examples: zip (general archive), flac (audio), tiff (image)
* Lossy Compression. decoding approximates original text:| D(E(S)) = S

* Examples: mp3 (audio), jpg (image), mpg (video)

6/30

The Data Compression Task

Terminology.
* source text: string Se Z; to be stored/transmitted
* Xgissome alphabet, e.g., Roman alphabet
* coded text: encoded data C e ZE that is actually stored/transmitted
* typically have ¢ = {0, 1}
° encoding: An algorithm E that maps source texts to coded texts
* E:Zy—Z2L
* decoding: An algorithm D that maps encoded texts to decoded texts
* D:2t—2%
Lossy vs. Lossless Compression.
* Lossless Compression. decoding recovers original text: D(E(S)) = S
* Examples: zip (general archive), flac (audio), tiff (image)
* Lossy Compression. decoding approximates original text: D(E(S)) = S
* Examples: mp3 (audio), jpg (image), mpg (video) J

Our Focus: lossless compression!
6/30

The Quality of an Encoding Scheme

Goals of Encoding

J

e resilience to errors/noise in transmission

* Efficiency of encoding/decoding

* security (encryption)

* integrity (detect modifications)

° SLe

7130

The Quality of an Encoding Scheme

Goals of Encoding
* Efficiency of encoding/decoding
* resilience to errors/noise in transmission
* security (encryption)
* integrity (detect modifications)
* size
Our focus. Minimize the size of the encoded text.

* data compression

7130

The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.
* data compression

Measure of quality. The compression ratio:

|Cl-loglZcl zc=i0,1} |Cl

|S-log|Zsl| - [S|-log|Xs]

7130

The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.
* data compression

Measure of quality. The compression ratio:

|Cl-loglZcl zc=i0,1} |Cl

|S-log|Zsl| - [S|-log|Xs]

Question. Why all of the log|X|s?

7130

The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.

* data compression @/\CDC&US‘
Measure of quallty The com&r@sgzogomtlo Vext
™ C.\V“ } A ot
Cl- logIch 2c={0,1} 19

¥)

N %t
W) Uoky €
Question. Why all of the log|XZ|s? QQN*) 55‘2(5(gyf\q VAR I

* [logo] is the minimum number of bits needed to represent o
distinct values (in binary)

e there are 2? distinct binary strings of length b

o~ 4 7b \,(, uP o ook Chars.
c | b bds
= l(ﬂj 0o -

7130

The Quality of an Encoding Scheme

Our focus. Minimize the size of the encoded text.

* data compression

Measure of quality. The compression ratio:

|Cl-loglZcl zc=i0,1} |Cl

|S-log|Zsl| - [S|-log|Xs]

Interpretation. Compression ratios:
<1 = compression
¢ smaller values are better
=1 = no compression
>1 — encoded text is larger(?!)

¢ this is sometimes unavoidable ... foreshadowing to next week

7130

Data Compression Roadmap

Questions. When, how, and how much can we compress?

* PartI: Exploiting non-uniform character frequenciesl
* Huffman Codes

* Interlude: Limits of data compression

* Part II: Exploiting repetition in texts

* Run-length encoding
* Lempel-Ziv-Welch (LZW) encoding

* PartIII: Creating repetition in texts

* Move-to-front transform
* Burrows-Wheeler transform

8/30

Character
Encoding

Question. How do computers encoded English language text?

10/30

Question. How do computers encoded English language text?

Historical answer. ASCII use 7 bits per character

¢ all characters treated equally

e 27 =128 possible characters

75%4>—> % (% | | 0 0 I
B, 5 ———————— 0o | 0 |
's bI "f bf '1' N:::':: [¢} 1 2 3 4 5 6 7
olofo]o]| o NUL | DLE | sP 0 @ P ~ p
oflofo]1 | SOH | DCI ! | A Q a q
ofofi]o] 2 sTx |poc2 | " 2 B R b [
ofo]i | 3 ETX | DC3 | # 3 C S c s
oli|ofo] 4 |eoTr |[Dca| $ 4 D T d t
o1 o]t 5 ENQ [NAK | % 5 E u e u
o[i1[r]o] e ACK | SYN & 6 F v f v
o[7 | BEL [ETB ’ 7 G w [w
I |ofo]o]| 8 BS [caN]| (8 H X h x
1jofof! 9 HT EM) 9 I Y i y
1 [o]i o] 10 LF | suB| 8 J Z i z

1ol n VT | ESC + , K [k
1|1]ofof 12 FF | FS , < L \ |
1fr]o]1] 13 CR | GS — = M] m
111 fof 1a SO | RS g > N A n ~
][] ors SI [us / ? 0 — o | DEL

10/30

Question. How do computers encoded English language text?

Historical answer. ASCII use 7 bits per character ,? A
¢ all characters treated equally \K& \‘\
e 27 =128 possible characters V\q

Modern answer. Unicode
* ~ 150,000 representable characters (different scripts, emoji, etc.)
¢ several encoding schemes character — bits
¢ different characters’ representations can have different lengths
° e.g., ASCII characters represented by 8 bits

DSt Longhls
ol OFF
Me(S -

10/30

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character
¢ all characters treated equally

e 27 =128 possible characters

Modern answer. Unicode
* ~ 150,000 representable characters (different scripts, emoji, etc.)
¢ several encoding schemes character — bits
¢ different characters’ representations can have different lengths
* e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E :@Hza
e typically, |Zs| > |Z¢| (= 2), so need several bits per character
¢ for ce Zg, call E(c) the codeword of ¢

* to encode a text, encode individual characters and concatenate

E(p) = 000] ARB > 000|000l
E \8) = 0019 00O

10/30

Question. How do computers encoded English language text?
Historical answer. ASCII use 7 bits per character

e all characters treated equally

e 27 =128 possible characters

Modern answer. Unicode
* ~ 150,000 representable characters (different scripts, emoji, etc.)
* several encoding schemes character — bits
¢ different characters’ representations can have different lengths
* e.g., ASCII characters represented by 8 bits

Character Encoding. Encode each character individually E: X5 — X/
e typically, |Zs| > |Z¢| (= 2), so need several bits per character
e for ce Xg, call E(c) the codeword of ¢
¢ to encode a text, encode individual characters and concatenate
Fixed vs. Variable Length Encoding
* fixed length encoding —> all codewords have the same length
(e.g. ASCII)
* variable length encoding —> different lengths for different
codewords (e.g. Unicode)

10/30

Fixed Length Codes

Advantages of fixed length codes
* fast decoding
* use a lookup-table
® can be as fast as a single array access
* local encoding
¢ if character length is B, ith character starts at index i- B

11/30

Fixed Length Codes

Advantages of fixed length codes
* fast decoding
* use a lookup-table
® can be as fast as a single array access

* local encoding

¢ if character length is B, ith character starts at index i- B
Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01_11'(?101011()0101}).111190 1110100

11/30

Fixed Length Codes

Advantages of fixed length codes
* fast decoding
* use a lookup-table
® can be as fast as a single array access
* local encoding
¢ if character length is B, ith character starts at index i- B
Example. For (8-bit) ASCII encoding, how many (Roman alphabet)
characters is this text? Where are the character divisions?

01110100011001010111100001110100

Disadvantages of fixed length codes
¢ Inflexible (non-extensible)
* how can we represent this awesome new emoji???
e Space inefficient
* infrequently used characters require as much space as common
characters

° common characters are longer than they need to be
11/30

Variable Length Codes

Variable Length
Advantages:

* more flexibility

* compressibility?

12/30

Variable Length Codes

Variable Length
Advantages:

more flexibility

compressibility?

An old idea. Morse Code

encode characters as
“dots” and “dashes”

more common
characters are shorter

X@Lvrip-g
Illi
[3
.I.
..

0

ANPOTVOZIrAR——IWO
(1
4l

gel
Io

N<XX=<C
Illooo
l..l:i
.Iill
‘1

12/30

Variable Length Codes

Variable Length
Advantages:

e more flexibility
* compressibility?
An old idea. Morse Code

* encode characters as

“dots” and “dashes”

¢ more common

characters are shorter

Question. How many
characters in the Morse
code encoding?

2, (el ™ e
(panst)

p lur

.\r—
IP
eeoe
olo
°
[

OUOZZrRe—IOMMUOT>
1:111;

II oglel’

4 i | B

1° |

—nx
I LN J
|
[

N<XX=<C
Illooo
l..l:i
.Iill
‘1

12/30

Codes Misbehaving

EQ&MAV\O\ PollEverywhere

Consider the following code

SS
ﬁ%>“v 00 c ‘ a‘ n ‘ b ‘ s
/N E(| o[101 110 100
N B 9 What is the original text

corresponding to the encoded
N T100}00100?

BRNANA
RASS

pollev.com/comp526

13/30

Codes Misbehaving

Question. What was the issue with this PollEverywhere
code? Consider the following code
c ‘ a‘ n b ‘)s]
n \10 E@© | 0 |\1o] 110 W
S \ Q{0 What is the original text
corresponding to the encoded
text 1100100100?

pollev.com/comp526

13/30

Codes Misbehaving

Question. What was the issue with this PollEverywhere
code? Consider the following code

* The relationship between
E(n) =10 and E(s) = 100

* If we read 10 in the encoded

c ‘a‘n‘ b ‘ s
E(c) | 0| 10 | 110 | 100

text, are we done reading a What is the original text
character? .
corresponding to the encoded
text 11001001002

pollev.com/comp526

13/30

Codes Misbehaving
Question. What was the issue with this PollEverywhere

code? Consider the following code

* The relationship between
E(n) =10 and E(s) = 100
¢ Ifweread 10 in the encoded
text, are we done reading a
character?

c ‘a‘n‘ b ‘ s
E(c) | 0| 10 | 110 | 100

What is the original text

corresponding to the encoded
* “Reasonable” codes should avoid oyt 11001001002
this ambiguity!
* We should always know when
we’re done reading a character.

pollev.com/comp526

13/30

Prefix Codes and Tries

Definition. A character encoding E is a prefix code if no codeword E(c)

is a prefix of another code
Example, —* | AL E LN | 0 | 1|
P* “Eo) [o1 [101 [001 | 100 | 11 | 000

—_—_ —

Ol (of
i, [01toT]

" Cany e

olot 779

aS Qumarlsl
Codeudord

14/30

Prefix Codes and Tries

Definition. A character encoding E is a prefix code if no codeword E(c)
is a prefix of anothe lo oA

c |[a o |T]|u Lol

Example. E(C) 01 H 01” oo1 100 | 11 | 000

Representation of prefix codes: the trie data strucf,ure! cie

* binary tree
* one leaf for each character
* edgeslabeled 0 or 1

* codewords = paths to leaves

14/30

Prefix Codes and Tries

Definition. A character encoding E is a prefix code if no codeword E(c)

is a prefix of another code
2 5 . Prebix

Example. E(c) \L{\ 101 {/Q‘ 100 | 11 | 000 WOP ey

Representation of prefix codes: the trie data strucgure!

: X\ Snass

* binary tree

* one leaf for each character i QaJed .
* edgeslabeled 0 or 1 ¢ 2 AN
* codewords = paths to leaves ﬂ" ’t(\\b

Encoding. Use the table: AN ANT — O\ 00\ 0000100 | \\

Decoding. Use the trie: mmm@@ 11
T O ERT

14/30

Trie it Yourself

PollEverywhere Question

What is the result of using the trie
on the r(i)th to decode the message:

L1goidgras

pollev.com/comp526

BANANAS

15/30

Fixed, Static, Adaptive

Note. In order to use a prefix code, we must also store the codewords!
¢ fixed coding uses the same code for all strings
* e.g. ASCII, Unicode encodings (UTF-8)

“e static coding uses the same codeword for each instance of a
character in a text

¢ codewords may different for different texts
* must store/transmit the codewords as well as the encoded text!

* adaptive coding may change the codewords as the text is
processed

* codewords are stored implicitly within the coded message

16/30

Huffman Codes

Variable Length and Compression

Question. How can variable length encoding help with compression?

18/30

Variable Length and Compression

Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
e X={AGH!}
* Fixed length encoding:
c | a6 |H]|!
E(9 [0001]10[11
— Total encoded length = 30 (15 chars at 2 bits per char)

18/30

Variable Length and Compression

Question. How can variable length encoding help with compression?

Example. Consider the text!AAAAAAAAAAEEEl! ‘

* T={AGH!} 1 {37

* Fixed length encoding: ;
c | a6 |H]|!
E(0) | 00 |01 | 10 | 11
— Total encoded length = 30 (15 chars at 2 bits per char)

¢ Exploiting frequency of A and G
c |Ale| H |
E(© | 0] 10 | 110 | 111
— Total encoded length =22/

18/30

Variable Length and Compression

Question. How can variable length encoding help with compression?

Example. Consider the text AAAAAAAAAAGGGH!
e X={AGH!}
* Fixed length encoding:
c | a6 |H]|!
E(0) | 00 |01 | 10 | 11
— Total encoded length = 30 (15 chars at 2 bits per char)

¢ Exploiting frequency of A and G
c |Ale| H |
E(© | 0] 10 | 110 | 111
— Total encoded length = 22

Question. How can we find the best possible prefix code for
compression?

18/30

Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given éu&
X 2N C0
* astring S over the alphabet %; \,u\((m
C weights’ w(c) = O[for each ce Z. c
Find the prefix code E for X that minimizes|Y_ . w(c) |E(c)|
e : ok “Cwnesec
T wadwdy -
W) Vowge, wank fo wake |EC swally

19/30

Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.
Find the prefix code E for X that minimizes Y. w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of cin S.

(c) ES|\ — W&N\SV 6S SM\\

(e
* so solving optir izationproblem gives the shortest poss1bll> SS(b
(prefix code) enfoding of 8!

Hwae§ 1eng Wof =
f onp pnt€ Q,d\Q,odJ-d

* note tha

19/30

Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.
Find the prefix code E for X that minimizes Y. w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of cin S.
* note that Y. w(c) |E(c)| = |E(S)|

* so solving optimization problem gives the shortest possible
(prefix code) encoding of S!

Question. Can we solve the optimization problem?

19/30

Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.
Find the prefix code E for X that minimizes Y. w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of cin S.
* note that Y. w(c) |E(c)| = |E(S)|

* so solving optimization problem gives the shortest possible
(prefix code) encoding of S!

Question. Can we solve the optimization problem?
e [suppose we can with brute force: check all prefix codes

® runs in exponential time in |Z|

19/30

Exploiting Character Frequency

Generic Optimization Problem. Suppose we are given
* astring S over the alphabet ;
e weights w(c) = 0 for each ce X.
Find the prefix code E for X that minimizes Y. w(c) |E(c)|

Example Weights. Take w(c) to be the number of occurrences of cin S.
* note that Y. w(c) |E(c)| = |E(S)|

* so solving optimization problem gives the shortest possible
(prefix code) encoding of S!

Question. Can we solve the optimization problem?
* [suppose we can with brute force: check all prefix codes
® runs in exponential time in |Z|

¢ Can we solve it1efﬁciently?

19/30

Huffman Coding: Greed is Good

Idea. Build the character trie greedily from the leaves up.
* Prefix codes are binary trees with leaves labeled by =

®d 6 ©

WP @) W)

20/30

Huffman Coding: Greed is Good

Idea. Build the character trie greedily from the leaves up.
* Prefix codes are binary trees with leaves labeled by =
* Maintain a collection A of active vertices
* Initially Ais set of leaves, labeled with

1. acharacterceX &
2. the weight w(c) <—

20/30

Huffman Coding: Greed is Good

Idea. Build the character trie greedily from the leaves up.
* Prefix codes are binary trees with leaves labeled by =
* Maintain a collection A of active vertices
* Initially Ais set of leaves, labeled with
1. acharacterce X
2. the weight w(c)
* While |A] > 1:
uand v are two lightest vertices
add parent pto uand v
set w(p) = w(u) + w(v)
add pto A remove u, v = =

= 89 0 =

20/30

Huffman Coding: Greed is Good

* Maintain a collection A of active vertices
* Initially Ais set of leaves, labeled with
1. acharacterce X
2. the weight w(c)
* While |A| > 1:
1. uand vare two lightest vertices
2. add parent pto uand v
3. set w(p) = w(u) + w(v)

L add o AR

Example.); / / /’ 1

* 2={ABCD,E}
e weights = {0.25,0.15,0.1,0.1,0.4}

20/30

LOSSLESS Example

Example. Find the Huffman encoding for the text LOSSLESS

WUﬂMS [Wer QuowmowS

c /& DO S & L 00
,e/ O . 0\O

21/30

LOSSLESS Example

Example. Find the Huffman encoding for the text LOSSLESS.

Three Steps: /

1. Compute frequency counts w(c)
2. Build Huffman tree v/
3. Write Huffman code from the tree‘/

(e bl lookmp lble oS WQ,K\

21/30

Huffman Analysis: Greed Works

Theorem

Given alphabet X and weight function w: X — Rx, the Huffman coding
schemes gives the minimum weighted codeword length

C(E) =Y cex w(c) - |E(c)| among all prefix codes.

22/30

Huffman Analysis: Greed Works

Theorem
Given alphabet X and weight function w: X — Rx, the Huffman coding
schemes gives the minimum weighted codeword length 0

C(E) =Y s w(c) - |E(c)| among all prefix codes RN WS
. Tud- \A‘\? 2\ \,
Proof sketch. Induction on [Z] =~ % si&*~ 1

* Let E* be an optimal encoding/trie WASS

* Claim: 3 sibling leaves x, y at max depth #b

* Swap x and y for two min weight leaves, a, b \f,;(sfg(,\q 07\
ptimal code for ' = X\ {a, b} U {labl} gives optimal w (o)
code for X (verify this!) 4 Wl
* By inductive hypothesis, Huffman gives optimal code 9‘”‘*@’ V\Q(C,M\
for 2’ 0 "\\‘l t‘ gSeas
* So we get an optimal code for g 0/ \ Z W C&B \EG)\

0] £ wedged 00

22/30

Huffman Computational Efficiency

Question. For an alphabet of size m = |Z| and weights w, how
efficiently can we build the Huffman code?

M 0\\?\4\ &\()/'»‘K' S

* Maintain a collection A of active vertices &

O_Qm) * Initially A is set of leaves, labeled with
1. acharacter ce X

2. the weight w(c)

’P!‘\Q(\'\'\(’ OD“‘Q" Ve * While A > 1:
21. uand v are two lightest vertices
C") Hﬂ-f'\P 2. add parent pto uand
3 b 3. set w(p) = w(w) + w(v) &L\)
(\M [w 4. add pto A, remove u, v
\00\\\ ¢ | Construct the codeword table

(‘wO\)a AV

23/30

Tie Breaking Rules

So far we have two ambiguities in our Huffman trie description:
1. Which child is right/left child of the parent?
2. What do we do if weights are tied?

24/30

Tie Breaking Rules

So far we have two ambiguities in our Huffman trie description:
1. Which child is right/left child of the parent?
2. What do we do if weights are tied?

Conventions.
e Smaller weight child is on the left

* All ties broken by earliest character in alphabetical order

¢ for internal vertices, the one containing the alphabetically first
character as a descendant.is on the left

24/30

Huffman and
Entropy

A Thought Experiment

Suppose I have an alphabet X~ = {¢}, ¢, ..., ¢;} and I choose a character
¢; at random to transmit

* each ¢; is chosen with probability p;.

26/30

A Thought Experiment

Suppose I have an alphabet X~ = {¢}, ¢, ..., ¢;} and I choose a character

P AP €0 =

c; at random to transmit

* each ¢; is chosen with probability p;.

Idea. Think of p; as sub-intervals of [0, 1].

* QOutcome is a random point x in [0, 1]

* ¢; corresponds to the interval containing x

* Use binary search to find the interval!

’CV\

o

{0
Y

1

26/30

A Thought Experiment

Suppose I have an alphabet X~ = {¢}, ¢, ..., ¢;} and I choose a character
¢; at random to transmit

each c; is chosen with probability p;.

Idea. Think of p; as sub-intervals of [0, 1].

Outcome is a random point x in [0, 1]
¢; corresponds to the interval containing x

Use binary search to find the interval!

If the interval has width) p; nee%log(l/ p,i queries to determine W\
interval Pe oV o P(c’ 7
% € ks

The expected (average) number of queries isthen

&
FE(P1, P2, Pn) =X, pibiui)](bc&s lled
A is the entropy of the distribution over X A vt

26/30

Properties of Entropy

Setup. We choose elements from X = {¢}, ¢, ..., ¢;} randomly, each ¢;
chosen with probability p;.

One can show:

* Entropy is a lower bound on the average number of bits
needed to transmit a random character from X

27130

Properties of Entropy

Setup. We choose elements from X = {¢}, ¢, ..., ¢;} randomly, each ¢;
chosen with probability p;.

One can show:
* Entropy is a lower bound on the average number of bits
needed to transmit a random character from X
* Ifwe use a Huffman encoding of]Z 2 Cr, | Ch

¢ transmit the Huffman codeword E(c;)

Then the average length ¢(E) of the transmitted word satisfies

@s ¢(E) sé£+1

27130

Properties of Entropy

Setup. We choose elements from X = {¢}, ¢, ..., ¢;} randomly, each ¢;
chosen with probability p;.

One can show:

* Entropy is a lower bound on the average number of bits
needed to transmit a random character from X

* Ifwe use a Huffman encoding of X

¢ weights w(c;) = p;
¢ transmit the Huffman codeword E(c;)

Then the average length ¢(E) of the transmitted word satisfies
HA<VCE)<AHA+1

Conclusion. Huffman coding gives (nearly) the best possible average
compression for randomly generated texts!

27130

Emprical Entropy

Definitions. For a fixed string S over alphabet Z = {¢}, ¢, ..., ¢}, we
define the relative frequency of character c; in S to be

occurrances of ¢;in S°

S|

The empirical entropy of S is then

JZfb(ED = Jz?(171;l92v---,lh7)- Gf—

28/30

Emprical Entropy

Definitions. For a fixed string S over alphabet Z = {¢}, ¢, ..., ¢}, we
define the relative frequency of character c; in S to be

occurrances of ¢; in S
pi=
N

The empirical entropy of S is then
HO(S) = A (p1,p2,..., Po).
The length of the Huffman encoded text C = E(S) is
o n
ICl =) 1Sla |E(cdl = n)_ pil E(c))| = {n:é(a. (
=l i=1

Applying the previous slide givesi%dS) nls |C] Sn.
* Entropy and Huffman coding length are intimately connected

28/30

Next Time

More Compression!
* Limits of Compressibility
e Compressing Repetitive Texts

29/30

Scratch Notes

30/30

