11 1 m 1 m 1]]
00000000000000000F00000000FGCUCEO0O0E000000000060000iI000800000000000000000ggoRoo]
123456 78 310012131 1516 1716192021 2223242526 272829 2% 3132 33 34 35 36 37 38 39 40 41 42 41 44 45 46 47 4 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT BRI ERRRRRY B ERRRRRI [R ERRER AR R RN R RN R RN R RN R R R RS AR R R R RRRERERRERRRT!
2202222222222222222222220222
3333233332333[3
A0444480444440404000444400444400444444404408404444040444444440444444402044444044
555555555555 505555505 5055555 QN5 5M555555555555555556555555555555555555555555555

66666666 66M66%66666666656R6666666

Lecture 12: String Matching Il

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: November 12, 2024 University of Liverpool

1/22

Announcements

1. Programming Assignment 1 DUE WEDNESDAY

* Use updated testing code (from last Wednesday)
° Submission through Canvas

® Onlysubmit pr_tester.py
* Late Policy: 5% off per day down to 50%
2. Quiz due Friday
* Covers string matching
* including today’s lecture
® 2 questions (multiple choice)
3. Attendance Code:

2/22

Meeting Goals

Discuss String Matching procedures:
* Knuth-Morris-Pratt
* Boyer-Moore

3/22

The String Matching Problem

Input: Output:
* Atext Te X" oflength n * The index of the first

* Apattern Pe X* of length m occurrence of Pin T

4/22

The String Matching Problem

Input: Output:
* Atext Te X" oflength n * The index of the first
* Apattern Pe X* of length m occurrence of Pin T

Last Time. Search with DFA

Example: T = abababac

4/22

The String Matching Problem

Input: Output:
* Atext Te X" oflength n * The index of the first
* Apattern Pe X* of length m occurrence of Pin T

Last Time. Search with DFA

Result: Search in time ©(n + |Z| n) with space overhead |X| 7.

4/22

Knuth-Morris-
Pratt

Failure Link Automaton

DFA efficiency.
* Space/time to build DFA: ©(m|X|)

¢ Time to execute DFA: O(n)
= Overall time is ©(n+ m|X|)

* additional space overhead is © (m|Z])

Question. Can we perform string matching in time O(n) with less space
overhead?

6/22

Failure Link Automaton

DFA efficiency.
* Space/time to build DFA: ©(m|X|)
¢ Time to execute DFA: O(n)

= Overall time is ©(n+ m|X|)
* additional space overhead is © (m|Z])

Question. Can we perform string matching in time O(n) with less space
overhead?

Idea. When comparison fails, don’'t have a separate transition for each
failing character

* Just record failure and “shift” pattern as far forward as possible

6/22

Failure Link Automaton

Example
e T = aababaababacaa
* P = ababaca

text |ala|b|la|b|la|la|b|la|b|la|c|a|a
states

7122

States and Shifts

a a b a b a a b a b a c a a
a b a b a c a
a b a b a c a
a b a b a c a
a b a a ¢ a
a

b a b a c¢ a

Correspondence: matches increment 7 index i, mismatches shift P
* shift amount aligns largest possible number of matches

8/22

FLA Execution

A Failure Link Automaton (FLA)
consists of:

* A finite set Q of states

* Afinite alphabet =

* A transition function
@:QxZu{x})—Q

* An initial state gy € Q

* Aset F < Qof accepting states

9/22

FLA Execution

A Failure Link Automaton (FLA) Execution. To apply and FLAto T

consists of: * Start at the state g
* A finite set Q of states * Read characters from T
* Afinite alphabet X sequentially

* if in state g and read
character c:
P:Qx(Zuix})—Q * if p(q,c) is defined, move

* An initial state gy € Q to state ¢(q,)

* otherwise move to state
@(q, %) and re-read ¢

* A transition function

* Aset F < Qof accepting states

e Return TRUE if end in
“accepting” state

9/22

FLA Execution

Execution. To apply and FLAto T

PollEverywhere Question * Start at the state qo

Given an FLA for a pattern P of * Read c}?rﬁcters from T
. sequentia’

length m, how many times could ! B }‘Z g and read

. . . * ifin state g and rea
we follow failure links fo‘r a single character c:
character cread from T in the > Hrliee) o dlefines), meve
worst case? to state ¢(qg, ©)

* otherwise move to state

@(q, x) and re-read ¢

¢ Return TRUE if end in

“accepting” state

pollev.com/comp526

9/22

https://pollev.com/comp526

FLA Execution

Execution. To apply and FLAto T

e Start at the state qq
* Read characters from T
sequentially

* if in state g and read
character c:

* if p(g, ¢) is defined, move
to state ¢(q, ¢)
¢ otherwise move to state
@(q, %) and re-read ¢
¢ Return TRUE if end in
“accepting” state

9/22

FLA Running Time

More careful analysis
* If we match up to P[j], then we can only follow up to j back links

* In order to witness j failures, must have witnessed j successes!

10/22

FLA Running Time

More careful analysis
* If we match up to P[j], then we can only follow up to j back links

* In order to witness j failures, must have witnessed j successes!

Amortized cost of each character read from T
e Ifread character cis a match:

* pay 1 for comparison
* put 1 unit cost in the bank

e [fread character cis a mismatch
* withdraw 1 from the bank

* By analysis above account balance is always non-negative
—> amortized cost of each comparison is 2

- hence overall running time of execution is O(n)

10/22

FLA Construction

Observation. Each state g has
e 1 forward link to state g+ 1
e 1 fail link
Given P, we don't need to store
forward link label:
* forward link label from g to
q+1is Plq]
Only need to store fail link state!
* this can be stored as a single
array of size m
— only O(m) space overhead

11/22

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure

* How do we construct it?

11/22

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure
* How do we construct it?
* Again xis length of largest prefix that
matches a suffix of P[1, g)

Example. P[0..6) = ababaca

g |0 1 2 3 4 5 6

faillq)

1: procedure FAILURELINK(P[0, m))

2: faill0] —0
3 x—0
4 forj=1,2,...,m—-1do
5 failljl — x
6: while P[x] # P[j] do
7 if x = 0 then
8 x——1
9: break
10: else
11: X — fail[x]
12: end if
13: end while
14: X—X%+'1
15: end for

16: end procedure

11/22

FLA Construction

Question. What is the running
time of FAILURELINK on input of
size m?

1: procedure FAILURELINK(P[0, m))

2: faill0] —0
3 x—0
4 forj=1,2,...,m—1do
5 failljl — x
6: while P[x] # P[j] do
7 if x = 0 then
8 x——1
9: break
10: else
11: x — fail[x]
12: end if
13: end while
14: X—X%+'1
15: end for

16: end procedure

11/22

FLA Construction

Question. What is the running
time of FAILURELINK on input of
size m?
Observations.

* xincremented once per j

* faillx] <x

e Each “while” iteration
decrements x

So at most 2m updates to x
 cf. amortized analysis

* x = bank balance

1: procedure FAILURELINK(P[0, m))

2: faill0] —0
3 x—0
4 forj=1,2,...,m—1do
5 failljl — x
6: while P[x] # P[j] do
7 if x = 0 then
8 x——1
9: break
10: else
11: x — fail[x]
12: end if
13: end while
14: X—X%+'1
15: end for

16: end procedure

11/22

Failue Links: 3 Views

faillgg |0 0 0 1 2 3 0

12/22

Failue Links: 3 Views

faillql is

* the max of alignments
formed by shifting P if first
mismatch at P[q]

* longest prefix of P[0, g) that

faillgg |0 0 0 1 2 3 0 is a suffix of P[1, q)

12/22

KMP Algorithm

Question. How do we apply the
failure link array to find a match?

13/22

KMP Algorithm

Question. How do we apply the
failure link array to find a match?
e Scan along T10, n)
° index i
* Maintain position in P[0, m2)
* indexj
° current prefix match
* When T1[i] = P[j], increment i
and j
e Otherwise, j — failljl
* unless j=0,theni—i+1

13/22

KMP Algorithm

Question. How do we apply the
failure link array to find a match?
e Scan along T10, n)
° index i
* Maintain position in P[0, m2)
* indexj
* current prefix match
* When T1[i] = P[j], increment i
and j
e Otherwise, j — failljl
* unless j=0,theni—i+1

1: procedure KMP(T(0..n), P[0..m))

2: fail — FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else

10: if j= 1 then

11: J— faillj]

12: else

13: i—i+1

14: end if

15: end if

16: end while
17: end procedure

13/22

KMP Algorithm

Analysis:
* Running time O(n+ m)
* O(m) to build fail
* O(n) to apply KMP
° analysis uses amortized
analysis
* Additional space O(m)

* justneed to store fail and
indices

1: procedure KMP(T(0..n), P[0..m))

2: fail — FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else

10: if j= 1 then

11: J— faillj]

12: else

13: i—i+1

14: end if

15: end if

16: end while
17: end procedure

13/22

KMP Algorithm

Analysis:
* Running time O(n+ m)
* O(m) to build fail
* O(n) to apply KMP
° analysis uses amortized
analysis
* Additional space O(m)
* justneed to store fail and
indices
Clean Takeaway:
fail[j] is the length of the longest
prefix of P[0..j] that is a suffix of
P[1..j]

1: procedure KMP(T(0..n), P[0..m))

2: fail — FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else

10: if j= 1 then

11: J— faillj]

12: else

13: i—i+1

14: end if

15: end if

16: end while
17: end procedure

13/22

KMP Example

Example. Find the failure link array for P[0, 8) = BCBABCBA.

i |0]|1]2|3|4|5|6]|7
failli]

faillj] is the length of the longest prefix of P[0..j) that is a suffix of P[1..j)

14/22

KMP Example

Example. Find the failure link array for P[0, 8) = BCBABCBA.

i |0]|1|2|3|4|5|6]|7
faillii |0 0|0 [1|0|1|2]|3

14/22

KMP Example

Example. Find the failure link array for P[0, 8) = BCBABCBA.

i |o]1]2[3[4[5]6]7
faifqi [ololo[1[0o]1]2]3

Interpretation. If T'[i..i+ j) matches P[0..j), but T[i+ j] # P[jl, then
fail[j] is the maximum number matches between T[i+ 1,i+ j] and P.

1 2
B C

W o w

O »=|w
oslllocBllwc) &)]
a» 0o
W
>0 >
W =
O »

14/22

KMP Example

Example. Find the failure link array for P[0, 8) = BCBABCBA.

i |o]1]2[3[4[5]6]7
faifqi [ololo[1[0o]1]2]3

Interpretation. If T'[i..i+ j) matches P[0..j), but T[i+ j] # P[jl, then
fail[j] is the maximum number matches between T[i+ 1,i+ j] and P.

1 2
B C

W o w

O »=|w
oslllocBllwc) &)]
a» 0o
W
>0 >
W =
O »

Visualization. See website.
14 /22

DFA vs FLA

Question. Which is better? DFA matching or KMP algorithm?
e KMP has overall running time O(n + m)
° amortized 2 comparisons per T access
* DFA has overall running time O(n+ m|Z|)

* 1 comparison per T access
* |X| dependence

15/22

Boyer-Moore

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have
* P[0,4) = AAAA
e T[0,14) = BBBBBBBBBBBBBB

If we know P, what is the fewest number of accesses we can make to T’
to certify that T does not contain P?

17/22

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have
° P[0,4) = AAAA
e T[0,14) = BBBBBBBBBBBBBB
If we know P, what is the fewest number of accesses we can make to T
to certify that T does not contain P?
¢ 2 2 B ? 2?2 ? B ?2 2?2 ? B ? 2
A A A A

17/22

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have
° P[0,4) = AAAA
e T[0,14) = BBBBBBBBBBBBBB
If we know P, what is the fewest number of accesses we can make to T
to certify that T does not contain P?
¢ 2 2 B ? 2?2 ? B ?2 2?2 ? B ? 2
A A A A

Observation.

* By starting comparisons from the end of P, we could eliminate
more possible alignments.

17/22

Two Heuristics

Strategy. To test match of P[0..m) with T7j..j+ m), perform
comparisons from right to left

18/22

Two Heuristics

Strategy. To test match of P[0..m) with T7j..j+ m), perform
comparisons from right to left

Heuristic 1. If we encounter 7[i] that does not occur in P, shift P
entirely past index i.

B D C A A C A B C A
p: C A B C A
- C A

B C A

18/22

Two Heuristics

Strategy. To test match of P[0..m) with T7j..j+ m), perform
comparisons from right to left

Heuristic 1. If we encounter 7[i] that does not occur in P, shift P
entirely past index i.

T -« A B D C A A C A B C A
p: C A B C A
—- C A B C A

Heuristic 2. If we match on a suffix of P but mismatch at index i, shift
P to next alignment of suffix.

T .-« A B D C

18/22

Boyer-Moore Algorithm

Combining these heuristics gives the Boyer-Moore algorithm
* Compare alignments from right to left
¢ Ifwe encounter T7[i] that does not occur in P, shift P entirely past index i.
¢ If we match on a suffix of P but mismatch at index i, shift P to next alignment of

suffix
T -« A B D C A A C A B C A
P: C A B C A
— C A B C A
T A B D C A A C A B C A
P C A B C A
—- C A B C A

19/22

Boyer-Moore Algorithm

Combining these heuristics gives the Boyer-Moore algorithm
* Compare alignments from right to left
¢ If we encounter T[i] that does not occur in P, shift P entirely past index i.
¢ If we match on a suffix of P but mismatch at index i, shift P to next alignment of
suffix
Features of this approach:
* Worst-case running time on P[0..m) and T[0..n) is ©(nm)

¢ achieved if all instances of P must be reported
* can be improved to ©(n+ m+ |Z|) with some care if 7' does not
contain P

19/22

Boyer-Moore Algorithm

Combining these heuristics gives the Boyer-Moore algorithm
* Compare alignments from right to left
* Ifwe encounter T[i] that does not occur in P, shift P entirely past index i.
¢ If we match on a suffix of P but mismatch at index i, shift P to next alignment of
suffix
Features of this approach:
* Worst-case running time on P[0..m) and T[0..n) is ©(nm)
¢ achieved if all instances of P must be reported
* can be improved to ©(n+ m+ |Z|) with some care if 7' does not
contain P
e Typical running time can be much better!

* For some random string models, expected running time is O(n/m)
* For English text, typically uses ~ 0.25n comparisons if no match

19/22

Boyer-Moore Algorithm

Combining these heuristics gives the Boyer-Moore algorithm
* Compare alignments from right to left
¢ If we encounter T[i] that does not occur in P, shift P entirely past index i.
¢ If we match on a suffix of P but mismatch at index i, shift P to next alignment of
suffix
Features of this approach:
* Worst-case running time on P[0..m) and T[0..n) is ©(nm)

¢ achieved if all instances of P must be reported
* can be improved to ©(n+ m+ |Z|) with some care if 7' does not
contain P

e Typical running time can be much better!
* For some random string models, expected running time is O(n/m)
* For English text, typically uses ~ 0.25n comparisons if no match

* Space overhead is ©(m+ |Z])

19/22

Summary of String Matching

* Brute Force:
* simplest description
® ©(nm) running time
* O(1) space overhead

20/22

Summary of String Matching

¢ Brute Force:

°* DFA

simplest description
O(nm) running time
O(1) space overhead

few comparisons (worst
case)

O(n+ m|Z|) running time
O(m|Z|) space overhead
(DFA table)

20/22

Summary of String Matching

¢ Brute Force:

°* DFA

simplest description
O(nm) running time
O(1) space overhead

few comparisons (worst
case)

O(n+ m|Z|) running time
O(m|Z|) space overhead
(DFA table)

¢ Knuth-Morris-Pratt

simple description

O(n+ m) running time
(inc. all occurrences)
©(m) space overhead (fail
array)

20/22

Summary of String Matching

¢ Brute Force:

°* DFA

simplest description
O(nm) running time
O(1) space overhead

few comparisons (worst
case)

O(n+ m|Z|) running time
O(m|Z|) space overhead
(DFA table)

¢ Knuth-Morris-Pratt

simple description

O(n+ m) running time
(inc. all occurrences)
©(m) space overhead (fail
array)

* Boyer-Moore
¢ efficient in practice
(English text)

* ®(nm) worst case to find
all occurrences, can be as
small as O(n/m)

* ©(m) overhead

20/22

Summary of String Matching

¢ Brute Force:

°* DFA

simplest description
O(nm) running time
O(1) space overhead

few comparisons (worst
case)

O(n+ m|Z|) running time
O(m|Z|) space overhead
(DFA table)

¢ Knuth-Morris-Pratt

simple description

O(n+ m) running time
(inc. all occurrences)
©(m) space overhead (fail
array)

* Boyer-Moore

efficient in practice
(English text)

®(nm) worst case to find
all occurrences, can be as
small as O(n/m)

®(m) overhead

¢ Rabin-Karp

based on hashing

generalizes beyond
one-dimensional strings

expected running time
O(n+ m)
O(1) space overhead

20/22

Next Time

Data Compression!

* How much space do we need to store our
data?

21/22

Scratch Notes

22/22

	Knuth-Morris-Pratt
	Boyer-Moore

