Lecture 12: String Matching III

COMP526: Efficient Algorithms

Updated: November 12, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Programming Assignment 1 **DUE WEDNESDAY**
 - Use updated testing code (from last Wednesday)
 - Submission through Canvas
 - Only submit pr_tester.py
 - Late Policy: 5% off per day down to 50%
- 2. Quiz due Friday
 - · Covers string matching
 - including today's lecture
 - 2 questions (multiple choice)
- 3. Attendance Code:

Meeting Goals

Discuss String Matching procedures:

- Knuth-Morris-Pratt
- Boyer-Moore

The String Matching Problem

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length m

Output:

• The index of the **first occurrence** of *P* in *T*

The String Matching Problem

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length m

Last Time. Search with DFA

Output:

• The index of the **first occurrence** of *P* in *T*

Example: T = abababac

The String Matching Problem

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length m

Last Time. Search with DFA

Output:

• The index of the **first occurrence** of *P* in *T*

Result: Search in time $\Theta(n + |\Sigma| n)$ with space overhead $|\Sigma| n$.

Knuth-Morris-Pratt

Failure Link Automaton

DFA efficiency.

- Space/time to build DFA: $\Theta(m|\Sigma|)$
- Time to execute DFA: $\Theta(n)$
- Overall time is $\Theta(n+m|\Sigma|)$
 - additional space overhead is $\Theta(m|\Sigma|)$

Question. Can we perform string matching in time O(n) with *less space* overhead?

Failure Link Automaton

DFA efficiency.

- Space/time to build DFA: $\Theta(m|\Sigma|)$
- Time to execute DFA: $\Theta(n)$
 - Overall time is $\Theta(n+m|\Sigma|)$
 - additional space overhead is $\Theta(m|\Sigma|)$

Question. Can we perform string matching in time O(n) with *less space overhead?*

Idea. When comparison fails, don't have a separate transition for each failing character

Just record failure and "shift" pattern as far forward as possible

Failure Link Automaton

Example

- T = aababaababacaa
- P = ababaca

text	a	a	b	a	b	a	a	b	a	b	a	C	a	a
states														

States and Shifts

Correspondence: matches increment *T* index *i*, mismatches shift *P*

shift amount aligns largest possible number of matches

A Failure Link Automaton (FLA)

consists of:

- A finite set *Q* of **states**
- A finite alphabet Σ
- A transition function $\varphi: Q \times (\Sigma \cup \{\times\}) \to Q$
- An **initial state** $q_0 \in Q$
- A set $F \subseteq Q$ of accepting states

A Failure Link Automaton (FLA) consists of:

- A finite set *Q* of **states**
- A finite alphabet Σ
- A transition function $\varphi: Q \times (\Sigma \cup \{\times\}) \to Q$
- An initial state $q_0 \in Q$
- A set $F \subseteq Q$ of accepting states

Execution. To apply and FLA to T

- Start at the state q_0
- Read characters from T sequentially
 - if in state *q* and read character *c*:
 - if $\varphi(q, c)$ is defined, move to state $\varphi(q, c)$
 - otherwise move to state $\varphi(q, \times)$ and **re-read** c
- Return TRUE if end in "accepting" state

PollEverywhere Question

Given an FLA for a pattern *P* of length *m*, how many times could we follow failure links for a single character *c* read from *T* in the worst case?

pollev.com/comp526

Execution. To apply and FLA to T

- Start at the state q_0
- Read characters from T sequentially
 - if in state *q* and read character *c*:
 - if $\varphi(q, c)$ is defined, move to state $\varphi(q, c)$
 - otherwise move to state $\varphi(q, \times)$ and **re-read** c
- Return TRUE if end in "accepting" state

Execution. To apply and FLA to *T*

- Start at the state q_0
- Read characters from T sequentially
 - if in state *q* and read character *c*:
 - if $\varphi(q, c)$ is defined, move to state $\varphi(q, c)$
 - otherwise move to state $\varphi(q, \times)$ and **re-read** c
- Return TRUE if end in "accepting" state

FLA Running Time

More careful analysis

- If we match up to P[j], then we can only follow up to j back links
- In order to witness *j* failures, must have witnessed *j* successes!

FLA Running Time

More careful analysis

- If we match up to P[j], then we can only follow up to j back links
- In order to witness *j* failures, must have witnessed *j* successes!

Amortized cost of each character read from T

- If read character *c* is a **match**:
 - pay 1 for comparison
 - put 1 unit cost in the bank
- If read character c is a **mismatch**
 - withdraw 1 from the bank
- By analysis above account balance is always non-negative
- ⇒ amortized cost of each comparison is 2
- \implies hence overall running time of execution is O(n)

Observation. Each state q has

- 1 forward link to state q+1
- 1 fail link

Given *P*, we don't need to store forward link label:

 forward link label from q to q+1 is P[q]

Only need to store fail link state!

- this can be stored as a single array of size m
- \Rightarrow only O(m) space overhead

Definition. The **failure link array**

fail of *P* the array of *m* numbers that stores the (index of) the next state for each failure

· How do we construct it?

Definition. The **failure link array** *fail* of *P* the array of *m* numbers that stores the (index of) the next

How do we construct it?

state for each failure

• Again *x* is length of largest prefix that matches a suffix of *P*[1, *q*)

Example. P[0..6) = ababaca

\overline{q}	0	1	2	3	4	5	6
fail[q]							

```
1: procedure FailureLink(P[0, m))
 2:
         fail[0] \leftarrow 0
 3:
         x \leftarrow 0
 4:
         for j = 1, 2, ..., m-1 do
 5:
             fail[j] \leftarrow x
             while P[x] \neq P[j] do
 6:
 7:
                 if x = 0 then
 8:
                     x \leftarrow -1
                     break
 9:
10:
                 else
11:
                     x \leftarrow fail[x]
12:
                 end if
13:
             end while
14:
             x \leftarrow x + 1
15:
         end for
16: end procedure
```

Question. What is the running time of FAILURELINK on input of size *m*?

```
1: procedure FailureLink(P[0, m))
        fail[0] \leftarrow 0
 2:
 3:
       x \leftarrow 0
 4:
         for j = 1, 2, ..., m-1 do
 5:
            fail[j] \leftarrow x
            while P[x] \neq P[j] do
 6:
 7:
                if x = 0 then
 8:
                    x \leftarrow -1
 9:
                    break
10:
                else
11:
                    x \leftarrow fail[x]
12:
                end if
13:
            end while
14:
            x \leftarrow x + 1
15:
        end for
16: end procedure
```

Question. What is the running time of FAILURELINK on input of size *m*?

Observations.

- *x* incremented once per *j*
- fail[x] < x
- Each "while" iteration decrements *x*

So at most 2m updates to x

- · cf. amortized analysis
- x =bank balance

```
1: procedure FailureLink(P[0, m))
 2:
        fail[0] \leftarrow 0
 3:
        x \leftarrow 0
 4:
         for j = 1, 2, ..., m-1 do
 5:
             fail[j] \leftarrow x
             while P[x] \neq P[j] do
 6:
 7:
                 if x = 0 then
 8:
                     x \leftarrow -1
                     break
 9:
10:
                 else
11:
                     x \leftarrow fail[x]
                 end if
12:
13:
             end while
14:
             x \leftarrow x + 1
15:
        end for
16: end procedure
```

Failue Links: 3 Views

\overline{q}	0	1	2	3	4	5	6
fail[q]	0	0	0	1	2	3	0

Failue Links: 3 Views

\overline{q}	0	1	2	3	4	5	6
fail[q]	0	0	0	1	2	3	0

fail[q] is

- the max of alignments formed by shifting *P* if first mismatch at *P*[*q*]
- longest prefix of P[0, q) that is a suffix of P[1, q)

Question. How do we apply the failure link array to find a match?

Question. How do we apply the failure link array to find a match?

- Scan along *T*[0, *n*)
 - index i
- Maintain position in P[0, m)
 - index j
 - current prefix match
- When T[i] = P[j], increment i and j
- Otherwise, $j \leftarrow fail[j]$
 - unless j = 0, then $i \leftarrow i + 1$

Question. How do we apply the failure link array to find a match?

- Scan along *T*[0, *n*)
 - index i
- Maintain position in P[0, m)
 - index j
 - current prefix match
- When *T*[*i*] = *P*[*j*], increment *i* and *j*
- Otherwise, $j \leftarrow fail[j]$
 - unless j = 0, then $i \leftarrow i + 1$

```
1: procedure KMP(T[0..n), P[0..m))
        fail \leftarrow FAILURELINK(P)
 3:
         i \leftarrow 0
 4:
        i \leftarrow 0
 5:
         while i < n \, do
             if T[i] = P[q] then
 6:
 7:
                 i \leftarrow i+1, j \leftarrow j+1
 8:
                 if j = m then return i - j
 9:
             else
10:
                 if j \ge 1 then
11:
                     j \leftarrow fail[j]
12:
                 else
13:
                      i \leftarrow i + 1
14:
                 end if
15:
             end if
16:
         end while
17: end procedure
```

Analysis:

- Running time O(n+m)
 - *O*(*m*) to build *fail*
 - O(n) to apply KMP
 - analysis uses amortized analysis
- Additional space *O*(*m*)
 - just need to store fail and indices

```
1: procedure KMP(T[0..n), P[0..m))
        fail \leftarrow FAILURELINK(P)
 3:
         i \leftarrow 0
 4:
        i \leftarrow 0
 5:
         while i < n \, do
             if T[i] = P[q] then
 6:
 7:
                  i \leftarrow i+1, j \leftarrow j+1
 8:
                 if j = m then return i - j
 9:
             else
10:
                 if j \ge 1 then
11:
                     j \leftarrow fail[j]
12:
                 else
13:
                      i \leftarrow i + 1
14:
                 end if
15:
             end if
16:
         end while
17: end procedure
```

Analysis:

- Running time O(n+m)
 - *O*(*m*) to build *fail*
 - O(n) to apply KMP
 - analysis uses amortized analysis
- Additional space *O*(*m*)
 - just need to store fail and indices

Clean Takeaway:

fail[j] is the length of the longest prefix of P[0...j] that is a suffix of P[1...j]

```
1: procedure KMP(T[0..n), P[0..m))
        fail \leftarrow FAILURELINK(P)
 3:
         i \leftarrow 0
 4:
        i \leftarrow 0
 5:
         while i < n \, do
             if T[i] = P[q] then
 6:
 7:
                  i \leftarrow i+1, j \leftarrow j+1
 8:
                 if j = m then return i - j
 9:
             else
10:
                 if j \ge 1 then
11:
                     j \leftarrow fail[j]
12:
                 else
13:
                      i \leftarrow i + 1
14:
                 end if
15:
             end if
16:
         end while
17: end procedure
```

Example. Find the failure link array for P(0,8) = BCBABCBA.

i	0	1	2	3	4	5	6	7
fail[i]								

fail[j] is the length of the longest prefix of P[0..j) that is a suffix of P[1..j)

Example. Find the failure link array for P(0,8) = BCBABCBA.

i	0	1	2	3	4	5	6	7
fail[i]	0	0	0	1	0	1	2	3

Example. Find the failure link array for P[0,8) = BCBABCBA.

i	0	1	2	3	4	5	6	7
fail[i]	0	0	0	1	0	1	2	3

Interpretation. If T[i..i+j] matches P[0..j), but $T[i+j] \neq P[j]$, then fail[j] is the maximum number matches between T[i+1,i+j] and P.

Example. Find the failure link array for P[0,8) = BCBABCBA.

i	0	1	2	3	4	5	6	7
fail[i]	0	0	0	1	0	1	2	3

Interpretation. If T[i..i+j] matches P[0..j), but $T[i+j] \neq P[j]$, then fail[j] is the maximum number matches between T[i+1,i+j] and P.

Visualization. See website.

DFA vs FLA

Question. Which is better? DFA matching or KMP algorithm?

- KMP has overall running time O(n+m)
 - amortized 2 comparisons per T access
- DFA has overall running time $O(n + m|\Sigma|)$
 - 1 comparison per T access
 - $|\Sigma|$ dependence

Boyer-Moore

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have

- P[0,4) = AAAA

If we know *P*, what is the fewest number of accesses we can make to *T* to **certify** that *T* does not contain *P*?

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have

- P[0,4) = AAAA

If we know *P*, what is the fewest number of accesses we can make to *T* to **certify** that *T* does not contain *P*?

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have

- P[0,4) = AAAA

If we know *P*, what is the fewest number of accesses we can make to *T* to **certify** that *T* does not contain *P*?

Observation.

• By starting comparisons from the *end* of *P*, we could eliminate more possible alignments.

Two Heuristics

Strategy. To test match of P[0..m) with T[j..j+m), perform comparisons from *right to left*

Two Heuristics

Strategy. To test match of P[0..m) with T[j..j+m), perform comparisons from *right to left*

Heuristic 1. If we encounter T[i] that does not occur in P, shift P entirely past index i.

T:	• • •	A	В	D	С	A	A	С	A	В	С	A	•••
P:		С	Α	В	С	A							
				\rightarrow	С	Α	В	C	Α				

Two Heuristics

Strategy. To test match of P[0..m) with T[j..j+m), perform comparisons from *right to left*

Heuristic 1. If we encounter T[i] that does not occur in P, shift P entirely past index i.

Heuristic 2. If we match on a suffix of *P* but mismatch at index *i*, shift *P* to next alignment of suffix.

Combining these heuristics gives the **Boyer-Moore algorithm**

- Compare alignments from right to left
- If we encounter T[i] that does not occur in P, shift P entirely past index i.
- If we match on a suffix of P but mismatch at index i, shift P to next alignment of suffix

	T:	• • •	A	В	D	С	A	A	С	A	В	С	A	• • •
	P:		С	A	В	С	A							
					\rightarrow	C	A	В	C	A				
	T:	• • •	A	В	D	С	A	A	С	A	В	С	A	• • •
,	P:					С	A	В	С	Α				
								\rightarrow	C	Α	В	C	Α	

Combining these heuristics gives the **Boyer-Moore algorithm**

- Compare alignments from right to left
- If we encounter T[i] that does not occur in P, shift P entirely past index i.
- If we match on a suffix of P but mismatch at index i, shift P to next alignment of suffix

Features of this approach:

- Worst-case running time on P[0..m) and T[0..n) is $\Theta(nm)$
 - achieved if all instances of P must be reported
 - can be improved to $\Theta(n+m+|\Sigma|)$ with some care if T does not contain P

Combining these heuristics gives the **Boyer-Moore algorithm**

- · Compare alignments from right to left
- If we encounter *T*[*i*] that does not occur in *P*, shift *P* entirely past index *i*.
- If we match on a suffix of P but mismatch at index i, shift P to next alignment of suffix

Features of this approach:

- Worst-case running time on P[0..m) and T[0..n) is $\Theta(nm)$
 - achieved if all instances of P must be reported
 - can be improved to $\Theta(n+m+|\Sigma|)$ with some care if T does not contain P
- · Typical running time can be much better!
 - For some *random* string models, expected running time is O(n/m)
 - For English text, typically uses $\sim 0.25n$ comparisons if no match

Combining these heuristics gives the **Boyer-Moore algorithm**

- · Compare alignments from right to left
- If we encounter *T*[*i*] that does not occur in *P*, shift *P* entirely past index *i*.
- If we match on a suffix of P but mismatch at index i, shift P to next alignment of suffix

Features of this approach:

- Worst-case running time on P[0..m) and T[0..n) is $\Theta(nm)$
 - achieved if all instances of P must be reported
 - can be improved to $\Theta(n+m+|\Sigma|)$ with some care if T does not contain P
- Typical running time can be much better!
 - For some *random* string models, expected running time is O(n/m)
 - For English text, typically uses $\sim 0.25n$ comparisons if no match
- Space overhead is $\Theta(m + |\Sigma|)$

- Brute Force:
 - · simplest description
 - $\Theta(nm)$ running time
 - O(1) space overhead

- Brute Force:
 - simplest description
 - $\Theta(nm)$ running time
 - O(1) space overhead
- DFA
 - few comparisons (worst case)
 - $\Theta(n+m|\Sigma|)$ running time
 - Θ(m|Σ|) space overhead (DFA table)

• Brute Force:

- · simplest description
- $\Theta(nm)$ running time
- O(1) space overhead

• DFA

- few comparisons (worst case)
- $\Theta(n+m|\Sigma|)$ running time
- Θ(m|Σ|) space overhead (DFA table)

Knuth-Morris-Pratt

- · simple description
- Θ(n+m) running time (inc. all occurrences)
- Θ(m) space overhead (fail array)

• Brute Force:

- simplest description
- $\Theta(nm)$ running time
- *O*(1) space overhead

DFA

- few comparisons (worst case)
- $\Theta(n+m|\Sigma|)$ running time
- $\Theta(m|\Sigma|)$ space overhead (DFA table)

• Knuth-Morris-Pratt

- · simple description
- Θ(n+m) running time (inc. all occurrences)
- Θ(m) space overhead (fail array)

Boyer-Moore

- efficient in practice (English text)
- Θ(nm) worst case to find all occurrences, can be as small as O(n/m)
- $\Theta(m)$ overhead

• Brute Force:

- · simplest description
- $\Theta(nm)$ running time
- *O*(1) space overhead

DFA

- few comparisons (worst case)
- $\Theta(n+m|\Sigma|)$ running time
- $\Theta(m|\Sigma|)$ space overhead (DFA table)

• Knuth-Morris-Pratt

- · simple description
- Θ(n+m) running time (inc. all occurrences)
- Θ(*m*) space overhead (fail array)

• Boyer-Moore

- efficient in practice (English text)
- Θ(nm) worst case to find all occurrences, can be as small as O(n/m)
- $\Theta(m)$ overhead

Rabin-Karp

- based on hashing
- generalizes beyond one-dimensional strings
- expected running time O(n+m)
- O(1) space overhead

Next Time

Data Compression!

 How much space do we need to store our data?

Scratch Notes