O T N | L1

0000000000000000000000000JOCUOQO000O00000000000001000G500000000000000000QQ0ROVON
125456 78 9100 12131 1516 1161920 21 22232 25 26 21 28 29 3 31 32 33 34 35 36 37 38 39 40 41 42 &0 44 45 46 &7 43 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 67 68 63 70 71 72,73 74 75 75 17 8 79 80
1] ARRRERREEE NI RN RRRRREI Al ARl | Rl ARRRR RN R R R R R R R SRR AR R R R
2202222222222222022222222002222222220022
33333333333333333W3333333333333333P333]3
4444444444444444444444044444040444404J444444404844440404444448444444444440444]44
555555555555 5555550555555 555 Mo9555055555555555555555585555555555555555555555

66666666 66M66366666666656R6666666

Lecture 12: String Matching Il

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: November 12, 2024 University of Liverpool

1/22

Announcements

1. Programming Assignment 1 DUE WEDNESDAY

* Use updated testing code (from last Wednesday) &~
° Submission through Canvas

* Only submit pe=tester—py Pr—SDf\'d' ?Y
* Late Policy: 5% off per day down to 50%

2. Quiz due Friday
* Covers string matching
O Z}'ncluding today's lecture-l X<
® 2 questions (multiple choice)

3. Attendance Code:

1734786

2/22

Meeting Goals

Discuss String Matching procedures:
* Knuth-Morris-Pratt <
* Boyer-Moore —

3/22

The String Matching Problem

Input: Output:
* Atext Te X" oflength n * The index of the first
* Apattern Pe X* of lengthpm occurrence of Pin T
L
T [T, LT T
Tt r,

P L]

4/22

The String Matching Problem

Input: Output:
* Atext Te X" oflength n * The index of the first
* Apattern Pe X* of length m occurrence of Pin T

Last Time. Search with DFA

' 224545 6
Example: T = abababac

4/22

T

The String Matching Problem Ty
"
Input: Output:
* Atext Te X" oflength n * The index of the first
* Apattern Pe X* of length m occurrence of Pin T

Last Time. Search with DFA

Iy fuwm o+
_— " bt ld DeA

4
Result: Search in time O(n with space overhead||Z| m

4/22

Knuth-Morris-
Pratt

Failure Link Automaton

DFA efficiency.
* Space/time to build DFA: ©(m|X|)

¢ Time to execute DFA: O(n)
= Overall time is ©(n+ m|X|)

* additional space overhead is © (m|Z])

Question. Can we perform string matching in time O(n) with less space
overhead?

6/22

Failure Link Automaton

DFA efficiency.
* Space/time to build DFA: ©(m|X|)
¢ Time to execute DFA: O(n)

= Overall time is ©(n+ m|X|)
* additional space overhead is © (m|Z])

Question. Can we perform string matching in time O(n) with less space
overhead?

Idea. When comparison fails, don’'t have a separate transition for each
failing character

* Just record failure and “shift” pattern as far forward as possible

6/22

Failure Link Automaton

Example X = oy WMiswakcW
* T = aababaababacaa B“ wismakcw oy v\«o\\(,?\\\t\q
* P = ababaca Soma. Chav A T o.qasvl
¢d X - X >
o 3%l 1 43 b M NG a @
X % X
\M&\;w&c"‘
text | a| @ ® @ D @|® @ al bla|c|a|a
states,LOLesus—?Zf)ng?q,
1 |
O
2 5

7122

States and Shifts

b a c a \/
al-b-a<b —-a—-c-a

Correspondence: matches increment 7 index i, mismatches shift P
* shift amount aligns largest possible number of matches

8/22

FLA Execution

A Failure Link Automaton (FLA) W

consists of: {—1‘ S O :
* Afinite set Q of states — § of wodl QW /W] 5
* Afinite alphabet = e ol 9 e

* A transition function Q. cull wt W\d}/)‘
0:Qx Eufx))—Q sk T
* Aninitial state go € Q

* Aset F < Qof accepting states

9/22

FLA Execution

A Failure Link Automaton (FLA)
consists of:

* A finite set Q of states

* Afinite alphabet =

* A transition function
P:QxZu{x})—Q

* An initial state gy € Q

* Aset F < Qof accepting states

Execution. To apply and FLAto T

e Start at the state qg

* Read characters from T
sequentially 4\'614 ¥
* ifin state g and read C’Vf
character c . o
. R
if (p(q, ¢) isjdefined/ move
to state ¢(q, ¢
* otherwise move to state

* Return TRUE if end in
“accepting” state

9/22

FLA Execution

Execution. To apply and FLAto T

PollEverywhere Question * Start at the state qo

Given an FLA for a pattern P of * Read c}?rﬁcters from T
. sequentia

length m, how many times could ! B }‘Z g and read

. . . * ifin state g and rea
we follow failure links fo‘r a single character c:
character cread from T in the 5 Hrline) o dlefinel, meve
worst case? to state ¢(qg, ©)

* otherwise move to state

@(q, x) and re-read ¢

¢ Return TRUE if end in

“accepting” state

pollev.com/comp526

9/22

FLA Execution

2~ Execution. To apply and FLAto T
e Start at the state qg

e~ _ 6N (
@-9 @._ RREE N | * Read characters from T
sequentially
L/_\(/—J * if in state g and read
M S-\a\.(ﬁ character c:
o * if p(g, ¢) is defined, move
5 ™M l @03% \\OKL to state ¢(q, ¢)
. ¢ otherwise move to state
pb-\ (\h(‘ej ¢(q,) and re-read ¢
) ® Return TRUE if end in
Nouve Oww.\\/ Ss “accepting” state

ot Gow T - pAG—AB

= @ \(‘wwu\c(\’W\—L?

FLA Running Time

More careful analysis
* If we match up to P[j], then we can only follow up to j back links

* In order to witness j failures, must have witnessed j successes!

10/22

FLA Running Time

More careful analysis
* If we match up to P[j], then we can only follow up to j back links

* In order to witness j failures, must have witnessed j successes!

Amortized cost of each character read from T

e Ifread character cis a match: fPQ\{ @ -Cr ‘MW i dAB
* pay 1 for comparison v/ L
* put 1 unit cost in the bank Vv n el

e Ifread character cis a mismatch P w e aw "
* withdraw 1 from the bank WS Wt

* By analysis above account balance is always non-negative
—> amortized cost of each comparison is|:27
- hence overall running time of execution is O(n)
Waist Case —> Zu Wwpodsons Wan
Yowdhewg QW T(0,.M. 0

FLA Construction Shr e
(mﬁﬁwlm—w%w
e 1 forward link to state g+ 1

e 1] fail link 'PE‘{]
Given P, we don’t need to store
7 ”’9@

forward link label:

e forward link label from g to X
g+1is Plq] N st
Only need to store fail link state!
* this can be stored as a single

array of size m S Isco N
— only O(m) space overhead P Y
(VN AV (NG
Ll [4T st
W (¢ \h.u"(;\'\
‘(b(xck. l(\AlL b WO
QNS (h - 11/22

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure

* How do we construct it?

11/22

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure

* How do we construct it?

* Again xis length of largest prefix that

matches a suffix ol f 1 ﬂ-)],
Example. P[0..6) = gbabaca

g |0 1 2 3 4 5 6

failg |00 O | Z 30

1: procedure FAILURELINK(P[0, m))
2: ~ faill0] —0

3,]);—[0] — ok vk
4 forj=12)...,m—1do -

5: 2 failljl — x

6 while P[x] # P[j] do

7 if x=0 then

8 Fe= =l

9: break

10: else
11: | X — fail[x] U\QAO\(‘-;O /l
12: end i

13: end while

14: Fox+17)
15: end for

16: end procedure

11/22

FLA Construction

Question. What is the running
time of FAILURELINK on input of
size m?

1: procedure FAILURELINK(P[0, m))

28 faill0] — 0

3: x—0

4: forj=1,2,...,m—-1do

5: failljl — x

6: while P[x] # P[j] do

7 if x = 0 then

8: x——1

9: break ot
10: else dbcl
11: X — fail[x]
12: end if
13:

—
5

end while
!x<—x+l l % %’lh
15: end for \\r\dU/"""J—z(&

16: end procedure

11/22

FLA Construction

Question. What is the running
time of FAILURELINK on input of
size m?
Observations.

* xincremented once per j

* faillx] <x

e Each “while” iteration
decrements x

So at most 2m updates to x
* cf. amortized analysis

* x = bank balance

—

1: procedure FAILURELINK(P[0, m))

10:
11:
12:
13:
14:
15:

2
3
4
5:
6:
7.
8
9

faill0] — 0
x—0
forj=1,2,...,m—-1do
failljl — x
while P[x] # P[j] do
if x = 0 then
x——1
break
else
X — fail[x]
end if
end while
X—X%+'1
end for

16: end procedure

= @(M) (‘uwu/\fij huac

11/22

Failue Links: 3 Views

0N1\2 3 4 5 6

q

failg [0 OO D) Q@ (0 -

|

12/22

Failue Links: 3 Views

faillql is

* the max of alignments
formed by shifting P if first
mismatch at P[q]

q 01 2 3 4 5 6 *|[Tongest prefix of P[0, g) tha
failg [0 0 0 1 2 3 0 is a suffix of P11, g)

12/22

KMP Algorithm

Question. How do we apply the
failure link array to find a match?

13/22

KMP Algorithm

Question. How do we apply the
failure link array to find a match?
e Scan along T10, n)
° indexi
* Maintain position in P[0, m2)
* indexj
° current prefix match
* When T1[i] = P[j], increment i
and j
* Otherwise,|j — failljl
* unlessj=0,theni—i+1

13/22

KMP Algorithm

Question. How do we apply the
failure link array to find a match?
e Scan along T10, n)
° index i
* Maintain position in P[0, m2)
* indexj
° current prefix match
* When T1[i] = P[j], increment i
and j
* Otherwise, j — failljl
* unlessj=0,theni—i+1

1: procedure KMP(T(0..n), P[0..m))

2: fail— FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else
10: if j= 1 then
11: J— faillj]
12 else
13 i+ 13
14 end if
15 end if

16: end while
17: end procedure

13/22

KMP Algorithm

Analysis:
* Running time O(n+ m)
* O(m) to build fail
* O(n) to apply KMP
° analysis uses amortized
analysis

¢ Additional spaceéz(m) l

* justneed to store fail and
indices

SaR

1: procedure KMP(T(0..n), P[0..m))

2: i}~ FAILURELINK(P) j GWW'\
: i—0
4: j<=0
5: while i < ndo ’T
6: if T[i] = P[q] then 6@\\
s i—i+l,j—j+1
8: if j = mthen return i —|j
9: else
10: if j= 1 then
11: J— faillj]
12: else
13: i—i+1
14: end if
155 end if ‘/J
16: end while

17: end procedure

13/22

: S
KMP Algorithm Fe T

Analysis:
° Runnlng time O(n 4L m) 1: procedure KMP(T[O”), P[Om))
* O(m) to build fail 2: fail — FAILURELINK(P)
* O(n) to apply KMP i]z: g
C analysi.s uses amortized 5 while i < ndo
analysis 6: if T[i] = Pg] then
* Additional space O(m) 7 =i+l j—j+1
* just need to store fail and 8 : At e Y
indices J: ese
10: if j= 1 then
Clean Takeaway: 11: Jj— faillj]
fail[]) is the length of the longest 12: else
. 13: i—i+1
prefix of P[0..]) that is a suffix of ” endiif
P[1..j] 15: end if

16: end while

17: end procedure

13/22

KMP Example

Example. Find the failure link array for P[0, 8) = BCBABCBA.

S
i Jof1]2]3[W[5]6]7

fail[l]o(:)oq.o{l'25

faillj] is the length of the longest prefix o£ P[0..)) that is a suffix of P[1..))

[Bgancs?

14/22

KMP Example

Example. Find the failure link array for P[0, 8) = BCBABCBA.

i |0]|1|2|3|4|5|6]|7
faillii |0 0|0 [1|0|1|2]|3

14/22

KMP Example

Example. Find the failure link array for P[0, 8) = BCBABCBA.

2
i |0[1]2(3]|4]|5|6|7

faifqi [ololo[1[0o]1]2]3

Interpretation. If T'[i..i+ j) matches P[0..j), but T[i+ j] # P[jl, then
fail[j] is the maximum number matches between T[i+ 1,i+ j] and P.

oslllocBllwc) &)]
a» Q|o
oclllos Blloc IEN
>0 >
losBllos]

O »

14/22

KMP Example

Example. Find the failure link array for P[0, 8) = BCBABCBA.

i |o]1]2[3[4[5]6]7
faifqi [ololo[1[0o]1]2]3

Interpretation. If T'[i..i+ j) matches P[0..j), but T[i+ j] # P[jl, then
fail[j] is the maximum number matches between T[i+ 1,i+ j] and P.

1 2
B C

W o w
O > w
oslllocBllwc) &)]
a» Q|o
oclllos Blloc IEN
>0 >

B A
B C B A

Visualization. See website. ~ Spot Hie b‘/\%'

14/22

DFA vs FLA

Question. Which is better? DFA matching or KMP algorithm?
e KMP has overall running time O(n + m) \ \/
* amortized 2 comparisons per T access
* DFA has overall running time O(n+ m|Z|)

* 1 comparison per T access —
* |X| dependence —

15/22

Boyer-Moore

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have
* P[0,4) = AAAA Y

e T[0,14) =BB BBBBBBBBB
If we know P, wga 1S the fewest number of accesses we can make to T

to certify that T does not contain P?

17/22

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have
* P[0,4) = AAAA
e T[0,14) = BBBBBBBBBBBBBB

If we know P, what is the fewest number of accesses we can make to T’
to certify that T does not contain P?

? 2 ? 2 2 B 2 2 2 B 2 ?
A A

A A A A
A A A A

17/22

Beyond Worst-Case Pattern Matching?

A Puzzle. Suppose we have
* P[0,4) = AAAA
e T[0,14) = BBBBBBBBBBBBBB

If we know P, what is the fewest number of accesses we can make to T’
to certify that T does not contain P?

? 2 2 [Bf 2
)AAAA

Observation.

e By starting comparisons from the end of P, we could eliminate
more possible alignments.

17/22

Two Heuristics

Strategy. To test match of P[0..m) with T7j..j+ m), perform
comparisons from right to left

18/22

Two Heuristics

Strategy. To test match of P[0..m) with T7j..j+ m), perform
comparisons from right to left

Heuristic 1. If we encounter 7[i] that does not occur in P, shift P
entirely past index i.

e
T. - | D|[C[AJA C A B CA
P: (C_A B [c A

- C A B C A

18/22

Two Heuristics

Strategy. To test match of P[0..m) with T7j..j+ m), perform
comparisons from right to left

Heuristic 1. If we encounter 7[i] that does not occur in P, shift P
entirely past index i.

T -« A B D C A A C A B C A
p: C A B C A
—- C A B C A

Heuristic 2. If we match on a suffix of P but mismatch at index i, shift
P to next alignment of suffix.

T. -~ A B D C AFA[C A B [EY]AY -
CHW T A
—~ C A

18/22

Boyer-Moore Algorithm

Combining these heuristics gives the Boyer-Moore algorithm
* Compare alignments from right to left
¢ Ifwe encounter T7[i] that does not occur in P, shift P entirely past index i.
¢ If we match on a suffix of P but mismatch at index i, shift P to next alignment of

suffix
T -« A B D C A A C A B C A
P: C A B C A
— C A B C A
T A B D C A A C A B C A
P C A B C A
—- C A B C A

19/22

Boyer-Moore Algorithm

Combining these heuristics gives the Boyer-Moore algorithm
* Compare alignments from right to left
¢ If we encounter T[i] that does not occur in P, shift P entirely past index i.
¢ If we match on a suffix of P but mismatch at index i, shift P to next alignment of
suffix
Features of this approach:
* Worst-case running time on P[0..m) and T[0..n) i

¢ achieved if all instances of P must be reported
* can be improved to ©(n+ m+ |Z|) with some care if 7' does not
. ——
contain P

19/22

Boyer-Moore Algorithm

Combining these heuristics gives the Boyer-Moore algorithm
* Compare alignments from right to left
* Ifwe encounter T[i] that does not occur in P, shift P entirely past index i.
¢ If we match on a suffix of P but mismatch at index i, shift P to next alignment of
suffix
Features of this approach:
* Worst-case running time on P[0..m) and T[0..n) is ©(nm)
¢ achieved if all instances of P must be reported
* can be improved to ©(n+ m+ |Z|) with some care if 7' does not
contain P
e Typical running time can be much better!

* For some random string models, expected running time is|
* For English text, typically uses ~ 0.25n comparisons if no match

19/22

Boyer-Moore Algorithm

Combining these heuristics gives the Boyer-Moore algorithm
* Compare alignments from right to left
¢ If we encounter T[i] that does not occur in P, shift P entirely past index i.
¢ If we match on a suffix of P but mismatch at index i, shift P to next alignment of
suffix
Features of this approach:
* Worst-case running time on P[0..m) and T[0..n) is ©(nm)

¢ achieved if all instances of P must be reported
* can be improved to ©(n+ m+ |Z|) with some care if 7' does not
contain P

e Typical running time can be much better!

* For some random string models, expected running time is O(n/m)
* For English text, typically uses ~ 0.25n comparisons if no match

* Space overhead is ©(m+ |Z|) €

19/22

Summary of String Matching

* Brute Force:
* simplest description
* ©(nm) running time
* O(1) space overhead

20/22

Summary of String Matching

¢ Brute Force:

°* DFA

simplest description
O(nm) running time
O(1) space overhead

few comparisons (worst
case)

O(n+ m|Z|) running time
O(m|Z|) space overhead
(DFA table)

20/22

Summary of String Matching

¢ Brute Force:

°* DFA

simplest description
O(nm) running time
O(1) space overhead

few comparisons (worst
case)

O(n+ m|Z|) running time
O(m|Z|) space overhead
(DFA table)

¢ Knuth-Morris-Pratt

simple description

O(n+ m) running time
(inc. all occurrences)
©(m) space overhead (fail
array)

20/22

Summary of String Matching

¢ Brute Force:

°* DFA

simplest description
O(nm) running time
O(1) space overhead

few comparisons (worst
case)

O(n+ m|Z|) running time
O(m|Z|) space overhead
(DFA table)

¢ Knuth-Morris-Pratt

simple description

O(n+ m) running time
(inc. all occurrences)
©(m) space overhead (fail
array)

* Boyer-Moore

¢ efficient in practice
(English text)

* ©(nm) worst case to find
all occurrences, can be as

)

small as O(n/m)

* O(m) overhead *
Atd)

20/22

Summary of String Matching

¢ Brute Force:
* simplest description
* ©(nm) running time
* (O ppace overhead
* DFA
* few comparisons (worst
case)
* O(n+ m|Z|) running time
* O(m|Z]) space overhead
(DFA table)
* Knuth-Morris-Pratt
* simple description
* O(n+ m) running time
(inc. all occurrences)
* O(m) space overhead (fail
array)

* Boyer-Moore

¢ efficient in practice
(English text)

* ©(nm) worst case to find
all occurrences, can be as
small as O(n/m)

* ©(m) overhead

¢ Rabin-Karp

* based on hashing

* generalizes beyond
one-dimensional strings

® expected running time

{O(n+ m)S

* | O(1) space overhead

—

20/22

Next Time

Data Compression!

* How much space do we need to store our
data?

21/22

Scratch Notes

22/22

