11 1 m 1 m 1]]
00000000000000000F00000000FGCUCEO0O0E000000000060000iI000800000000000000000ggoRoo]
123456 78 310012131 1516 1716192021 2223242526 272829 2% 3132 33 34 35 36 37 38 39 40 41 42 41 44 45 46 47 4 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT BRI ERRRRRY B ERRRRRI [R ERRER AR R RN R RN R RN R RN R R R RS AR R R R RRRERERRERRRT!
2202222222222222222222220222
3333233332333[3
A0444480444440404000444400444400444444404408404444040444444440444444402044444044
555555555555 505555505 5055555 QN5 5M555555555555555556555555555555555555555555555

66666666 66M66%66666666656R6666666

Lecture 11: String Matching I

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: November 7, 2024 University of Liverpool

1/28

Announcements

1. NO QUIZ THIS WEEK!

2. Programming Assignment Posted
¢ TESTING CODE UPDATED

* small bugin tritonic array generation
* download new version

* Due Wednesday, 13 November
3. Attendance Code:

2/28

Meeting Goals

Discuss String Matching procedures:
* Brute Force
* DFA procedure
* Knuth-Morris-Pratt

3/28

String Matching

The String Matching Problem

Input:
* Atext TeX* oflength n
* Apattern Pe X* of length m (typically m < n)

Output:

¢ The index of the first occurrence of Pin T, or —1 if T does not
contain P as a substring:

* min{i| T[i, i+ m) = P}

Example.

e T=10110011011101
e P =1101

® Qutput: i—6
e P, =000

¢ Output: i — -1

5/28

Brute Force
Matching

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1
Check if match at i:
e is T[i,i+ m) = P?
e verify each character individually

Cost = number of comparisons made

7128

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1

Check if match at i:
° isT[i,i+m)=P?
e verify each character individually
1: procedure VERIFYMATCH(T, P, i)
2: j<=0
3 while j < mdo
4 if T[i+ j] # P[j] then
) return FALSE
6 end if
7: j—j+1
8 end while
9
10:

return TRUE
end procedure

Cost = number of comparisons made

7128

Brute Force Matching

Guess an index i where a match might occur
* Possible guesses i=0,1,...,n—m—1
Check if match at i:

° 11 3 .4_ — I)? .
is T[i, i+ m) PollEverywhere Question

e verify each character individually
1: procedure VERIFYMATCH(T, P, i) What are the worst case and
2. j—0 best case running times of
3: whilej<mdo VERIFYMATCH?
4 if T[i+ j] # P[j] then
5: return FALSE
6: end if
7 j—j+1
8 end while
9 return TRUE
0: end procedure pollev.com/comp526

1

Cost = number of comparisons made

7128

https://pollev.com/comp526

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1
Check if match at i:

* is T[i i+ m) = P? Best and Worst Cases:

e verify each character individually
1: procedure VERIFYMATCH(T, P, i)
2: j<=0
3 while j < mdo
4 if T[i+ j] # P[j] then
5) return FALSE
6 end if
7: j—j+1
8 end while
9 return TRUE
10: end procedure

Cost = number of comparisons made

7128

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1
Check if match at i:
e is T[i,i+ m) = P?
e verify each character individually

Cost = number of comparisons made
Brute force. Guess and check every value
i=0,1,...,n—-m-1
* Worst case running time is ©(nm)
* What is example has cost Q(nm)?

* Best case cost is O(m)

7128

Brute Force Example

Example
* T = abbbababbab
* P=abba
0 1 2 3 4 5 6 7 8 9 10

a'b/b/bjlal/bja/b|b|a|b

procedure
BRUTEFORCEMATCH(T, P)
fori=0,1,...,n—m—1do
if VERIFYMATCH(T, P, i) then
return i
end if
end for
return —1
end procedure

8/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

9/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

9/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

¢ (Claim: brute force search running time is now O(n)

¢ In fact, at most 2n comparisons made!
* Why?

9/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

¢ (Claim: brute force search running time is now O(n)
¢ In fact, at most 2n comparisons made!
* Why?

* Which of these comparisons were unnecessary?
* How can you search with fewer comparisons?

9/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

¢ (Claim: brute force search running time is now O(n)
¢ In fact, at most 2n comparisons made!
* Why?

* Which of these comparisons were unnecessary?
* How can you search with fewer comparisons?

More generally: How can we use results of previous comparisons to
avoid making unnecessary comparisons in the future?

* Goal: never re-read a character from 7!

9/28

Matching with a
DFA

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

a a b a b a b b a b a b a c a a

Idea:
¢ Scan through T keeping track of current matches
* Each new character T read, compare it to next character of P
e If mismatch slide P so that longest prefix of P matches

11/28

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

b a b b a b a b a c a a

b a
a b a c a

a a
a b

Idea:
¢ Scan through T keeping track of current matches
* Each new character T read, compare it to next character of P
e If mismatch slide P so that longest prefix of P matches

11/28

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

a a b a b a b b a b a b a c a a
a b a b a c a
a b a b a c a

Idea:
¢ Scan through T keeping track of current matches
* Each new character T read, compare it to next character of P
e If mismatch slide P so that longest prefix of P matches

11/28

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

a a b a b a
a b a b a c
a b a b a
a b a

Idea:

a

* Scan through T keeping track of current matches

* Each new character T read, compare it to next character of P

e If mismatch slide P so that longest prefix of P matches

11/28

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

a a b ab ab b ab a b a c a a
a b a b a c a
a b a b a c a
a b a b a c a

a b a b a c a

Idea:
* Scan through T keeping track of current matches
* Each new character T read, compare it to next character of P
e If mismatch slide P so that longest prefix of P matches

11/28

Representing States and Matches

Question. What information do we need to compute and store to
determine next comparison?

12/28

Representing States and Matches

Question. What information do we need to compute and store to
determine next comparison?
* How many matches in P have we made so far?

* What what is the longest matching prefix for each possible next
characterin T

¢ if we read character x, how far do we need to “slide” P to match a
prefix?

12/28

Representing States and Matches

Question. What information do we need to compute and store to
determine next comparison?

* How many matches in P have we made so far?

* What what is the longest matching prefix for each possible next
characterin T
¢ if we read character x, how far do we need to “slide” P to match a
prefix?

Information to store
* states that represent number of matches with current prefix of P

* transitions from current state to next states, depending on next
character read from T

Note. This information depends only on the pattern P, not the text T.

12/28

DFAs

A Deterministic Finite Automaton (DFA) consists of:
* A finite set Q of states
* A finite alphabet =
* A transition function§: Qx X~ — Q
* An initial state gy € Q

* Aset F < Qof accepting states

13/28

DFAs

A Deterministic Finite Automaton (DFA) consists of:
* A finite set Q of states
* A finite alphabet =
* A transition function§: Qx X~ — Q
* An initial state gy € Q

* Aset F < Qof accepting states

Interpretation. A DFA is used to determine if a string (text) 7" has some
property (e.g., containing a pattern P):
e Start at the state ¢

* Read characters from T sequentially
* ifin state g and read character ¢, move to state 6 (g, o)

* Return TRUE if end in “accepting” state

13/28

DFA Example

Example

e T = aabacaababacaa

* P = ababaca

text |ala|bla|lc|lala|b|la|blal|lc|ala
state

14/28

DFA Efficiency

PollEverywhere Question

Given a DFA for matching

P[0, m) in T[0, n), what is the
running time of applying the
DFA? Assume following links is

O(1) time.
1. ©(nm) 3. O(n+m)
2. O(nlogm) 4. O(n)

pollev.com/comp526

15/28

https://pollev.com/comp526

DFA Efficiency
Observe: If we are given a DFA, PollEverywhere Question

executing it Given a DFA for matching

P[0, m) in T[0, n), what is the
running time of applying the
DFA? Assume following links is

¢ reads each character of T once

* updates state once per
character

O(1) time.
e running time O(n)
So the overall running time for R g(n:n) 3. Ot m
pattern matching with a DFA is 2. Onlogm) a—
O(n)+ time to build DFA
* assuming computation of § is
o(1).

pollev.com/comp526

15/28

https://pollev.com/comp526

DFA Efficiency
Observe: If we are given a DFA, PollEverywhere Question

executing it Given a DFA for matching

P[0, m) in T[0, n), what is the
running time of applying the
DFA? Assume following links is

¢ reads each character of T once

* updates state once per
character

O(1) time.
e running time O(n)
1. © 3. 0
So the overall running time for 5 @(n:n) A ®(n+)
pattern matching with a DFA is - Olnlogm) o &l
O(n)+ time to build DFA
* assuming computation of § is
o(1).

But how do we build the DFA?
pollev.com/comp526

15/28

https://pollev.com/comp526

DFA Interpretation & Construction

Semantic Question. What does it mean to be in state g?

16/28

DFA Interpretation & Construction

Semantic Question. What does it mean to be in state g?
e Current position in T matches P up to the first g characters
e Symbolically T[j— g+ 1,j] = P[0,)

Question. What happens when we read T'[j+1]?

16/28

DFA Interpretation & Construction

Semantic Question. What does it mean to be in state g?
e Current position in T matches P up to the first g characters
e Symbolically T[j— g+ 1,j] = P[0,)

Question. What happens when we read T'[j+1]?
e If T[j+ 1] = P[gql, transition to state g+ 1

* If T[j+ 1] # Plgl, find the length ¢ < g of the longest prefix of P
that matches T[j— ¢, j+ 1] that matches P[0, ¢)
a a b a b ab b ab ab a c a a
a b a b a c a
a b a b a c a

16/28

DFA Interpretation & Construction

Semantic Question. What does it mean to be in state g?
e Current position in T matches P up to the first g characters
e Symbolically T[j— g+ 1,j] = P[0,)

Question. What happens when we read T'[j+1]?
e If T[j+ 1] = P[gql, transition to state g+ 1

* If T[j+ 1] # Plgl, find the length ¢ < g of the longest prefix of P
that matches T[j— ¢, j+ 1] that matches P[0, ¢)
a a b a b ab b ab ab a c a a
a b a b a c a
a b a b a c a

e Insight: if T[j+ 1] = c this is the same as matching P[0..q] against
P[l..g)c

* we can use the DFA constructed so far to find this!

16/28

DFA Interpretation & Construction

* Insight: if T[j+ 1] = c this is the same as matching P[0..q] against
Pll..g9)c
¢ we can use the DFA constructed so far to find this!
Inductive Construction.
¢ Start with states 0 and 1 with
1 ifP[0]=c

0 otherwise.

6(0,c)={

* Once we've constructed DFA up to state g:
* take d(q, Plql) =q+1
* for ¢ # P[ql, find 6 (g, ¢) by applying DFA to P[1, g)c

16/28

DFA Interpretation & Construction

e Insight: if T[j+ 1] = c this is the same as matching P[0..q] against
Pll..g9)c
° we can use the DFA constructed so far to find this!
* Once we've constructed DFA up to state g:
* take d(q, Plql) = q+1
* for ¢ # Plql, find 6 (g, ¢) by applying DFA to P[1, g)c
Example. Compute (5, a) for P = ababaca.

16/28

DFA Interpretation & Construction

e Insight: if T[j+ 1] = c this is the same as matching P[0..q] against
Pll..g)c
* we can use the DFA constructed so far to find this!
Inductive Construction.
¢ Start with states 0 and 1 with
S0 = {1 if P[0] = ¢

0 otherwise.

* Once we've constructed DFA up to state g:
e take d(q, Plql) =q+1
e for ¢ # Plql, find 6(g, ¢) by applying DFA to P[1, g)c
Analysis (idea).
¢ Argue by induction on g that the DFA enters state g on reading
T1j] if and only if g is the largest number such that
Tlj—q+1,jl=P[0,q).

16/28

DFA Lookup Table Construction

DFA diagrams are great for humans, but not so great for computers...

17/28

DFA Lookup Table Construction

DFA diagrams are great for humans, but not so great for computers...
Problems.

1. How do we represent the DFA
in a computer friendly format?

2. How do construct the DFA in
that format efficiently?

17/28

DFA Lookup Table Construction

Problems.
1. How do we represent the DFA
in a computer friendly format?
2. How do construct the DFA in
that format efficiently?
Solutions.

1. Store a lookup table 6[]]

* columns = states, rows =
characters
* 6lqgllcl —6(q, 0

17/28

DFA Lookup Table Construction

Problems.

1. How do we represent the DFA
in a computer friendly format?

2. How do construct the DFA in
that format efficiently?

Solutions.

1. Store a lookup table 6[]]
* columns = states, rows =
characters
* blgllcl —6(q,0)
2. Compute column by column
* trick: keep track of state for
P[1, g) because we'll reuse
this for each P[1, g)c

17/28

DFA Lookup Table Construction

Solutions.
1. Store a lookup table 6[]]
* columns = states, Tows =
characters
* 6lqllcl —6(q,c)
2. Compute column by column
* trick: keep track of state for
P[1, q) because we'll reuse
this for each P[1, g)c
* Xxislargest value with
P[0,x) = Plg—x,q]

10:
11:
12:
13:
14:

1:
2:
3
4:
5:
6:
7
8
9

procedure CONSTRUCTDFA (P[0..1m))
for ce X do
6[0][c] — 0O
end for
6[0][P[0]] <1
x<—0
forg=1,2,...,m—1do
for ce X do
élqgllcl — blxllcl
end for
Olql[Plql]l — q+1
x— 6[xI[Plql]
end for
end procedure

17/28

DFA Lookup Table Construction

Example. P[0..6) = ababaca

ocg) |0 1 2 3 4 5 6
Plge la b a b a c a
a
b
c

1: procedure CONSTRUCTDFA(P[0..m))
25 for ce X do
3 0[0][c] <=0
4: end for
5: 0[0][P[0]] — 1
6: x—0
7 forg=1,2,...,m—1do
8 for ce X do
9 olqllc] —6[xl[c]
10: end for
11: 6[ql[Plgll —g+1
12: x—O[x][Plqgl]
13: end for

14: end procedure

17/28

DFA Lookup Table Construction

2 1: procedure CONSTRUCTDFA(P[0..m))
PollEverywhere Question B emee g
What is the running time of 3 6[01[c] — 0
CONSTRUCTDFA when P has ‘51' g‘[‘(g[f;)’[ron :
length mand |X| = s? e
7 forg=1,2,...,m—1do
8 for ce X do
9 6lgllc] < blxllcl
10: end for
11: O[ql[Plgll —g+1
12: x—6[x][Plq]]
13: end for

pollev.com/comp526

14: end procedure

17/28

https://pollev.com/comp526

DFA Lookup Table Application

Pitting it Together
e Construct the DFA
* Apply the DFA

1: procedure APPLYDFA(TI0..n),5, m)
2 q—0

3 fori=0,1,...,n—1do

4 q—96lqllTIlil

B if g= m then

6: return i

7 end if

8 end for

9 return —1

10: end procedure

11: procedure DFAMATCH (P[0..m), T[0..n))
12: 6 — CONSTRUCTDFA(P, T)

13: return APPLYDFA(T, 6, m)

14: end procedure

18/28

DFA Lookup Table Application

Pitting it Together
* Construct the DFA

* Apply the DFA
* Running time is
O(n+m|Z|)
* O(m|Z|) for making
DFA
° O(n) for applying DFA

e Additional space
overhead: ®(m|X|)

* store the DFA

9:
10:

11

14

1
2
3
4
53
6.
7
8

: procedure APPLYDFA(TI0..n),5, m)
. q «— 0
fori=0,1,...,n—1do
q—906lqllTlil]
if g= m then
return i
end if
end for
return —1
end procedure

: procedure DFAMATCH (P[0..m), T[0..n))
12:
13:

6 — CONSTRUCTDFA(P, T)
return APPLYDFA(T, 6, m)
: end procedure

18/28

Knuth-Morris-
Pratt

Failure Link Automaton

DFA efficiency.
* Space/time to build DFA: ©(m|X|)

¢ Time to execute DFA: O(n)
= Overall time is ©(n+ m|X|)

* additional space overhead is © (m|Z])

Question. Can we perform string matching in time O(n) with less space
overhead?

20/28

Failure Link Automaton

DFA efficiency.
* Space/time to build DFA: ©(m|X|)
¢ Time to execute DFA: O(n)

= Overall time is ©(n+ m|X|)
* additional space overhead is © (m|Z])

Question. Can we perform string matching in time O(n) with less space
overhead?

Idea. When comparison fails, don’'t have a separate transition for each
failing character

* Just record failure and “shift” pattern as far forward as possible

20/28

Failure Link Automaton

Example
e T = aabacaababacaa
* P = ababaca
c,d X X

text |a|la|b|lalc|lala|b|la|b|lal|c|al|a
states

21/28

FLA Execution

A Failure Link Automaton (FLA)
consists of:

* A finite set Q of states

* Afinite alphabet =

* A transition function
@:QxZu{x})—Q

* An initial state gy € Q

* Aset F < Qof accepting states

22/28

FLA Execution

A Failure Link Automaton (FLA) Execution. To apply and FLAto T

consists of: * Start at the state g
* A finite set Q of states * Read characters from T
* Afinite alphabet X sequentially

* if in state g and read
character c:
P:Qx(Zuix})—Q * if p(q,c) is defined, move

* An initial state gy € Q to state ¢(q,)

* otherwise move to state
@(q, %) and re-read ¢

* A transition function

* Aset F < Qof accepting states

e Return TRUE if end in
“accepting” state

22/28

FLA Execution

Execution. To apply and FLAto T

PollEverywhere Question * Start at the state qo

Given an FLA for a pattern P of * Read c}?rﬁcters from T
. sequentia’

length m, how many times could ! B }‘Z g and read

. . . * ifin state g and rea
we follow failure links fo‘r a single character c:
character cread from T in the > Hrliee) o dlefines), meve
worst case? to state ¢(qg, ©)

* otherwise move to state

@(q, x) and re-read ¢

¢ Return TRUE if end in

“accepting” state

pollev.com/comp526

22/28

https://pollev.com/comp526

FLA Execution

Execution. To apply and FLAto T

e Start at the state qq
* Read characters from T
sequentially

* if in state g and read
character c:

* if p(g, ¢) is defined, move
to state ¢(q, ¢)
¢ otherwise move to state
@(q, %) and re-read ¢
¢ Return TRUE if end in
“accepting” state

22/28

FLA Running Time

More careful analysis
* If we match up to P[j], then we can only follow up to j back links

* In order to witness j failures, must have witnessed j successes!

23/28

FLA Running Time

More careful analysis
* If we match up to P[j], then we can only follow up to j back links

* In order to witness j failures, must have witnessed j successes!

Amortized cost of each character read from T
e Ifread character cis a match:

* pay 1 for comparison
* put 1 unit cost in the bank

e [fread character cis a mismatch
* withdraw 1 from the bank

* By analysis above account balance is always non-negative
—> amortized cost of each comparison is 2

- hence overall running time of execution is O(n)

23/28

FLA Construction

Observation. Each state g has
* 1 forward link to state g+ 1
e 1 fail link
Given P, we don't need to store
forward link label:
e forward link label from
Plq] = Plg+1]
Only need to store fail link state!
* this can be stored as a single
array of size m
— only O(m) space overhead

24/28

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure

* How do we construct it?

24/28

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure
* How do we construct it?
* Again xis length of largest prefix that
matches a suffix of P[1, g)

Example. P[0..6) = ababaca

g |0 1 2 3 4 5 6

Plgg |la b a b a c¢c a

faillq)

1: procedure FAILURELINK(P[0, m))

2: faill0] —0
3 x—0
4 forj=1,2,...,m-1do
5 failljl — x
6: while P[x] # P[j] do
7 if x = 0 then
8 x——1
9: break
10: else
11: x — fail[x]
12: end if
13: end while
14: X—X+'1
15: end for

16: end procedure

24/28

FLA Construction

Question. What is the running 1: procedure FAILURELINK(P[0, m))
time of FAILURELINK on input of § f“il[g] =0
. X —
Sizemz 4 forj=1,2,...,m—1do
5 failljl — x
6: while P[x] # P[j] do
7 if x = 0 then
8 x——1
9: break
10: else
11: x — fail[x]
12: end if
13: end while
14: X—X%+'1
15: end for

16: end procedure

24/28

FLA Construction

Question. What is the running
time of FAILURELINK on input of
size m?
Observations.

* xincremented once per j

* faillx] <x

e Each “while” iteration
decrements x

So at most 2m updates to x
 cf. amortized analysis

* x = bank balance

1: procedure FAILURELINK(P[0, m))

2: faill0] —0
3 x—0
4 forj=1,2,...,m—-1do
5 failljl — x
6: while P[x] # P[j] do
7 if x = 0 then
8 x——1
9: break
10: else
11: x — fail[x]
12: end if
13: end while
14: X—X%+'1
15: end for

16: end procedure

24/28

KMP Algorithm

Question. How do we apply the
failure link array to find a match?

25/28

KMP Algorithm

Question. How do we apply the
failure link array to find a match?
e Scan along T10, n)
° index i
* Maintain position in P[0, m2)
* indexj
° current prefix match
* When T1[i] = P[j], increment i
and j
e Otherwise, j — failljl
* unless j=0,theni—i+1

25/28

KMP Algorithm

Question. How do we apply the
failure link array to find a match?
e Scan along T10, n)
° index i
* Maintain position in P[0, m2)
* indexj
* current prefix match
* When T1[i] = P[j], increment i
and j
e Otherwise, j — failljl
* unless j=0,theni—i+1

1: procedure KMP(T(0..n), P[0..m))

2: fail — FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else

10: if j= 1 then

11: J— faillj]

12: else

13: i—i+1

14: end if

15: end if

16: end while
17: end procedure

25/28

KMP Algorithm

Analysis:
* Running time O(n+ m)
* O(m) to build fail
* O(n) to apply KMP
° analysis uses amortized
analysis
* Additional space O(m)

* justneed to store fail and
indices

1: procedure KMP(T(0..n), P[0..m))

2: fail — FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else

10: if j= 1 then

11: J— faillj]

12: else

13: i—i+1

14: end if

15: end if

16: end while
17: end procedure

25/28

KMP Algorithm

Analysis:
* Running time O(n+ m)
* O(m) to build fail
* O(n) to apply KMP
° analysis uses amortized
analysis
* Additional space O(m)
* justneed to store fail and
indices
Clean Takeaway:
fail[j] is the length of the longest
prefix of P[0..j] that is a suffix of
P[1..j]

1: procedure KMP(T(0..n), P[0..m))

2: fail — FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else

10: if j= 1 then

11: J— faillj]

12: else

13: i—i+1

14: end if

15: end if

16: end while
17: end procedure

25/28

DFA vs FLA

Question. Which is better? DFA matching or KMP algorithm?
e KMP has overall running time O(n + m)
° amortized 2 comparisons per T access
* DFA has overall running time O(n+ m|Z|)

* 1 comparison per T access
* |X| dependence

26/28

Next Time

More String Matching!

27128

Scratch Notes

28/28

	String Matching
	Brute Force Matching
	Matching with a DFA
	Knuth-Morris-Pratt

