11 | nm 1 mnm 1 1 1
0000000000000000000000000JOCUOQO000O00000000000001000G500000000000000000QQ0ROVON
125456 78 91000 12131 1516 17 161920 71 222324 25 26 2128 29 2 31 3233 14 35 36 31 38 39 40 41 42 €0 46 45 46 &7 48 49 50 51 52 53 54 55 56 57 58 53 60 61 62 63 64 65 66 67 68 61 70 1 92 73 14 75 75 77 /8 79 80

1] ARRRERREEE NI RN RRRRREI Al ARl | Rl ARRRR RN R R R R R R R SRR AR R R R
2202222222222222022222222002222222220022
33333333333333333W3333333333333333P333]3
4444444444444444444444044444040444404J444444404844440404444448444444444440444]44
555555555555 5555550555555 555 Mo9555055555555555555555585555555555555555555555
66666666 66M66366666666656R6666666

Lecture 11: String Matching I

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: November 7, 2024 University of Liverpool

289105

1/28

Announcements

1. NO QUIZ THIS WEEK!
2. Programming Assignment Posted
¢ TESTING CODE UPDATED

* small bugin tritonic array generation 0
* download new version

* Due Wednesday, 13 November
3. Attendance Code:

2.86410S5

2/28

Meeting Goals

Discuss String Matching procedures:
* Brute Force
* DFA procedure
* Knuth-Morris-Pratt

3/28

String Matching

The String Matching Problem
Input: 7. = O~\P|/U~(Dd'

* Atext TeX* oflength n

* Apattern Pe X* of length m (typically m < n)

Output:

¢ The index of the first occurrence of Pin T, or —1 if T does not
contain P as a substring:

* min{i| T[i, i+ m) = P}

Example.
p 0 (Lius ¢

o T= 1011001101 e

e P =1101

® Qutput: i—6
e P, =000

® Output: i — -1

5/28

Brute Force
Matching

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1
Check if match at i:
* is T[i,i+ m) = P?
—— —_—
e verify each character individually

Cost = number of comparisons made

7128

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1

Check if match at i:

° isT[i,i+ m)=P?

-

(Wl

WA

* verify each character individually -+ l[(l

\

[l

1: procedure VERIFYMATCH(T, P, i)
2: j<=0
3 while j < mdo
4 if T[i+ j] # P[j] then
) return FALSE
6 end if
7: j—j+1
8 end while
9 return TRUE
10: end procedure

Cost = number of comparisons made

]
At

\9

7128

Brute Force Matching

Guess an index i where a match might occur

¢ Possible guesses i=0,1,...,n—m—-1 § < .
Check if match at i: /‘?0&

= e, 5
* is T[i,i+m) = P? \ = ote o ‘°p'
) o PollEverywhere Question g
e verify each character individually
1: procedure VERIFYMATCH(T, P, i) What are the worst case and
2 j—o0 best case running times of
3: whilej<mdo VERIFYMATCH?
4 if T[i+ j] # P[j] then
5) return FALSE
6 end if
7: j—j+1
8
9
10:

end while

return TRUE
end procedure pollev.com/comp526

Cost = number of comparisons made

7128

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1
Check if match at i:

e isT[ii+m)=P? Best and Worst Cases:
e verify each character individually W Q{S\’ P

1: procedure VERIFYMATCH(T, P, i) v viwm

2: [j—o0 T l

3: while j < mdo S —

4: D|3f Tli+ j] # P[j] then c

5) return FALSE ‘(:/\ .

6: end if Wt

7 J—Jjt \é— ™ \

8 end while —

= QY +
Sk return TRUE @ CM) WS
10: end procedure &,S"_ O (,\3

Cost = number of comparisons made

= TLi £ PLol

7128

Brute Force Matching

1= an&koJk -

Guess an index i where a match might occur

¢ Possible guesses i=0,1,...,n—m—-1 (P é)\ b
Check if match at i: oo m A

* isTli,i+ m)=P? T

e "

e verify each character individually QJUU\/ < U&
Cost = number of comparisons made RS P
Brute force. Guess and check every value lo Q}ka\f &
i=0,1,...,n—-m-1 N

¢Sl WA

* Worst case running time is ©(nm)
¢ What is example has cost Q(nm)?

* Best case cost is O(m)

f

Cad watdn ok ‘adux ¢=0

7128

Brute Force Example

Example procedure

* T = abbbababbab BRUTEFORCEMATCH(T, P)
fori=0,1,..., n—m-—1do

o =
P = abba if VERIFYMATCH(T, P, i) then
0 1 4 5 7 8 9 10 return i
a

blalblblalb end if
end for

3

b

Qa return —1
end procedure

2
a b
afbf b

N

L

P

2 -Q(:"udv\ 6

cnl
m

8/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

T = koo -~ A

P = ([CLCL"’O\‘D

9/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

P: ’?\ P'L- - VM #—

T jl\s\ ‘,(([Il LT T MG Case

A
V|V ¥ vl Qo 2 2n

1

1 LOw Py Suns

L”:,_E'[—_—EL C 2w COMPod(soas

9/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

¢ (Claim: brute force search running time is now O(n)

* In fact, at most 2n comparisons made!
* Why?

9/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

¢ (Claim: brute force search running time is now O(n)
* In fact, at most 2n comparisons made!
* Why?

* Which of these comparisons were unnecessary?
* How can you search with fewer comparisons?

9/28

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

¢ (Claim: brute force search running time is now O(n)
* In fact, at most 2n comparisons made!
* Why?

* Which of these comparisons were unnecessary?
* How can you search with fewer comparisons?

More generally: How can we use results of previous comparisons to
avoid making unnecessary comparisons in the future?

* Goal: never re-read a character from 7!

9/28

Matching with a
DFA

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

a a b a b a b b a b a b a c a a

Idea:
* Scan through T keeping track of current matches
* Each new character T read, compare it to next character of P
e If mismatch slide P so that longest prefix of P matches

11/28

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

T a a b a b ab b ab ab a c a a

P a b EE—a—e—ar

Idea:
* Scan through T keeping track of current matches
* Each new character T read, compare it to next character of P
e If mismatch slide P so that longest prefix of P matches

11/28

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

Idea:
* Scan through T keeping track of current matches
* Each new character T read, compare it to next character of P
e If mismatch slide P so that longest prefix of P matches

11/28

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

Q Q
Q T Q
S Q
Q & Q

Q
&
QY] o

Idea:

b a b a c a a

Aok ek .
Ve CopnPex ST
a

i_ yaxd @os o %V\MS

* Scan through T keeping track of current matches

* Each new character T read, compare it to next character of P

e If mismatch slide P so that longest prefix of P matches

11/28

Sliding Comparisons

Example
e T = aabababbabacaa

e P = ababaca

b a b a b a c a a

b
a soalbic Detute waigwadM
©

ecn
Idea: S P

* Scan through T keeping track of current matches
* Each new character T read, compare it to next character of P
e If mismatch slide P so that longest prefix of P matches

11/28

Representing States and Matches

Question. What information do we need to compute and store to
determine next comparison?

12/28

Representing States and Matches

Question. What information do we need to compute and store to
determine next comparison?
* How many matches in P have we made so far?

* What what is the longest matching prefix for each possible next
characterin T

¢ if we read character x, how far do we need to “slide” P to match a
prefix?

12/28

Representing States and Matches

Question. What information do we need to compute and store to
determine next comparison?

* How many matches in P have we made so far?

* What what is the longest matching prefix for each possible next
characterin T
¢ if we read character x, how far do we need to “slide” P to match a
prefix?

Information to store
* states that represent number of matches with current prefix of P

* transitions from current state to next states, depending on next
character read from T

Note. This information depends only on the pattern P, not the text T.

12/28

DFAs

A Deterministic Finite Automaton (DFA) consists of:

* A finite set Q of states (\ \)\\L . (_(\
* A finite alphabet = {_M_.\.e_ %
* Atransition function$: QxZ—-Q — WS

* An initial state g, € Q O\‘\(& Q&(&dc
* Aset F < Qof accepting states (/W ‘M"LJ .
Ui T) Wi
Stale ‘o

) 0@ T

13/28

DFAs

A Deterministic Finite Automaton (DFA) consists of:
* A finite set Q of states
* A finite alphabet =
* A transition function §: Qx X~ — Q
* An initial state gy € Q
* Aset F < Qof accepting states

Interpretation. A DFA is used to determine if a string (text) 7" has some
property (e.g., containing a pattern P):

e Start at the state g ”\‘G AWS \H(M
* Read characters from T sequentially e Dh ™M

¢ ifiin state g and read character ¢, move to state (q, o)

* Return TRUE if end in “accepting” state

13/28

DFA Example

Example

* T = aabacaababacaa &

* P = ababaca

14/28

DFA Efficiency

PollEverywhere Question

Given a DFA for matching

P[0, m) in T[0, n), what is the
running time of applying the
DFA? Assume following links is
O(1) time.

1. ©(nm) 3. O(n+m)

2. O(nlogm)]4. @(n)’

pollev.com/comp526

15/28

DFA Efficiency
Observe: If we are given a DFA, PollEverywhere Question

executing it - Given a DFA for matching

P[0, m) in T[0, n), what is the
running time of applying the
DFA? Assume following links is

¢ reads each character of T once

* updates state once per
character

O(1) time.
e running time O(n)
1. © 3.0
So the overall running time for) @(n:n) A ®(n+)
pattern matching with a DFA is - Olnlogm) o &l
W) + time to build DFA/
* assuming computation of § is
o(1).

pollev.com/comp526

15/28

DFA Efficiency
Observe: If we are given a DFA, PollEverywhere Question

executing it Given a DFA for matching

P[0, m) in T[0, n), what is the
running time of applying the
DFA? Assume following links is

¢ reads each character of T once

* updates state once per
character

O(1) time.
e running time O(n)
So the overall running time for R g(n:n) 3. Ot m
pattern matching with a DFA is 2. Onlogm) a—
O(n)+ time to build DFA
* assuming computation of § is
o(1).

‘ But how do we build the DFA? ? 7 ?

pollev.com/comp526

15/28

DFA Interpretation & Construction

Semantic Question. What does it mean to be in state g?

Tw skbe @ afe (eding
TCi

=
Chews 1o T Liom L7gn
b LJ}PEO"%

[
0 %—, 16/28

ek

DFA Interpretation & Construction

Semantic Question. What does it mean to be in state g?
e Current position in T matches P up to the first g characters
e Symbolically T[j—g+1,jl = P[0,)

Question. What happens when we read T'[j+1]?

16/28

DFA Interpretation & Construction

Semantic Question. What does it mean to be in state g?
e Current position in T matches P up to the first g characters
e Symbolically T[j—g+1,jl = P[0,)

Question. What happens when we read T'[j+1]?
e If T[j+ 1] = P[gql, transition to state g+ 1

* If T[j+ 1] # Plql, find the length ¢ < g of the longest prefix of P
that matches T[j— ¢, j+ 1] that matches P[0, ¢)
aababagbababacaa

o I 7 (¢
abag)a a

5
=4 iocilblaca

16/28

DFA Interpretation & Construction

Semantic Question. What does it mean to be in state g?
e Current position in T matches P up to the first g characters
e Symbolically T[j—g+1,jl = P[0,)

Question. What happens when we read T'[j+1]?
e If T[j+ 1] = P[gql, transition to state g+ 1

* If T[j+ 1] # Plql, find the length ¢ < g of the longest prefix of P
that matches T[j— ¢, j+ 1] that matches P[0, ¢)
a a b a b ab b ab a b a c a a
a b a b a c a
a b a b a c a

e Insight: if T[j+ 1] = c this is the same as matchingIE[O..q] against
Pll.gg ~—

* we can use the DFA constructed so far to find this!

16/28

DFA Interpretation & Construction

* Insight: if T[j+ 1] = c this is the same as matching P[0..g] against
P[l..g9)c
¢ we can use the DFA constructed so far to find this!
Inductive Construction.
¢ Start with states 0 and 1 with
1 ifP[0]=c

0 otherwise.

6(0,c)={

* Once we've constructed DFA up to state g:
* take d(q, Plql) = q+1

e for ¢ # Plql, find 6 (g, ¢) by applying DFA to|P[1, g)c
o - - @@

16/28

e Insight: if T[j+ 1] = c this is the same as matching P[0..q] against
Pll..g9)c
* we can use the DFA constructed so far to find this!
* Once we've constructed DFA up to state g: ooy
* take d(q, Plql) = q+1
¢ for c # Plq], fin ,C) by appl)lﬁyairg DFAto PIT, g)c
Example. Compute 9 (5,[@) for P= ababa&

16/28

DFA Interpretation & Construction

e Insight: if T[j+ 1] = c this is the same as matching P[0..q] against
Pll..g)c
* we can use the DFA constructed so far to find this!
Inductive Construction.
e Start with states 0 and 1 with
1 ifP[0]=c¢
0(0,0) = = .
0 otherwise.
* Once we've constructed DFA up to state g:
¢ take d(q, Plql) =q+1
e for ¢ # Plql, find 6(g, ¢) by applying DFA to P[1, g)c

Analysis (idea).
e Argue by induction on g that the DFA enters state g on reading

T(jl if and only if g is the largest number such that
[Tlj-q+1,j1 = Pl0,q).

16/28

DFA Lookup Table Construction

DFA diagrams are great for humans, but not so great for computers...

17/28

DFA Lookup Table Construction

DFA diagrams are great for humans, but not so great for computers...
Problems.

1. How do we represent the DFA
in a computer friendly format?

2. How do construct the DFA in
that format efficiently?

17/28

DFA Lookup Table Construction

Problems.
1. How do we represent the DFA
. . \ _ shals
in a computer friendly format? Co\s ~
2. How do construct the DFA in
-w 9 1 R
that format efficiently? b z

0’(\\
Solutions. S(Sw.\s —:}"]
1. Store a lookup table 6[]] C N

* columns = states, rows =

characters
* Olgllcl —6(q, 0 TW&LKLC(' bY 2
8(7,c
W Stde 2 ’)
Cedd vl ¢

= ywex+ S"OA'Q—- 17/28

DFA Lookup Table Construction

Problems.

1. How do we represent the DFA
in a computer friendly format?

2. How do construct the DFA in
that format efficiently?

Solutions.

1. Store a lookup table 6[]]
* columns = states, rows =
characters
* dlqllcl < b(qg,c)
2. Compute column by column
* trick: keep track of state for

P[1, g) because we'll reuse
this for each P[1, g)c

—

17/28

DFA Lookup Table Construction

Solutions.
1. Store a lookup table 6[]]
* columns = states, Tows =
characters
* 6lqllcl —6(q,c)
2. Compute column by column
* trick: keep track of state for
P[1, q) because we'll reuse
this for each P[1, g)c
® Xxislargest value with

E[O,x? {—— Plg—x,q| (

10:
11:
12:
13:
14:

1:
2:
3
4:
5:
6:
7
8
9

procedure CONSTRUCTDFA (P[0..1m))

for ce X do .r\\\’ 'C_\‘\g‘\/
0[0][c] — 0 \
end for o

8l0][Pl0]] —1
x—0 & \W‘*
forg=1,2,...,m—1do v
for ce X do ove
dlglld —olxld | colawms
end for
Olql[Plql]l — q+1
x—6[x][Plql]
end for

end procedure

17/28

DFA Lookup Table Construction

Example. P[0..6) = ababaca 1: procedure CONSTRUCTDFA(P[0..1m))
25 for ce X do
5(0, 6]) 0 1 2 3 4 5 6 3 5[0][c] — 0
Plgl |a ® b a ¢ a 4: end for
5: 0[0][P[0]] — 1
6: x—0
a
@ l 2 7 forg=1,2,...,m—1do
b @ 2 0 8: for ce X do
9:]é [q)lc] < 6[x][c] K
c D 0 @) 10: end for
11: 0[ql[Plgll —g+1
12: x < 0o[x[[P[ql]
Y~ 0 DO /A 13: endfor

14: end procedure

Lo
L\ X
owl ¢

17/28

DFA Lookup Table Construction

PollEverywhere Question

What is the running time of
CONSTRUCTDFA when P has
length mand |X| = s?

pollev.com/comp526

14:

end for

x—0
forg=1,2,...,m—1do
for ce X do

end for
Ol4TPIgll — g+1
x < 6[xI[Plql]
en
nd procedure

: procedure CONSTRUCTDFA (P[0..m))
for ce X do
6[0][c] — 1 6(53
O[01[P[0]] —1 (9,(0

O T =TTl 2

o)

MLl W —> plws)

17/28

DFA Lookup Table Application

Pitting it Together
e Construct the DFA
* Apply the DFA

Shack o¥
5%&\&, O

y

1: procedure APPLYDFA(TI0..n),5, m)

_ 2 >q<0
3: fori=0,1,...,n—1do
4 - q—05lqlITIil — (9{‘(\)
5: if 7= m\then -
6: return i ‘\/\V\U"’
7: end if
8: end for
9: return —1

10: end procedure

11: procedure DFAMATCH(P[0..m), T[0..n))
12: 6 — CONSTRUCTDFA(P, T)

13: return APPLYDFA(T, 6, m)

14: end procedure

18/28

DFA Lookup Table Application

Pitting it Together
e Construct the DEA ;: procedl(;re APPLYDFA(TI0..n), 8, m)
q —
* Apply the DFA 3: fori=0,1,...,n—1do
* Running time is 1 g L]
B if g= m then
O(n+ ln_IZ_D 6: return i
* O(m|Z|) for making 7 end if
DFA 8 end for
* O(n) for applying DFA 9: return-1

* Additional space 10: end procedure
. 11: procedure DFAMATCH(P[0..m), T[0..n))
overhead: ©(m|2) 12: 6 — CONSTRUCTDFA(P, T)
* store the DFA,\ 13: return APPLYDFA(T,§, m)

14: end procedure
Lok O

be o~ \bf ot SPaca

18/28

Knuth-Morris-
Pratt

Failure Link Automaton

DFA efficiency.
* Space/time to build DFA: ©(m|X|)

¢ Time to execute DFA: O(n)
= Overall time is ©(n+ m|X|)

* additional space overhead is © (m|Z])

Question. Can we perform string matching in time O(n) with less space
overhead?

20/28

Failure Link Automaton

DFA efficiency.
* Space/time to build DFA: ©(m|X|)
¢ Time to execute DFA: O(n)

= Overall time is ©(n+ m|X|)
* additional space overhead is © (m|Z])

Question. Can we perform string matching in time O(n) with less space
overhead?

Idea. When comparison fails, don’'t have a separate transition for each
failing character

* Just record failure and “shift” pattern as far forward as possible

20/28

Failure Link Automaton

Example
e T = aabacaababacaa
* P = ababaca
c,d X X

text |a|la|b|lalc|lala|b|la|b|lal|c|al|a
states

21/28

FLA Execution

A Failure Link Automaton (FLA)
consists of:

* A finite set Q of states

* Afinite alphabet =

* A transition function
P:QxZu{x})—Q

* An initial state gy € Q

* Aset F < Qof accepting states

22/28

FLA Execution

A Failure Link Automaton (FLA) Execution. To apply and FLAto T

consists of: * Start at the state ¢
* A finite set Q of states * Read characters from T
* Afinite alphabet X sequentially

* if in state g and read
character c:
P:Qx(Zu{x})—Q * if p(q,c) is defined, move

* An initial state gy € Q to state ¢(q,)

* otherwise move to state
@(q, x) and re-read ¢

* A transition function

* Aset F < Qof accepting states

* Return TRUE if end in
“accepting” state

22/28

FLA Execution

Execution. To apply and FLAto T

PollEverywhere Question * Start at the state qo

Given an FLA for a pattern P of * Read c}?rﬁcters from T
. sequentia

length m, how many times could ! B }‘Z g and read

. . . * ifin state g and rea
we follow failure links fo‘r a single character c:
character cread from T in the 5 Hrline) o dlefinel, meve
worst case? to state ¢(qg, ©)

* otherwise move to state

@(q, x) and re-read ¢

¢ Return TRUE if end in

“accepting” state

pollev.com/comp526

22/28

FLA Execution

Execution. To apply and FLAto T

e Start at the state qg
* Read characters from T
sequentially

* if in state g and read
character c:

* if (g, ¢) is defined, move
to state ¢(q, c)
¢ otherwise move to state
@(q, x) and re-read ¢
® Return TRUE if end in
“accepting” state

22/28

FLA Running Time

More careful analysis
* If we match up to P[j], then we can only follow up to j back links

* In order to witness j failures, must have witnessed j successes!

23/28

FLA Running Time

More careful analysis
* If we match up to P[j], then we can only follow up to j back links

* In order to witness j failures, must have witnessed j successes!

Amortized cost of each character read from T
e Ifread character cis a match:

* pay 1 for comparison
¢ put 1 unit cost in the bank

e [fread character cis a mismatch
* withdraw 1 from the bank

* By analysis above account balance is always non-negative
—> amortized cost of each comparison is 2

- hence overall running time of execution is O(n)

23/28

FLA Construction

Observation. Each state g has
e 1 forward link to state g+ 1
e 1 fail link
Given P, we don't need to store
forward link label:
e forward link label from
Plq] = Plg+1]
Only need to store fail link state!
* this can be stored as a single
array of size m
— only O(m) space overhead

24/28

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure

* How do we construct it?

24/28

FLA Construction

Definition. The failure link array
fail of P the array of m numbers
that stores the (index of) the next
state for each failure
* How do we construct it?
* Again xis length of largest prefix that
matches a suffix of P[1, g)

Example. P[0..6) = ababaca

g |0 1 2 3 4 5 6

Plgg |la b a b a ¢ a

faillq)

1: procedure FAILURELINK(P[0, m))

2: faill0] —0
3 x—0
4 forj=1,2,...,m-1do
5 failljl — x
6: while P[x] # P[j] do
7 if x = 0 then
8 x——1
9: break
10: else
11: X — fail[x]
12: end if
13: end while
14: X—X%+'1
15: end for

16: end procedure

24/28

FLA Construction

Question. What is the running 1: procedure FAILURELINK(P[0, m))
time of FAILURELINK on input of § f“il[g] =0
. X —
Sizemz 4 forj=1,2,...,m—1do
5 failljl — x
6: while P[x] # P[j] do
7 if x = 0 then
8 x——1
9: break
10: else
11: X — fail[x]
12: end if
13: end while
14: X—X%+'1
15: end for

16: end procedure

24/28

FLA Construction

Question. What is the running
time of FAILURELINK on input of
size m?
Observations.

* xincremented once per j

* faillx] <x

e Each “while” iteration
decrements x

So at most 2m updates to x
* cf. amortized analysis

* x = bank balance

1: procedure FAILURELINK(P[0, m))

2: faill0] —0
3 x—0
4 forj=1,2,...,m-1do
5 failljl — x
6: while P[x] # P[j] do
7 if x = 0 then
8 x——1
9: break
10: else
11: X — fail[x]
12: end if
13: end while
14: X—X%+'1
15: end for

16: end procedure

24/28

KMP Algorithm

Question. How do we apply the
failure link array to find a match?

25/28

KMP Algorithm

Question. How do we apply the
failure link array to find a match?
e Scan along T10, n)
° index i
* Maintain position in P[0, m2)
* indexj
° current prefix match
* When T1[i] = P[j], increment i
and j
* Otherwise, j — failljl
* unlessj=0,theni—i+1

25/28

KMP Algorithm

Question. How do we apply the
failure link array to find a match?
e Scan along T10, n)
° index i
* Maintain position in P[0, m2)
* indexj
° current prefix match
* When T1[i] = P[j], increment i
and j
* Otherwise, j — failljl
* unlessj=0,theni—i+1

1: procedure KMP(T(0..n), P[0..m))

2: fail — FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else

10: if j= 1 then

11: J— faillj]

12: else

13: i—i+1

14: end if

15: end if

16: end while
17: end procedure

25/28

KMP Algorithm

Analysis:
* Running time O(n+ m)
* O(m) to build fail
* O(n) to apply KMP
° analysis uses amortized
analysis
* Additional space O(m)

* justneed to store fail and
indices

1: procedure KMP(T(0..n), P[0..m))

2: fail — FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else

10: if j= 1 then

11: J— faillj]

12: else

13: i—i+1

14: end if

15: end if

16: end while
17: end procedure

25/28

KMP Algorithm

Analysis:
* Running time O(n+ m)
* O(m) to build fail
* O(n) to apply KMP
° analysis uses amortized
analysis
* Additional space O(m)
* justneed to store fail and
indices
Clean Takeaway:
fail[j] is the length of the longest
prefix of P[0..j] that is a suffix of
P[1..j]

1: procedure KMP(T(0..n), P[0..m))

2: fail — FAILURELINK(P)
3: i—0
4: j<=0
5: while i < ndo
6: if T[i] = Plq] then
s i—i+l,j—j+1
8: if j= mthen returni-—j
9: else

10: if j= 1 then

11: J— faillj]

12: else

13: i—i+1

14: end if

15: end if

16: end while
17: end procedure

25/28

DFA vs FLA

Question. Which is better? DFA matching or KMP algorithm?
e KMP has overall running time O(n + m)
* amortized 2 comparisons per T access
* DFA has overall running time O(n+ m|Z|)

* 1 comparison per T access
¢ |X| dependence

26/28

Next Time

More String Matching!

27128

Scratch Notes

28/28

