11 | nm 1 mnm 1 1 1
0000000000000000000000000JOCUOQOO000O00000000000001000G00000000000000000QR0ROVON
125456 78 91000 12131 1516 17 16,1920 71 222324 25 26 2128 29 2 31 3233 14 35 36 37 30 39 40 41 42 €0 46 45 46 &7 48 49 50 51 52 53 54 55 56 57 58 53 60 61 62 63 64 65 66 67 68 61 70 1 92 73 14 75 75 77 /8 79 80

1] ARRRERREEE NI RN RRRRREI Al ARl | Rl ARRRR RN R AR R R R R R SRR R R R R R R R |
2202222222222222022222222002222222220022
333333333333333333333333333333333P333]3
4444444444444444444444844444040444404J444444404844440404444448444444444440444]044
555555555555 5555550555555 555 Mo955505555555555555555585555555555555555555555
66666666 66M66%66666666656R6666666

Lecture 10: Divide &
Conquer; String Matching |

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: November 5, 2024 University of Liverpool

1/30

Announcements

1. NO QUIZ THIS WEEK!
2. Programming Assignment Posted
* Due Wednesday, 13 November

3. Attendance Code:

2/30

Meeting Goals

* Discuss more Divide & Conquer algorithms
* Order Statistics
* Majority
* Closest Pair of Points
* Introduce the String Matching problem
* Problem definition
* Elementary algorithm

3/30

Divide &
Conquer

Previously: Divide & Conquer Strategy

Generic Strategy
Given an algorithmic task:
1. Break the input into smaller instances of the task
2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Examples (so far):
* MERGESORT: divide an array by index to sort
* O(nlogn) time
* QUICKSORT: divide an array by value to sort
® O(nlogn) time
* BINARYSEARCH: divide a sorted array to search it
* O(logn) time

5/30

Three More Problems

Problem 1. k-Selection:

* Given an array a of n numbers, find the kth largest number

6/30

Three More Problems

Problem 1. k-Selection:

* Given an array a of n numbers, find the kth largest number

Problem 2. Majority:

* Given an array a of n items, is there an item that is repeated more
than > n/2 times?

6/30

Three More Problems

Problem 1. k-Selection:

* Given an array a of n numbers, find the kth largest number

Problem 2. Majority:

* Given an array a of n items, is there an item that is repeated more
than > n/2 times?

Problem 3. Closest Points in the Plane

e Given n points py, p2, ..., pn in the plane, which pair of points
pi, pj are closest to one another?

6/30

k-Selection

k-Selection

Problem. Given an array a of n numbers, find the kth smallest number.

8/30

k-Selection

Problem. Given an array a of n numbers, find the kth smallest number.
Simple solution.

* sort ain O(nlogn) time
* return alk]

Can we do better?

8/30

k-Selection

Problem. Given an array a of n numbers, find the kth smallest number.
Simple solution.

* sort ain O(nlogn) time
* return alk]
Can we do better?
Modify QuickSort!
* Choose pivot p
* Perform split

* only recurse on half that
contains kth smallest value

* this will be the half that
contains index k
* Random pivot selection

—> O(n) expected time! /
8/30

k-Selection

Problem. Given an array a of n numbers, find the kth smallest number.

Simple solution.
* sort ain O(nlogn) time
* return alk]
Can we do better?
Modify QuickSort!
* Choose pivot p
* Perform split

* only recurse on half that
contains kth smallest value

¢ this will be the half that
contains index k

* Random pivot selection
—> O(n) expected time!

1: procedure
QUICKSELECT(a, min, max, k)
if max — min < 1 then
return a[min]
end if
p — SELECTPIVOT(a, min, max)
Jj<— SPLIT(a, min, max, p)
if j= k then
return alk|
elseif j < k then
QUICKSELECT(a,j+ 1, max, k)
else
QUICKSELECT(a,min, j— 1, k)
13: end if
14: end procedure

— = =
D=

8/30

k-Selection

Problem. Given an array a of n numbers, find the kth smallest number.

PollEverywhere Question

What is the worst case running
time of QUICKSELECT on an
array of n elements?

pollev.com/comp526

1:

10:
11:
12:
13:
14:

2
3
4
5:
6:
7.
8
9

procedure
QUICKSELECT(a, min, max, k)
if max — min < 1 then
return a[min]
end if
p — SELECTPIVOT (@, min, max)
Jj<— SPLIT(a, min, max, p)
if j= k then
return alk]
elseif j < k then
QUICKSELECT(a,j+ 1, max, k)
else
QUICKSELECT(a,min, j— 1, k)
end if
end procedure

8/30

https://pollev.com/comp526

Deterministic k-Selection?

Question. Can we perform k-selection with a worst case O(n) running
time?

9/30

Deterministic k-Selection?

Question. Can we perform k-selection with a worst case O(n) running
time?
Idea. What if we can select better pivots?
* Suppose we can guarantee that our pivot is “good enough:”
* rank of pis between cnand (1 - c¢)nfor c>0
* How many recursive calls until we’re done?

9/30

Deterministic k-Selection?

Question. Can we perform k-selection with a worst case O(n) running
time?
Idea. What if we can select better pivots?
* Suppose we can guarantee that our pivot is “good enough:”
* rank of pis between cnand (1 - c¢)nfor c>0

* How many recursive calls until we’re done?
¢ each recursive call has size at most (1 —2¢c)n
* /¢ recursive calls = size at most (1 —2¢)’n
®* — done after ¢ = O(log n) levels of recursion

* What is overall running time?

9/30

Deterministic k-Selection?

Question. Can we perform k-selection with a worst case O(n) running
time?
Idea. What if we can select better pivots?
* Suppose we can guarantee that our pivot is “good enough:”
* rank of pis between cnand (1 - c¢)nfor c>0

* How many recursive calls until we’re done?

® each recursive call has size at most (1 —2¢)n
* ¢ recursive calls = size at most (1 — 26)[n
®* — done after ¢ = O(log n) levels of recursion

* What is overall running time?
* Cn+(1-20Cn+(1-20%*Cn+---=0(n)

9/30

Deterministic k-Selection?

Question. Can we perform k-selection with a worst case O(n) running

time?
Idea. What if we can select better pivots?
* Suppose we can guarantee that our pivot is “good enough:”
* rank of pis between cnand (1 - c¢)nfor c>0
* How many recursive calls until we’re done?

® each recursive call has size at most (1 —2¢)n
* ¢ recursive calls = size at most (1 — 26)[n
®* — done after ¢ = O(log n) levels of recursion

* What is overall running time?
* Cn+(1-20Cn+(1-20%*Cn+---=0(n)

But how can we find a good pivot deterministically? .9
* Need to find pivots close to the median... \M

* Median is (special case) of k selection!

9/30

Median of Medians Strategy

Strategy. To find a good pivot:

* Find a smaller set of values
whose median is a good pivot

* Recursively find the median of
the smaller set of values

10/30

Median of Medians Strategy

Strategy. To find a good pivot:

* Find a smaller set of values
whose median is a good pivot

* Recursively find the median of
the smaller set of values

* Consider blocks of size 5

* sort each block
¢ find the block median

¢ (Claim: median of medians is a
good pivot:

10/30

Median of Medians Strategy

Strategy. To find a good pivot:

* Find a smaller set of values
whose median is a good pivot

* Recursively find the median of
the smaller set of values

* Consider blocks of size 5
* sort each block
¢ find the block median
* (Claim: median of medians is a
good pivot:
* atleast ls—o-fraction is
excluded

10/30

Median of Medians Strategy

. 1: procedure SELECTPIVOT(a, ¥, 1)
Strategy. To find a good pivot: 2 m— nl5

* Find a smaller set of values 3 fori=0,1,...,m-1do

whose median is a good pivot 4 SORT(al5i...5i+4])
* Recursively find the median of - SWAR(G.45742)

the smaller set of values 6 end for

7 return QUICKSELECT(a, 0, m, (m—1)/2)

* Consider blocks of size 5 8: end procedure

* sort each block
¢ find the block median

* (Claim: median of medians is a
good pivot:
* atleast ls—o-fraction is
excluded

10/30

Median of Medians Strategy

1: procedure SELECTPIVOT(a, ¥, 1)
Illustration: B =l
3: fori=0,1,...,m—1do
4: SORT(al5i...5i+4])
5: SWAP(a, 1,51+ 2)
6: end for
7: return QUICKSELECT(a, 0, m, (m—1)/2)
8: end procedure
9: procedure QUICKSELECT(a, 4, 1, k)
10: if r— ¢ <1 return a[l|
11: b — SELECTP1VOT(a,?, 1)
12: Jj—SPLIT(a, ¢, 1, alb])
13: if j= k then
14: return afj]
15: elseif j < k then
16: QUICKSELECT@q, j+1,1,k—j—1
17: else
18: QUICKSELECT(a,0, j, k)
19: end if

20: end procedure
10/30

Median of Medians Strategy

. 1: procedure SELECTPIVOT(a, ¥, 1)
Analysis. 2. m<nl5
Running time T'(n) satisfies 3: fori=0,1,...,m-1do
4: SORT(al5i...5i+4])
1 7 55 SWAP(a, 1,51+ 2)
T(n) <Cn+ T(gn)+T(En) 6: end for
7: return QUICKSELECT(a, 0, m, (m—1)/2)
<Cn+T (l n+ 1 n) 8: end procedure
5 10 9: procedure QUICKSELECT(a, 4,1, k)
9 10: if r— ¢ <1 return a[l|
=Cn+ T(E ”) 11: b — SELECTP1VOT(a, ¢, 1)
12: Jj—SPLIT(a, ¢, 1, alb])
Therefore, T(n) = O(n). 13: ifj=kthen
14: return afj]
15: elseif j < k then
16: QUICKSELECTa,j+ 1,1, k—j—1
17: else
18: QUICKSELECT(a,0, j, k)
19: end if

20: end procedure
10/30

Median of Medians Strategy

Conclusion. The Median of
Medians strategy allows us to

* solve k-selection in O(n)
time, worst case
e sortin O(nlogn) time,
worst case too
® use kselection as a
sub-routine for
SELECTPIVOT in
QUICKSORT
Note. Randomized variants
tend to be more efficient in
practice.

1: procedure SELECTPIVOT(a, ¥, 1)
2: m<—n/5
3: fori=0,1,...,m—1do
4: SORT(al5i...5i+4])
5: SWAP(a, 1,51+ 2)
6: end for
7: return QUICKSELECT(a, 0, m, (m—1)/2)
8: end procedure
9: procedure QUICKSELECT(a, 4, 1, k)
10: if r— ¢ <1 return a[l|
11: b — SELECTP1VOT(a,?, 1)
12: Jj—SPLIT(a, ¢, 1, alb])
13: if j= k then
14: return afj]
15: elseif j < k then
16: QUICKSELECT@q, j+1,1,k—j—1
17: else
18: QUICKSELECT(a,0, j, k)
19: end if

20: end procedure

10/30

Majority

Majority

Problem 2. Majority:

* Given an array a of n items, is there an item that is repeated more
than n/2 times?

Naive Solution

* [terate over elements and compare each element to all others to
see if occurs at least n/2 times

 Takes O(n?) time

Observation. If a value m is a majority, then m must either be a
majority in al0...n/2] or aln/2+1...n—1] as well.

e Split @ in half
* Recursively find candidate majority m, and m, for halves

* Check to see if either is a majority

12/30

Divide & Conquer Majority Illustration

(1[2[1]1]2]3[3[1]2[1]1]2]3[3]3[2]3[2[1[1]1]3[1]2[1]1]3[1[1]2[1]1]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

13/30

Divide & Conquer Majority in Code

RPRIPT RN

: procedure [ISMAJORITY(a, ¢, 1, V)

count—0
fori=¢,0+1,...,rdo
if ali] = v then
count — count+1
end if
end for
return count> (r—¢+1)/2

: end procedure
: procedure MAJORITY(q, 4, 1)

if / — r <1 return a[/]

je =02

vy — MAJORITY(a, ¥, j)

vy < MAJORITY(a, j+1,1)

if ISMAJORITY(a, ¢, 1, vp) then
return vy

else if ISMAJORITY(qa, ¢, 1, vy) then
return vy

end if

return L

: end procedure

14/30

Divide & Conquer Majority in Code

PollEverywhere Question

What is the worst case running
time of MAJORITY on an array of n
elements?

pollev.com/comp526

RPRIPT RN

: procedure ISMAJORITY(a, ¢, 1, V)

count—0
fori=¢,0+1,...,rdo
if ali] = v then
count — count+1
end if
end for
return count> (r—¢+1)/2

: end procedure
: procedure MAJORITY(q, 4, 1)

if / — r <1 return a[/]

je— =012

vy — MAJORITY(a, ¥, j)

vy < MAJORITY(a, j+1,1)

if ISMAJORITY(a, ¢, 1, vp) then
return vy

else if ISMAJORITY(qa, ¢, 1, vy) then
return v,

end if

return L

: end procedure

14/30

https://pollev.com/comp526

Divide & Conquer Majority in Code

Analysis.

* Almost identical to
MERGESORT

e Each call to
ISMAJORITY(a, Y, 1, v) takes
time ®(¢ —r)

* Running time T'(n) satisfies

T(n)<2T(n/2)+06(n)

* Solve recursion — done!

RPRIPT RN

: procedure [ISMAJORITY(a, ¢, 1, V)

count—0
fori=¢,0+1,...,rdo
if ali] = v then
count — count+1
end if
end for
return count> (r—¢+1)/2

: end procedure
: procedure MAJORITY(q, 4, 1)

if / — r <1 return a[/]

je =02

vy — MAJORITY(a, ¥, j)

vy < MAJORITY(a, j+1,1)

if ISMAJORITY(a, ¢, 1, vp) then
return vy

else if ISMAJORITY(qa, ¢, 1, vy) then
return vy

end if

return L

: end procedure

14/30

Divide & Conquer Majority in Code

Analysis.
* Almost identical to
MERGESORT

e Each call to
ISMAJORITY(a, Y, 1, v) takes
time ®(¢ —r)
* Running time T'(n) satisfies
T(n) <2T(n/2)+06(n)
* Solve recursion — done!
Challenge. Devise an algorithm
that finds the majority in ©(n) time

(worst case). (Hint: don’t use
Divide & Conquer)

RPRIPT RN

: procedure [ISMAJORITY(a, ¢, 1, V)

count—0
fori=¢,0+1,...,rdo
if ali] = v then
count — count+1
end if
end for
return count> (r—¢+1)/2

: end procedure
: procedure MAJORITY(q, 4, 1)

if / — r <1 return a[/]

je =02

vy — MAJORITY(a, ¥, j)

vy < MAJORITY(a, j+1,1)

if ISMAJORITY(a, ¢, 1, vp) then
return vy

else if ISMAJORITY(qa, ¢, 1, vy) then
return vy

end if

return L

: end procedure

14/30

Closest Points in
the Plane

Closest Points in the Plane

Problem 3. Given n points py, p, ..., pn in the plane, which pair of
points p;, pj are closest to one another?

16/30

Closest Points in the Plane

Problem 3. Given n points py, p, ..., pn in the plane, which pair of
points p;, pj are closest to one another?

Naive Strategy suggested by
GenAl:

* Compute distances between
all pairs of points

1: procedure NAIVEMINDIST(p)

2 d— oo

3 fori=1,2,...,n—1do

4 forj=0,1,...,i—1do

5: if Dist(plil, plj]) < d then
6: d — Dist(plil, pljl)
7 end if

8 end for

9 end for

10: return d

11: end procedure

16/30

Closest Points in the Plane

Problem 3. Given n points py, p, ..., pn in the plane, which pair of
points p;, pj are closest to one another?

. 1: procedure NAIVEMINDIST(p)
PollEverywhere Question 9 deoo
What is the worst case running 3: fori=12,..,n-1do
time of NAIVEMINDIST on a set of ;1 for!fzo, 1’("{]"[1];10 .
] . : if DisT(plil, pljl) < d then
2

n points in the plane? 6 d— DIsT(plil, pljl)

7 end if

8 end for

9 end for

10: return d

11: end procedure

pollev.com/comp526

16/30

https://pollev.com/comp526

Closest Points in the Plane

Problem 3. Given n points py, p, ..., pn in the plane, which pair of
points p;, pj are closest to one another?
Naive Strategy suggested by

GenAl: 1: procedure NAIVEMINDIST(p)
. 2 d— oo
c Compute dlst.ances between o~ 1.2,...n-1do
all pairs of points 4 forj=0,1,...,i—1do

5: if Dist(plil, plj]) < d then
6: d — Dist(plil, plj))
7 end if

Question. How could we use 8 end for

Divide & Conquer to improve on 9 endfor

10: return d

. MVl
this running time? 11: end procedure

16/30

Closest Points: Divide & Conquer

Step 1. split the array according to x-coordinate

17/30

Closest Points: Divide & Conquer

Step 1a. sort the array by x coordinate

17/30

Closest Points: Divide & Conquer

Step 1b. find median according to x coordinate, py,

Oremesooccoas
°

17/30

Closest Points: Divide & Conquer

Step 2a. (recursively) solve the problem for left half

O remecocccoas
°

—

17/30

Closest Points: Divide & Conquer

Step 2b. (recursively) solve the problem for right half

Oreerecscsaas
°

-
\

17/30

Closest Points: Divide & Conquer

Step 3. merge solutions together

’ .
[]

17/30

Closest Points: Divide & Conquer

Step 3. merge solutions together

b
[]

...but how?

17/30

Closest Points: Divide & Conquer

Critical Analysis. What happens in the middle strip?

17/30

Analysis of the Middle Strip

Suppose:
* dp is minimal distance on the left
* d,is minimal distance on the right
* § =min{dy,dr}

* X is the median x-coordinate among points

18/30

Analysis of the Middle Strip

Suppose:

* dp is minimal distance on the left

* d,is minimal distance on the right

* § =min{dy,dr}

* X is the median x-coordinate among points
Claim 1. If pis in left half and g is on right
have with D1sT(p;, p;) <6, then
Xm—0 < X; < X and X, < X < X + 6.

18/30

Analysis of the Middle Strip

Suppose:

* dp is minimal distance on the left

* d,is minimal distance on the right

* § =min{dy,dr}

* X is the median x-coordinate among points
Claim 1. If pis in left half and g is on right
have with D1sT(p;, p;) <6, then
Xm—0 < X; < X and X, < X < X + 6.

Claim 2. With p as above, there are at
most 8 points g on the right side with
DisT(p,gq) < 6.

18/30

Analysis of the Middle Strip

Suppose:

* dp is minimal distance on the left

* d,is minimal distance on the right

* § =min{dy,dr}

* X is the median x-coordinate among points
Claim 1. If pis in left half and g is on right
have with D1sT(p;, p;) <6, then
Xm—0 < X; < X and X, < X < X + 6.

Claim 2. With p as above, there are at
most 8 points g on the right side with
DisT(p,gq) < 6.

Consequence. We only need to make O(n)
further distance computations to
compute overall minimum distance.

18/30

Putting it Together

Algorithm Sketch. Find the closest pair of points among py, p, ..., pn
in the plane:

1.
2. Recursively sort left and right halves.

e

4. Consider points within distance 6 of median line, and compute

Sort points by x-coordinate, x;, is the median value.

Set 0 to be the minimum distance on either half.

distances across the halves.
* this can be done in O(n) time

. Report the smallest distance found.

19/30

Putting it Together

Algorithm Sketch. Find the closest pair of points among py, p, ..., pn
in the plane:

1.
2. Recursively sort left and right halves.

e

4. Consider points within distance 6 of median line, and compute

5

Sort points by x-coordinate, x;, is the median value.

Set 0 to be the minimum distance on either half.

distances across the halves.
* this can be done in O(n) time

Report the smallest distance found.

Running time analysis.

* Preprocessing takes O(nlogn) to sort the points.

* The main algorithm running time satisfies the recursion

=

T(n) <2T(n/2)+ O(n)
overall running time is O(nlog n).

19/30

Concluding Thoughts

Divide & Conquer is a powerful algorithm design strategy.
Efficiency improvement over naive solutions:

* Sorting O(n?) — BO(nlogn)

* k-Selection ©(n?) — O(n)

* Majority 0(n?) — O(nlogn)

¢ Closest points in the plane on?) — O(nlogn)

20/30

Concluding Thoughts

Divide & Conquer is a powerful algorithm design strategy.
Efficiency improvement over naive solutions:

* Sorting O(n?) — BO(nlogn)

* k-Selection ©(n?) — O(n)

* Majority 0(n?) — O(nlogn)

¢ Closest points in the plane on?) — O(nlogn)
Other applications:

* Matrix multiplication (Strassen’s algorithm):
@(n?)) . @(nlog2 7+0(1)) ~ @(n2.807)

* Integer multiplication: O(B?) — O(B°&3) —, ©(BlogB)

e Fast Fourier Transform: @(n?) — O(nlogn)

20/30

Concluding Thoughts

Divide & Conquer is a powerful algorithm design strategy.
Efficiency improvement over naive solutions:

* Sorting O(n?) — BO(nlogn)

* k-Selection ©(n?) — O(n)

* Majority 0(n?) — O(nlogn)

¢ Closest points in the plane on?) — O(nlogn)
Other applications:

* Matrix multiplication (Strassen’s algorithm):
@(n?)) . @(nlog2 7+0(1)) ~ @(n2.807)

* Integer multiplication: O(B?) — O(B°&3) —, ©(BlogB)
e Fast Fourier Transform: @(n?) — O(nlogn)
Other considerations:

* Practical because of parallelism

20/30

String Matching

String Matching: Motivation

Fundamental Problems. Given a (large) text T and (small) pattern P:
* Determine if T contains the pattern P.
* Find the first occurrence of Pin T (if any)

e Fund the number of occurrences of Pin T

22/30

String Matching: Motivation

Fundamental Problems. Given a (large) text T and (small) pattern P:
* Determine if T contains the pattern P.
* Find the first occurrence of Pin T (if any)
* Fund the number of occurrences of Pin T

Example applications.

¢ Search on your computer: Ctrl + F

22/30

String Matching: Motivation

Fundamental Problems. Given a (large) text T and (small) pattern P:
* Determine if T contains the pattern P.
* Find the first occurrence of Pin T (if any)
* Fund the number of occurrences of Pin T

Example applications.

¢ Search on your computer: Ctrl + F
* Bioinformatics:
* does a DNA sequence (7) contain a particular gene (P)?

22/30

String Matching: Motivation

Fundamental Problems. Given a (large) text T and (small) pattern P:
* Determine if T contains the pattern P.
* Find the first occurrence of Pin T (if any)
* Fund the number of occurrences of Pin T

Example applications.

¢ Search on your computer: Ctrl + F
* Bioinformatics:

* does a DNA sequence (7) contain a particular gene (P)?
e Computer virus detection

* does your hard drive store a known program?

22/30

String Matching: Motivation

Fundamental Problems. Given a (large) text T and (small) pattern P:
* Determine if T contains the pattern P.
* Find the first occurrence of Pin T (if any)
* Fund the number of occurrences of Pin T

Example applications.

¢ Search on your computer: Ctrl + F
* Bioinformatics:
* does a DNA sequence (7) contain a particular gene (P)?
e Computer virus detection
* does your hard drive store a known program?
¢ (Counter) Espionage
* does a data transmission contain the phrase “ATTACK AT DAWN?”

22/30

String Matching: Motivation

Fundamental Problems. Given a (large) text T and (small) pattern P:
* Determine if T contains the pattern P.
* Find the first occurrence of Pin T (if any)
* Fund the number of occurrences of Pin T

Example applications.

¢ Search on your computer: Ctrl + F
* Bioinformatics:
* does a DNA sequence (7) contain a particular gene (P)?
e Computer virus detection
* does your hard drive store a known program?
¢ (Counter) Espionage
* does a data transmission contain the phrase “ATTACK AT DAWN?”

Interesting parameters. | T| is large (~ 1B), |P| is relatively small (~ 1K)

22/30

Making Things Precise

Notation
* Y is a finite alphabet or set of characters, o = |X|
= {0, 1} is binary alphabet
> ={A, B,...} is Roman alphabet
* X=-..e.g., ASCII, Unicode,
e ¥'=3YxZx---xX={(c],,...,Cy) | €ach ¢; € X} = strings of exactly
n characters
. =S, Z" = all finite strings
C = U5 2" = all nonempty (finite) strings
*ce€ ZO is the empty string
e for Se X", S[i] is ith character of S
e for S,TeX*, ST is the concatenation of Sand T
* for Se X", S[i..jl = S[i]S[i+ 1] --- S[j] is a substring
* §[0..j] is a prefix, S[j..n— 1] is a suffix
° Sli.)=9li..j—-1] = S=S5[0..n)

23/30

The String Matching Problem

Input:
* Atext TeX* oflength n
* Apattern Pe X* of length m (typically m < n)

Output:

¢ The index of the first occurrence of Pin T, or —1 if T does not
contain P as a substring:

* min{i| T[i, i+ m) = P}

Example.

* T=10110011011101
e P =1101

24/30

The String Matching Problem

Input:
* Atext TeX* oflength n
* Apattern Pe X* of length m (typically m < n)

Output:

¢ The index of the first occurrence of Pin T, or —1 if T does not
contain P as a substring:

* min{i| T[i, i+ m) = P}

Example.
e T=10110011011101
e P =1101

® Qutput: i—6

24/30

The String Matching Problem

Input:
* Atext TeX* oflength n
* Apattern Pe X* of length m (typically m < n)

Output:

¢ The index of the first occurrence of Pin T, or —1 if T does not
contain P as a substring:

* min{i| T[i, i+ m) = P}

Example.
e T=10110011011101
e P =1101

® Qutput: i—6
e P, =000

24/30

The String Matching Problem

Input:
* Atext TeX* oflength n
* Apattern Pe X* of length m (typically m < n)

Output:

¢ The index of the first occurrence of Pin T, or —1 if T does not
contain P as a substring:

* min{i| T[i, i+ m) = P}

Example.

* T=10110011011101
e P =1101

® Qutput: i—6
e P, =000

¢ Output: i — -1

24/30

Brute Force
Matching

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1
Check if match at i:
e is T[i,i+ m) = P?
e verify each character individually

Cost = number of comparisons made

26/30

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1

Check if match at i:
° isT[i,i+m)=P?
e verify each character individually
1: procedure VERIFYMATCH(T, P, i)
2: j<=0
3 while j < mdo
4 if T[i+ j] # P[j] then
) return FALSE
6 end if
7: j—j+1
8 end while
9
10:

return TRUE
end procedure

Cost = number of comparisons made

26/30

Brute Force Matching

Guess an index i where a match might occur
* Possible guesses i=0,1,...,n—m—1
Check if match at i:

° 11 3 .4_ — I)? .
is T[i, i+ m) PollEverywhere Question

e verify each character individually
1: procedure VERIFYMATCH(T, P, i) What are the worst case and
2. j—0 best case running times of
3: whilej<mdo VERIFYMATCH?
4 if T[i+ j] # P[j] then
5: return FALSE
6: end if
7 j—j+1
8 end while
9 return TRUE
0: end procedure pollev.com/comp526

1

Cost = number of comparisons made

26/30

https://pollev.com/comp526

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1
Check if match at i:

* is T[i i+ m) = P? Best and Worst Cases:

e verify each character individually
1: procedure VERIFYMATCH(T, P, i)
2: j<=0
3 while j < mdo
4 if T[i+ j] # P[j] then
5) return FALSE
6 end if
7: j—j+1
8 end while
9 return TRUE
10: end procedure

Cost = number of comparisons made

26/30

Brute Force Matching

Guess an index i where a match might occur
¢ Possible guesses i=0,1,...,n—m—-1
Check if match at i:
e is T[i,i+ m) = P?
e verify each character individually

Cost = number of comparisons made
Brute force. Guess and check every value
i=0,1,...,n—-m-1
* Worst case running time is ©(nm)
* What is example has cost Q(nm)?

* Best case cost is O(m)

26/30

Brute Force Example

Example
* T = abbbababbab
* P=abba
0 1 2 3 4 5 6 7 8 9 10

a'b/b/bjlal/bja/b|b|a|b

procedure
BRUTEFORCEMATCH(T, P)
fori=0,1,...,n—m—1do
if VERIFYMATCH(T, P, i) then
return i
end if
end for
return —1
end procedure

27130

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

28/30

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

28/30

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

¢ (Claim: brute force search running time is now O(n)

¢ In fact, at most 2n comparisons made!
* Why?

28/30

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

¢ (Claim: brute force search running time is now O(n)
¢ In fact, at most 2n comparisons made!
* Why?

* Which of these comparisons were unnecessary?
* How can you search with fewer comparisons?

28/30

Brute Force Efficiency

The worst case complexity of brute force search is @(nm)...
...but when is this actually achieved?

Example. Consider the case where P contains no repeated characters.

¢ (Claim: brute force search running time is now O(n)
¢ In fact, at most 2n comparisons made!
* Why?

* Which of these comparisons were unnecessary?
* How can you search with fewer comparisons?

More generally: How can we use results of previous comparisons to
avoid making unnecessary comparisons in the future?

28/30

For Next Time

Consider How could we improve upon BRUTEFORCEMATCH

* How can we use information about previous matches in order to
avoid doing some future checks?

29/30

Scratch Notes

30/30

	Divide & Conquer
	k-Selection
	Majority
	Closest Points in the Plane
	String Matching
	Brute Force Matching

