Lecture 10: Divide & Conquer; String Matching I

COMP526: Efficient Algorithms

Updated: November 5, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. NO QUIZ THIS WEEK!
- 2. Programming Assignment Posted
 - Due Wednesday, 13 November
- 3. Attendance Code:

Meeting Goals

- Discuss more Divide & Conquer algorithms
 - Order Statistics
 - Majority
 - Closest Pair of Points
- Introduce the String Matching problem
 - Problem definition
 - Elementary algorithm

Divide & Conquer

Previously: Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

- 1. Break the input into smaller instances of the task
- 2. Solve the smaller instances
 - · this is typically recursive!
- 3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Examples (so far):

- MergeSort: divide an array by index to sort
 - $O(n \log n)$ time
- QUICKSORT: divide an array by value to sort
 - $O(n \log n)$ time
- BINARYSEARCH: divide a sorted array to search it
 - $O(\log n)$ time

Three More Problems

Problem 1. *k*-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number

Three More Problems

Problem 1. *k*-Selection:

Given an array a of n numbers, find the kth largest number

Problem 2. Majority:

• Given an array *a* of *n* items, is there an item that is repeated more than > *n*/2 times?

Three More Problems

Problem 1. *k*-Selection:

• Given an array *a* of *n* numbers, find the *k*th largest number

Problem 2. Majority:

• Given an array *a* of *n* items, is there an item that is repeated more than > *n*/2 times?

Problem 3. Closest Points in the Plane

• Given n points $p_1, p_2, ..., p_n$ in the plane, which pair of points p_i, p_j are closest to one another?

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number.

Problem. Given an array a of n numbers, find the kth smallest number. Simple solution.

- sort a in $O(n \log n)$ time
- return a[k]

Can we do better?

Problem. Given an array a of n numbers, find the kth smallest number. Simple solution.

- sort a in $O(n \log n)$ time
- return a[k]

Can we do better?

Modify QuickSort!

- Choose pivot *p*
- Perform split
- only recurse on half that contains kth smallest value
 - this will be the half that contains index k
- · Random pivot selection
 - $\implies O(n)$ expected time!

Problem. Given an array a of n numbers, find the kth smallest number. Simple solution.

- sort a in $O(n \log n)$ time
- return a[k]

Can we do better? Modify QuickSort!

- Choose pivot p
 - Perform split
 - only recurse on half that contains kth smallest value
 - this will be the half that contains index *k*
 - Random pivot selection
 ⇒ O(n) expected time!

```
1: procedure
    QUICKSELECT(a, min, max, k)
 2:
        if max - min < 1 then
 3:
           return a[min]
 4:
        end if
        p \leftarrow \text{SELECTPIVOT}(a, \min, \max)
 5:
       j \leftarrow \text{SPLIT}(a, \min, \max, p)
 6:
 7:
        if j = k then
           return a[k]
 8:
        else if i < k then
 9:
           QUICKSELECT(a, j + 1, \max, k)
10:
11:
        else
12:
           QUICKSELECT(a, min, i-1, k)
13:
        end if
14: end procedure
```

Problem. Given an array *a* of *n* numbers, find the *k*th smallest number.

PollEverywhere Question

What is the *worst case* running time of QUICKSELECT on an array of *n* elements?

pollev.com/comp526

```
1: procedure
    QUICKSELECT(a, min, max, k)
 2:
        if max - min < 1 then
 3:
           return a[min]
 4:
       end if
       p \leftarrow \text{SELECTPIVOT}(a, \min, \max)
 5:
       j \leftarrow \text{SPLIT}(a, \min, \max, p)
 6:
 7:
       if j = k then
           return a[k]
 8:
        else if i < k then
 9:
10:
           QUICKSELECT(a, j + 1, \max, k)
11:
       else
12:
           QUICKSELECT(a, min, i-1, k)
13:
        end if
14: end procedure
```

Question. Can we perform k-selection with a **worst case** O(n) running time?

Question. Can we perform k-selection with a worst case O(n) running time?

Idea. What if we can select better pivots?

- Suppose we can *guarantee* that our pivot is "good enough:"
 - rank of p is between cn and (1-c)n for c > 0
- · How many recursive calls until we're done?

Question. Can we perform k-selection with a worst case O(n) running time?

Idea. What if we can select better pivots?

- Suppose we can *guarantee* that our pivot is "good enough:"
 - rank of p is between cn and (1-c)n for c>0
- How many recursive calls until we're done?
 - each recursive call has size at most (1-2c)n
 - ℓ recursive calls \implies size at most $(1-2c)^{\ell} n$
 - \implies done after $\ell = O(\log n)$ levels of recursion
- What is overall running time?

Question. Can we perform k-selection with a worst case O(n) running time?

Idea. What if we can select better pivots?

- Suppose we can guarantee that our pivot is "good enough:"
 - rank of *p* is between *cn* and (1-c)n for c > 0
- How many recursive calls until we're done?
 - each recursive call has size at most (1-2c)n
 - ℓ recursive calls \implies size at most $(1-2c)^{\ell} n$
 - \implies done after $\ell = O(\log n)$ levels of recursion
- What is overall running time?
 - $Cn + (1-2c)Cn + (1-2c)^2Cn + \cdots = O(n)$

Question. Can we perform k-selection with a worst case O(n) running time?

Idea. What if we can select better pivots?

- Suppose we can *guarantee* that our pivot is "good enough:"
 - rank of p is between cn and (1-c)n for c > 0
- · How many recursive calls until we're done?
 - each recursive call has size at most (1-2c)n
 - ℓ recursive calls \implies size at most $(1-2c)^{\ell} n$
 - \implies done after $\ell = O(\log n)$ levels of recursion
- What is overall running time?
 - $Cn + (1-2c)Cn + (1-2c)^2Cn + \cdots = O(n)$

But how can we find a good pivot deterministically?

- Need to find pivots close to the median...
- Median is (special case) of *k* selection!

Strategy. To find a good pivot:

- Find a *smaller* set of values whose *median* is a good pivot
- Recursively find the median of the smaller set of values

Strategy. To find a good pivot:

- Find a *smaller* set of values whose *median* is a good pivot
- Recursively find the median of the smaller set of values
- Consider blocks of size 5
 - sort each block
 - find the block median
- Claim: median of medians is a good pivot:

Strategy. To find a good pivot:

- Find a *smaller* set of values whose *median* is a good pivot
- Recursively find the median of the smaller set of values
- Consider blocks of size 5
 - sort each block
 - · find the block median
- Claim: median of medians is a good pivot:
 - at least $\frac{3}{10}$ -fraction is excluded

Strategy. To find a good pivot:

- Find a smaller set of values whose median is a good pivot
- Recursively find the median of the smaller set of values
- Consider blocks of size 5
 - sort each block
 - find the block median
- Claim: median of medians is a good pivot:
 - at least $\frac{3}{10}$ -fraction is excluded

```
1: procedure SELECTPIVOT(a, \ell, r)

2: m \leftarrow n/5

3: for i = 0, 1, ..., m-1 do

4: SORT(a[5i...5i+4])

5: SWAP(a, i, 5i+2)

6: end for

7: return QUICKSELECT(a, 0, m, (m-1)/2)
```

8: end procedure

Illustration:

```
1: procedure SelectPivot(a, \ell, r)
 2:
        m \leftarrow n/5
 3:
        for i = 0, 1, ..., m-1 do
            SORT(a[5i...5i+4])
 4:
            SWAP(a, i, 5i + 2)
 5:
 6:
        end for
        return QUICKSELECT(a, 0, m, (m-1)/2)
 8: end procedure
 9: procedure QUICKSELECT(a, \ell, r, k)
10:
        if r - \ell \le 1 return a[l]
11: b \leftarrow \text{SELECTPIVOT}(a, \ell, r)
12: j \leftarrow \text{SPLIT}(a, \ell, r, a[b])
13: if i = k then
14:
           return a[j]
15:
        else if i < k then
            QUICKSELECT a, j+1, r, k-j-1
16:
17:
        else
            QUICKSELECT(a, 0, j, k)
18:
19:
        end if
20: end procedure
```

Analysis.

Running time T(n) satisfies

$$T(n) \le Cn + T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n\right)$$
$$\le Cn + T\left(\frac{1}{5}n + \frac{7}{10}n\right)$$
$$\le Cn + T\left(\frac{9}{10}n\right)$$

Therefore, T(n) = O(n).

```
1: procedure SelectPivot(a, \ell, r)
        m \leftarrow n/5
 2:
 3:
        for i = 0, 1, ..., m-1 do
 4:
            SORT(a[5i...5i+4])
            SWAP(a, i, 5i + 2)
 5:
 6:
        end for
 7:
        return QUICKSELECT(a, 0, m, (m-1)/2)
 8: end procedure
 9: procedure QUICKSELECT(a, \ell, r, k)
        if r - \ell \le 1 return a[l]
10:
11: b \leftarrow \text{SELECTPIVOT}(a, \ell, r)
12: j \leftarrow \text{SPLIT}(a, \ell, r, a[b])
     if i = k then
13:
14:
           return a[j]
15:
        else if i < k then
            QUICKSELECT a, j+1, r, k-j-1
16:
17:
        else
            QUICKSELECT(a, 0, j, k)
18:
19:
        end if
20: end procedure
```

Conclusion. The Median of Medians strategy allows us to

- solve *k*-selection in *O*(*n*) time, worst case
- sort in $O(n \log n)$ time, worst case too
 - use k selection as a sub-routine for SELECTPIVOT in OUICKSORT

Note. Randomized variants tend to be more efficient in practice.

```
1: procedure SelectPivot(a, \ell, r)
 2:
        m \leftarrow n/5
 3:
        for i = 0, 1, ..., m-1 do
            SORT(a[5i...5i+4])
 4:
            SWAP(a, i, 5i + 2)
 5:
 6:
        end for
 7:
        return QUICKSELECT(a, 0, m, (m-1)/2)
 8: end procedure
 9: procedure QUICKSELECT(a, \ell, r, k)
        if r - \ell \le 1 return a[l]
10:
        b \leftarrow \text{SELECTPIVOT}(a, \ell, r)
11:
12:
       j \leftarrow \text{SPLIT}(a, \ell, r, a[b])
13:
      if i = k then
14:
            return a[j]
        else if i < k then
15:
            QUICKSELECT a, j+1, r, k-j-1
16:
17:
        else
            QUICKSELECT(a, 0, j, k)
18:
19:
        end if
20: end procedure
```

Majority

Majority

Problem 2. Majority:

 Given an array a of n items, is there an item that is repeated more than n/2 times?

Naive Solution

- Iterate over elements and compare each element to all others to see if occurs at least *n*/2 times
- Takes $\Theta(n^2)$ time

Observation. If a value m is a majority, then m must either be a majority in a[0...n/2] or a[n/2+1...n-1] as well.

- Split a in half
- Recursively find candidate majority m_{ℓ} and m_r for halves
- Check to see if either is a majority

Divide & Conquer Majority Illustration


```
procedure IsMAJORITY(a, \ell, r, \nu)
 2:
         count \leftarrow 0
         for i = \ell, \ell + 1, ..., r do
 4:
             if a[i] = v then
 5:
                  count \leftarrow count + 1
 6:
             end if
 7:
         end for
         return count > (r - \ell + 1)/2
 9: end procedure
10: procedure MAJORITY(a, \ell, r)
11:
         if \ell - r < 1 return a[\ell]
12:
         i \leftarrow (r - \ell)/2
13: v_{\ell} \leftarrow \text{MAJORITY}(a, \ell, j)
14:
        v_r \leftarrow \text{MAJORITY}(a, j+1, r)
15:
         if IsMajority(a, \ell, r, v_{\ell}) then
16:
             return v_{\ell}
17:
         else if ISMAJORITY(a, \ell, r, \nu_r) then
18:
             return v_r
19:
         end if
20:
         return 🕹
21: end procedure
```

PollEverywhere Question

What is the *worst case* running time of MAJORITY on an array of *n* elements?

pollev.com/comp526

```
procedure ISMAJORITY(a, \ell, r, \nu)
 2:
          count \leftarrow 0
 3:
         for i = \ell, \ell + 1, ..., r do
 4:
              if a[i] = v then
 5:
                  count \leftarrow count + 1
 6:
             end if
 7:
         end for
 8:
          return count > (r - \ell + 1)/2
     end procedure
10: procedure MAJORITY(a, \ell, r)
11:
         if \ell - r < 1 return a[\ell]
12:
         i \leftarrow (r - \ell)/2
13:
        v_{\ell} \leftarrow \text{MAJORITY}(a, \ell, j)
14:
         v_r \leftarrow \text{MAJORITY}(a, j+1, r)
15:
          if IsMajority(a, \ell, r, v_{\ell}) then
16:
              return v_{\ell}
17:
          else if ISMAJORITY(a, \ell, r, \nu_r) then
18:
              return v_r
19:
          end if
20:
          return 1
21: end procedure
```

Analysis.

- Almost identical to MERGESORT
- Each call to ISMAJORITY(a, ℓ, r, v) takes time $\Theta(\ell r)$
- Running time T(n) satisfies $T(n) \le 2T(n/2) + \Theta(n)$
- Solve recursion ⇒ done!

```
procedure ISMAJORITY(a, \ell, r, \nu)
 2:
          count \leftarrow 0
         for i = \ell, \ell + 1, ..., r do
 4:
              if a[i] = v then
 5:
                  count \leftarrow count + 1
 6:
             end if
 7:
         end for
          return count > (r - \ell + 1)/2
 9: end procedure
10: procedure MAJORITY(a, \ell, r)
11:
         if \ell - r < 1 return a[\ell]
12:
         i \leftarrow (r - \ell)/2
13:
         v_{\ell} \leftarrow \text{MAJORITY}(a, \ell, j)
14:
          v_r \leftarrow \text{MAJORITY}(a, j+1, r)
15:
          if ISMAJORITY(a, \ell, r, v_{\ell}) then
16:
             return v_{\ell}
17:
          else if ISMAJORITY(a, \ell, r, \nu_r) then
18:
              return v_r
19:
          end if
20:
          return 1
21: end procedure
```

Analysis.

- Almost identical to MERGESORT
- Each call to ISMAJORITY(a, ℓ, r, v) takes time $\Theta(\ell r)$
- Running time T(n) satisfies $T(n) \le 2T(n/2) + \Theta(n)$
- Solve recursion ⇒ done!

Challenge. Devise an algorithm that finds the majority in $\Theta(n)$ time (worst case). (Hint: don't use Divide & Conquer)

```
procedure ISMAJORITY(a, \ell, r, \nu)
 2:
          count \leftarrow 0
 3:
          for i = \ell, \ell + 1, ..., r do
 4:
              if a[i] = v then
 5:
                  count \leftarrow count + 1
 6:
              end if
 7:
          end for
          return count > (r - \ell + 1)/2
 8:
     end procedure
10: procedure MAJORITY(a, \ell, r)
11:
          if \ell - r < 1 return a[\ell]
12:
         i \leftarrow (r - \ell)/2
13:
          v_{\ell} \leftarrow \text{MAJORITY}(a, \ell, j)
14:
          v_r \leftarrow \text{MAJORITY}(a, j+1, r)
15:
          if ISMAJORITY(a, \ell, r, v_{\ell}) then
16:
              return v_{\ell}
17:
          else if ISMAJORITY(a, \ell, r, \nu_r) then
18:
              return v_r
19:
          end if
20:
          return 1
21: end procedure
```

Closest Points in the Plane

Closest Points in the Plane

Problem 3. Given *n* points $p_1, p_2, ..., p_n$ in the plane, which *pair* of points p_i, p_j are closest to one another?

Closest Points in the Plane

Problem 3. Given n points $p_1, p_2, ..., p_n$ in the plane, which pair of points p_i, p_j are closest to one another?

Naive Strategy suggested by

GenAI:

 Compute distances between all pairs of points

```
1: procedure NAIVEMINDIST(p)
 2:
        d \leftarrow \infty
 3:
        for i = 1, 2, ..., n-1 do
 4:
            for j = 0, 1, ..., i - 1 do
                if DIST(p[i], p[j]) < d then
 5:
                   d \leftarrow \text{DIST}(p[i], p[j])
 6:
 7:
               end if
            end for
 8:
 9:
        end for
10:
        return d
11: end procedure
```

Closest Points in the Plane

Problem 3. Given *n* points $p_1, p_2, ..., p_n$ in the plane, which *pair* of points p_i, p_j are closest to one another?

PollEverywhere Question

What is the worst case running time of NAIVEMINDIST on a set of *n* points in the plane?

pollev.com/comp526

```
1: procedure NAIVEMINDIST(p)
        d \leftarrow \infty
 3:
        for i = 1, 2, ..., n-1 do
 4:
            for j = 0, 1, ..., i - 1 do
                if DIST(p[i], p[j]) < d then
 5:
 6:
                    d \leftarrow \text{DIST}(p[i], p[j])
 7:
               end if
            end for
 8:
 9:
        end for
        return d
10:
11: end procedure
```

Closest Points in the Plane

Problem 3. Given *n* points $p_1, p_2, ..., p_n$ in the plane, which *pair* of points p_i, p_j are closest to one another?

Naive Strategy suggested by GenAI:

 Compute distances between all pairs of points

Question. How could we use **Divide & Conquer** to improve on this running time?

```
1: procedure NAIVEMINDIST(p)
        d \leftarrow \infty
 2:
 3:
        for i = 1, 2, ..., n-1 do
 4:
            for j = 0, 1, ..., i - 1 do
                if DIST(p[i], p[j]) < d then
 5:
 6:
                    d \leftarrow \text{DIST}(p[i], p[j])
 7:
                end if
            end for
 8:
 9:
        end for
        return d
10:
11: end procedure
```

Step 1. split the array according to *x*-coordinate

Step 1a. sort the array by *x* coordinate

Step 1b. find median according to x coordinate, p_m

Step 2a. (recursively) solve the problem for left half

Step 2b. (recursively) solve the problem for right half

Step 3. merge solutions together

Step 3. merge solutions together ... but how?

Critical Analysis. What happens in the middle strip?

Suppose:

- d_{ℓ} is minimal distance on the left
- d_r is minimal distance on the right
- $\delta = \min\{d_{\ell}, d_{r}\}$
- x_m is the median x-coordinate among points

Suppose:

- d_{ℓ} is minimal distance on the left
- d_r is minimal distance on the right
- $\delta = \min\{d_{\ell}, d_r\}$
- x_m is the median x-coordinate among points

Claim 1. If p is in left half and q is on right have with DIST $(p_i, p_i) < \delta$, then

$$x_m - \delta < x_i \le x_m$$
 and $x_m \le x_i \le x_m + \delta$.

Suppose:

- d_{ℓ} is minimal distance on the left
- d_r is minimal distance on the right
- $\delta = \min\{d_{\ell}, d_r\}$
- x_m is the median x-coordinate among points

Claim 1. If p is in left half and q is on right have with DIST $(p_i, p_j) < \delta$, then $x_m - \delta < x_i \le x_m$ and $x_m \le x_j \le x_m + \delta$.

Claim 2. With p as above, there are at most 8 points q on the right side with DIST $(p,q) \le \delta$.

Suppose:

- d_{ℓ} is minimal distance on the left
- d_r is minimal distance on the right
- $\delta = \min\{d_{\ell}, d_r\}$
- x_m is the median x-coordinate among points

Claim 1. If p is in left half and q is on right have with DIST $(p_i, p_j) < \delta$, then $x_m - \delta < x_i \le x_m$ and $x_m \le x_j \le x_m + \delta$.

Claim 2. With p as above, there are at most 8 points q on the right side with DIST $(p,q) \le \delta$.

Consequence. We only need to make O(n) further distance computations to compute overall minimum distance.

Putting it Together

Algorithm Sketch. Find the closest pair of points among $p_1, p_2, ..., p_n$ in the plane:

- 1. Sort points by x-coordinate, x_m is the median value.
- 2. Recursively sort left and right halves.
- 3. Set δ to be the minimum distance on either half.
- 4. Consider points within distance δ of median line, and compute distances across the halves.
 - this can be done in O(n) time
- 5. Report the smallest distance found.

Putting it Together

Algorithm Sketch. Find the closest pair of points among $p_1, p_2, ..., p_n$ in the plane:

- 1. Sort points by x-coordinate, x_m is the median value.
- 2. Recursively sort left and right halves.
- 3. Set δ to be the minimum distance on either half.
- 4. Consider points within distance δ of median line, and compute distances across the halves.
 - this can be done in O(n) time
- 5. Report the smallest distance found.

Running time analysis.

- Preprocessing takes $O(n \log n)$ to sort the points.
- The main algorithm running time satisfies the recursion $T(n) \le 2T(n/2) + O(n)$
- \implies overall running time is $O(n \log n)$.

Concluding Thoughts

Divide & Conquer is a powerful algorithm design strategy. **Efficiency improvement** over naive solutions:

- Sorting $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- k-Selection $\Theta(n^2) \longrightarrow \Theta(n)$
- Majority $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- Closest points in the plane $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Concluding Thoughts

Divide & Conquer is a powerful algorithm design strategy. **Efficiency improvement** over naive solutions:

- Sorting $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- k-Selection $\Theta(n^2) \longrightarrow \Theta(n)$
- Majority $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- Closest points in the plane $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Other applications:

- Matrix multiplication (Strassen's algorithm): $\Theta(n^3) \longrightarrow \Theta(n^{\log_2 7 + o(1)}) \approx \Theta(n^{2.807})$
- Integer multiplication: $\Theta(B^2) \longrightarrow \Theta(B^{\log_2 3}) \longrightarrow \Theta(B \log B)$
- Fast Fourier Transform: $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Concluding Thoughts

Divide & Conquer is a powerful algorithm design strategy. **Efficiency improvement** over naive solutions:

- Sorting $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- k-Selection $\Theta(n^2) \longrightarrow \Theta(n)$
- Majority $\Theta(n^2) \longrightarrow \Theta(n \log n)$
- Closest points in the plane $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Other applications:

- Matrix multiplication (Strassen's algorithm): $\Theta(n^3) \longrightarrow \Theta(n^{\log_2 7 + o(1)}) \approx \Theta(n^{2.807})$
- Integer multiplication: $\Theta(B^2) \longrightarrow \Theta(B^{\log_2 3}) \longrightarrow \Theta(B \log B)$
- Fast Fourier Transform: $\Theta(n^2) \longrightarrow \Theta(n \log n)$

Other considerations:

Practical because of parallelism

String Matching

Fundamental Problems. Given a (large) **text** *T* and (small) **pattern** *P*:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of P in T

Fundamental Problems. Given a (large) **text** *T* and (small) **pattern** *P*:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

• Search on your computer: Ctrl + F

Fundamental Problems. Given a (large) **text** *T* and (small) **pattern** *P*:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

- Search on your computer: Ctrl + F
- Bioinformatics:
 - does a DNA sequence (T) contain a particular gene (P)?

Fundamental Problems. Given a (large) **text** *T* and (small) **pattern** *P*:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

- Search on your computer: Ctrl + F
- Bioinformatics:
 - does a DNA sequence (T) contain a particular gene (P)?
- Computer virus detection
 - · does your hard drive store a known program?

Fundamental Problems. Given a (large) **text** *T* and (small) **pattern** *P*:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

- Search on your computer: Ctrl + F
- Bioinformatics:
 - does a DNA sequence (T) contain a particular gene (P)?
- Computer virus detection
 - does your hard drive store a known program?
- (Counter) Espionage
 - does a data transmission contain the phrase "ATTACK AT DAWN?"

Fundamental Problems. Given a (large) **text** *T* and (small) **pattern** *P*:

- Determine if *T* contains the pattern *P*.
- Find the *first occurrence* of *P* in *T* (if any)
- Fund the number of occurrences of *P* in *T*

Example applications.

- Search on your computer: Ctrl + F
- Bioinformatics:
 - does a DNA sequence (T) contain a particular gene (P)?
- Computer virus detection
 - does your hard drive store a known program?
- (Counter) Espionage
 - does a data transmission contain the phrase "ATTACK AT DAWN?"

Interesting parameters. |T| is large (\sim 1B), |P| is relatively small (\sim 1K)

Making Things Precise

Notation

- Σ is a finite **alphabet** or set of **characters**, $\sigma = |\Sigma|$
 - $\Sigma = \{0, 1\}$ is binary alphabet
 - $\Sigma = \{A, B, ...\}$ is Roman alphabet
 - $\Sigma = \cdots$ e.g., ASCII, Unicode,
- $\Sigma^n = \Sigma \times \Sigma \times \cdots \times \Sigma = \{(c_1, c_2, \dots, c_n) \mid \text{ each } c_i \in \Sigma\} = \text{ strings of exactly } n \text{ characters}$
- $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n = \text{all } finite \text{ strings}$
- $\Sigma^+ = \bigcup_{n=0}^{\infty} \Sigma^n = \text{all } nonempty \text{ (finite) strings}$
- $\varepsilon \in \Sigma^0$ is the **empty string**
- for $S \in \Sigma^n$, S[i] is ith character of S
- for $S, T \in \Sigma^*$, ST is the **concatenation** of S and T
- for $S \in \Sigma^n$, $S[i..j] = S[i]S[i+1] \cdots S[j]$ is a **substring**
 - S[0..j] is a **prefix**, S[j..n-1] is a **suffix**
 - $S[i..j) = S[i..j-1] \implies S = S[0..n)$

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length m (typically $m \ll n$)

Output:

- The index of the **first occurrence** of *P* in *T*, or −1 if *T* does not contain *P* as a substring:
 - $\min\{i | T[i, i+m) = P\}$

- T = 10110011011101
- $P_1 = 1101$

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length m (typically $m \ll n$)

Output:

- The index of the **first occurrence** of *P* in *T*, or −1 if *T* does not contain *P* as a substring:
 - $\min\{i | T[i, i+m) = P\}$

- T = 10110011011101
- $P_1 = 1101$
 - Output: $i \leftarrow 6$

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length m (typically $m \ll n$)

Output:

- The index of the **first occurrence** of *P* in *T*, or −1 if *T* does not contain *P* as a substring:
 - $\min\{i | T[i, i+m) = P\}$

- T = 10110011011101
- $P_1 = 1101$
 - Output: $i \leftarrow 6$
- $P_2 = 000$

Input:

- A **text** $T \in \Sigma^*$ of length n
- A **pattern** $P \in \Sigma^*$ of length m (typically $m \ll n$)

Output:

- The index of the **first occurrence** of *P* in *T*, or −1 if *T* does not contain *P* as a substring:
 - $\min\{i | T[i, i+m) = P\}$

- T = 10110011011101
- $P_1 = 1101$
 - Output: $i \leftarrow 6$
- $P_2 = 000$
 - Output: *i* ← −1

Guess an index *i* where a match might occur

• Possible guesses i = 0, 1, ..., n - m - 1

Check if match at *i*:

- is T(i, i+m) = P?
- · verify each character individually

Cost = number of comparisons made

Guess an index *i* where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T(i, i + m) = P?
- · verify each character individually

```
1: procedure VERIFYMATCH(T, P, i)
2: j \leftarrow 0
3: while j < m do
4: if T[i+j] \neq P[j] then
5: return FALSE
6: end if
7: j \leftarrow j+1
8: end while
9: return TRUE
10: end procedure
```

Cost = number of comparisons made

Guess an index i where a match might occur

• Possible guesses i = 0, 1, ..., n - m - 1

Check if match at *i*:

- is T[i, i+m) = P?
- · verify each character individually

```
1: procedure VERIFYMATCH(T, P, i)
2: j \leftarrow 0
3: while j < m do
4: if T[i+j] \neq P[j] then
5: return FALSE
6: end if
7: j \leftarrow j+1
8: end while
9: return TRUE
10: end procedure
```

Cost = number of comparisons made

PollEverywhere Question

What are the worst case and best case running times of VERIFYMATCH?

pollev.com/comp526

Guess an index i where a match might occur

• Possible guesses $i = 0, 1, \dots, n - m - 1$

Check if match at *i*:

- is T(i, i + m) = P?
- verify each character individually

```
1: procedure VERIFYMATCH(T, P, i)
2: j \leftarrow 0
3: while j < m do
4: if T[i+j] \neq P[j] then
5: return FALSE
6: end if
7: j \leftarrow j+1
8: end while
9: return TRUE
10: end procedure
```

Cost = number of comparisons made

Best and Worst Cases:

Guess an index i where a match might occur

• Possible guesses i = 0, 1, ..., n - m - 1

Check if match at *i*:

- is T(i, i+m) = P?
- · verify each character individually

Cost = number of comparisons made

Brute force. Guess and check every value

$$i=0,1,\ldots,n-m-1$$

- Worst case running time is $\Theta(nm)$
 - What is example has cost $\Omega(nm)$?
- Best case cost is $\Theta(m)$

Brute Force Example

- T = abbbababbab
- P = abba


```
procedure

BRUTEFORCEMATCH(T,P)

for i=0,1,\ldots,n-m-1 do

if VERIFYMATCH(T,P,i) then

return i

end if

end for

return -1

end procedure
```

The **worst case** complexity of brute force search is $\Theta(nm)$... but when is this **actually** achieved?

The **worst case** complexity of brute force search is $\Theta(nm)$... but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

The **worst case** complexity of brute force search is $\Theta(nm)$...

... but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

- Claim: brute force search running time is now *O*(*n*)
 - In fact, at most 2*n* comparisons made!
 - Why?

The **worst case** complexity of brute force search is $\Theta(nm)$...

... but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

- Claim: brute force search running time is now *O*(*n*)
 - In fact, at most 2*n* comparisons made!
 - Why?
- Which of these comparisons were unnecessary?
 - How can you search with fewer comparisons?

The **worst case** complexity of brute force search is $\Theta(nm)$...

... but when is this **actually** achieved?

Example. Consider the case where *P* contains *no repeated characters*.

- Claim: brute force search running time is now *O*(*n*)
 - In fact, at most 2*n* comparisons made!
 - Why?
- Which of these comparisons were unnecessary?
 - How can you search with fewer comparisons?

More generally: How can we use results of *previous comparisons* to avoid making unnecessary comparisons in the future?

For Next Time

Consider How could we improve upon BruteForceMatch

• How can we use information about *previous matches* in order to avoid doing some *future checks*?

Scratch Notes