11 1 m 1 m 1]]
00000000000000000F00000000FGCUCEO0O0E000000000060000iI000800000000000000000ggoRoo]
123456 78 310012131 1516 1716192021 2223242526 272829 2% 3132 33 34 35 36 37 38 39 40 41 42 41 44 45 46 47 4 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT BRI ERRRRRY B ERRRRRI [R ERRER AR R RN R RN R RN R RN R R R RS AR R R R RRRERERRERRRT!
22022222222222220222222220222
333323333333333330333]3
A444444444444000848444444440000440444440444404084444448440444844444444444044444]44
555555555555[5055555 055055555 MB55M55555055555555555555555555555555655555555555555

66666666 66M66%66666666656R6666666

Lecture O8: Sorting li

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: October 29, 2024 University of Liverpool

1/30

Announcements

1. Fourth Quiz, due Friday

¢ Similar format to before
* Covers (Balanced) Binary Search Trees (Lectures 6-7)
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)

2. Programming Assignment (Draft) Posted
* Due Wednesday, 13 November

3. Attendance Code:

2/30

Meeting Goals

* Discuss Divide and Conquer approaches to sorting

* MERGESORT
* QUICKSORT

* Demonstrate lower bounds for comparison-based sorting

3/30

From Last Time

We recalled the Sorting Task:

[7]1]2]5]3]4]8][6] — [1]2]3]4][5][6][7]8]

We discussed four sorting algorithms:
1. SELECTIONSORT: find the (next) smallest element and put it in
place
2. BUBBLESORT: “pull” the largest values toward the end of the array

3. INSERTIONSORT: sort prefixes of the array by inserting the “next”
element into sorted place

4. HEAPSORT: make a (max) heap, then repeated call REMOVEMAX,
placing elements at the end of the array

4/30

Sorting by Divide
& Conquer

The Divide & Conquer Strategy

Generic Strategy
Given an algorithmic task:
1. Break the input into smaller instances of the task

2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting
MERGESORT: Divide by index QUICKSORT: Divide by value
¢ divide array into left and right * pick a pivot value p
halves e split array according to p
* recursively sort halves * < ponleft, > ponright

* merge halves * recursively sort sub-arrays

6/30

Merging Sorted Arrays

Question
Suppose we are given two sorted arrays, a and b. How can we merge
them into a single sorted array that contains all the values from both
arrays?
0 1 2 S 4 0 1 2 S
2131678 11459

7130

Merging Code

Merging sorted arrays a (size m)
and b (size n) into array c starting
atindex s

1: procedure MERGE(a, b, ¢, s, m, n) >
Merge arrays a and b into array ¢
starting at index s. a has size m and b
has size n
i,j—0,k—s
while k< s+ m+ ndo
if j = nor ali] < b[j] then
clk] — alil
i—i+1
else
clk] — blj]
j—j+1
end if
11: k—k+1
12: end while
13: end procedure

—_
e

8/30

https://pollev.com/comp526

Merging Code

PollEverywhere

What is the running time of
MERGE?

1. ©(m+n) 3. O(log(m+ n)
2. ©(m-n) 4. O(logmn)

pollev.com/comp526

1: procedure MERGE(a, b, ¢, s, m, n)
Merge arrays a and b into array ¢
starting at index s. a has size m and b
has size n
i,j—0,k—s
while k< s+ m+ ndo
if j = nor ali] < b[j] then
clk] — ali]
i—i+1
else
clk] < blj]
j—Jj+1
end if
11: k—k+1
12: end while
13: end procedure

—_
e

>

8/30

https://pollev.com/comp526

Sorting by Merging

MERGESORTStrategy:

* Tosortali...k:
* If i = k, then we're done
* Otherwise split
(sub)interval in half
°* Recursively sort halves
* Merge sorted halves

°* copy values to new
arrays for this

9/30

Sorting by Merging

MERGESORTStrategy:

) procedure MERGESORT(a, i, k)
* Tosortali...kl:

if i < k then
* If i = k, then we're done

1:
2
* Otherwise split 5 j— G+ k2l .
(sub)interval in half 4 MERGESORT(4, i, J)
* Recursively sort halves 5: MERGESORT(a, j+ 1, k)
* Merge sorted halves 6 b— CoPY(a,i,j)
7 c— CorY(a,j+1,k)
8: MERGE(b, ¢, a, i)
9: end if
10: end procedure

°* copy values to new
arrays for this

9/30

Sorting by Merging

1: procedure MERGESORT(q, i, k)
2 if i < kthen

3 J— 1+ k)/2]

4 MERGESORT(4, i, J)
5: MERGESORT(a,j+ 1, k)
6

7

8

PollEverywhere

Consider an execution of
MERGESORT(a,0,3) where
a=[4,2,1,3]. How many total calls
to MERGESORT are executed

(including the initial call)? = o)

c— CorY(a,j+1,k)

g MERGE(b, ¢, a, i)
9: end if
10: end procedure

pollev.com/comp526

9/30

https://pollev.com/comp526

Sorting by Merging

Tracing the Recursive Calls procedure MERGESORT(4, , k)

1:
2 if i < k then
3 J— i+ k)/2]

4 MERGESORT(4, i, J)
5: MERGESORT(a,j+ 1, k)
6 b— CoPY(a,i,j)
7 c— CorY(a,j+1,k)
8: MERGE(b, ¢, a, i)

9: end if
10: end procedure

9/30

A Larger Example

1: procedure

|39 | 27 | 43 | 3 | 9 | 82 | 10 | MERGESORT(a, i, k)

if i < k then

j—LG+k)/2]
[39]27| [43]3]

MERGESORT (a4, i, j)
MERGESORT(a,j+ 1, k)

2
3
4
5:
6: b— CoprY(a,i,j)
>
8
9
0
[27]39| [3]43]

c— CoprY(a,j+1,k)

MERGE(D, ¢, a, i)
[3]9]10]27[39]43]82]

end if
tikz code courtesy of SebGlav on tex . stackexchange.com

: end procedure

10/30

https://tex.stackexchange.com/questions/592155/how-to-draw-a-merge-sort-algorithm-figure

MergeSort Analysis

Question. What is the running time of MERGESORT?

PollEverywhere

What is the running time of

procedure MERGESORT(q, i, k)
if i < k then
j— L+ k)/2]

MERGESORT? .
MERGESORT (4, i,))
1. ©(n) 3. @2 b :
2. O(nlogn) 4. O(n?) — CopY(a,i,))

1:

2

3

4

5: MERGESORT(a, j+ 1, k)
6

7 c—Cory(a,j+1,k)
8: MERGE(D, ¢, a, i)

9: end if

10: end procedure

pollev.com/comp526

11/30

https://pollev.com/comp526

Running Time of Recursive Functions

Question. How do we analyze the running time of recursively defined
functions?

12/30

Running Time of Recursive Functions

Question. How do we analyze the running time of recursively defined
functions?
General Approach. Write (and solve) a recursive formula for the
running time:
* Define T'(n) to be the worst case running time of all instances of
size n
* Find a (recursive) relationship between T(n) and T(n') with n’ < n

e Solve the recursive function for 7.

12/30

A Recursive Formula for MergeSort

General Approach. Write (and solve) a recursive formula for the
running time

: procedure MERGESORT(q, i, k)
if i < k then

* Define T(n) to be the worst case
running time of all instances of size n je G+ R/2]

1

2

3

* How is T(n) related to T(n') for 4: MERGESORT(a, i, J)

smaller values of n? 5 MERGESORT(a, j+ 1, k)

6: b— CoprY(a,i,j)
7 c— CorY(a,j+1,k)
8 MERGE(D, ¢, a, 1)
9 end if
10: end procedure

13/30

A Recursive Formula for MergeSort

General Approach. Write (and solve) a recursive formula for the
running time

: procedure MERGESORT(q, i, k)
if i < k then

* Define T(n) to be the worst case ;
running time of all instances of size n je G+ R/2]
* How is T(n) related to T(r') for 4: MERGESORT(a, i, /)
smaller values of n? 5 MERGESORT(a, j+ 1, k)
6.
7
8
9

* T(m)=2T(n/2) +cn b—Corvia,i)
c— CorY(a,j+1,k)
MERGE(D, ¢, a, i)
end if
10: end procedure

13/30

A Recursive Formula for MergeSort

General Approach. Write (and solve) a recursive formula for the
running time

* Define T(n) to be the worst case
running time of all instances of size n

e How is T(n) related to T(rn') for

1
2 if i < k then
3
4
smaller values of 7?2 5:
6.
7
8
9

j—L+k)/2)
MERGESORT (4, i, j)
MERGESORT(a,j+ 1, k)
b— CoprY(a,i,j)
c— CorY(a,j+1,k)
MERGE(D, ¢, a, 1)

end if

10: end procedure

* T(n)=2Tn/2)+cn

* How do we solve this recursive

: procedure MERGESORT(q, i, k)
formula?

T(n)=2Tn/2)+cn
=22T(n/4) +c(n/2)) +cn
=4T(n/4) +2cn

13/30

Inductive Argument

Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

14/30

Inductive Argument

Proposition
Suppose that for all n, T'(n) satisfies T'(n) <2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Proof.
We claim that for all k, T'(n) = 2KT(n12%) + ken.
* The base case k =1 is the hypothesis of the proposition.

* For the inductive step, apply inductive hypothesis along with the
base case for ' = n/2k.

14/30

Inductive Argument

Proposition
Suppose that for all n, T'(n) satisfies T'(n) <2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Proof.
We claim that for all k, T'(n) = 2KT(n12%) + ken.
* The base case k =1 is the hypothesis of the proposition.
* For the inductive step, apply inductive hypothesis along with the
base case for ' = n/2k.
Now apply the claim for k = logn:
o T(n) < 298"T(n/21°8") + (log n)cn = O(nlogn)

14/30

Inductive Argument

Proposition
Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Consequence

The running time of MERGESORT is O(nlogn)

14/30

Inductive Argument

Proposition
Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Consequence
The running time of MERGESORT is O(nlogn)

Also, MERGESORT performs reasonably well on large arrays in practice:

* Good locality of reference in MERGE operations

14/30

Inductive Argument

Proposition
Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Consequence
The running time of MERGESORT is O(nlogn)

Also, MERGESORT performs reasonably well on large arrays in practice:

* Good locality of reference in MERGE operations
But MERGESORT operation requires ©(m) additional space

* MERGE operation copies values

14/30

Visualizing the Argument

139]27]43[3]9]82]10]
[39]27| [43]3]

= s
[27]39| [3]43]

[3]9]10]27[39]43]82]

tikz code courtesy of SebGlav on tex . stackexchange.com

15/30

https://tex.stackexchange.com/questions/592155/how-to-draw-a-merge-sort-algorithm-figure

QuickSort

QuickSort: Dividing by Value

 The MERGESORT algorithm 1: procedure QUICKSORT(a, min, max)
.. . 2 p — SELECTPIVOT (4, min, max)
divided arrays by index %5 je SPLIT(zmin,max, p)
* QUICKSORT divides arrays by 4: QUICKSORT(a,min, j)
value 5 QUICKSORT(q, j + 1, max)
1. pick a pivot value p from 6: end procedure
the array
2. split the array into
sub-arrays
® all...j—1] stores values
<p
°* afj...n—1] stores values
>p
3. recursively sort afl...j—1]
and afj...n—1]

17/30

Visualizing QuickSort

Select a pivot:

Split by pivot value:

Recursively sort left and right sides:

18/30

Hoare’s Splitting Method

19/30

Splitting in Pseudocode

1: procedure SPLIT(a, min, max, p)
2 i — min
3 J— max
4 while i < jdo
5: while a[i] < pdo
6 i—i+1
7 end while
8 while a[j] > pdo
9: J=j=1
10: end while
ihiE SWAP(a, 1,))
12: end while
13: swap pinto index i—1
14: return i—1

15: end procedure

20/30

Splitting in Pseudocode

1: procedure SPLIT(a, min, max, p)
What is the running time of ? l -
. 3 J— max
SPLIT(a, min, max, p)? A while i< jdo
5: while a[i] < pdo
6: i—i+1
7 end while
8 while a[j] > pdo
9: j—j-1
10: end while
pollev.com/comp526 11: SWAP(a, i,])
12: end while
13: swap pinto index i—1
14: return i — 1

15: end procedure

20/30

https://pollev.com/comp526

Splitting in Pseudocode

What is the running time of
SPLIT(a, min, max, p)?

1: procedure SPLIT(a, min, max, p)
2 i — min
3: j<—max
4: whilei<jdo
5: while a[i] < pdo
6: i—i+1
7: end while
8: while a[j] > pdo
9: j—Jj-1
10: end while
ihiE SWAP(a, 1,))
12: end while
13: swap pinto index i—1
14: return i—1

15: end procedure

20/30

Running time of QuickSort?

1: procedure QUICKSORT(a, min, max)
2 p — SELECTPIVOT (g, min, max)

3 J — SPLIT(a, min, max, p)

4: QUICKSORT(a, min, j)
5
6:

PollEverywhere

What is the worst-case
running time of

UICKSORT? .
Q QUICKSORT(a,j+ 1, max)

end procedure

pollev.com/comp526

21/30

https://pollev.com/comp526

Running time of QuickSort?

The Worst Case:

* the pivot is the largest
or smallest element in
almin...max].

* Then one of the
recursive calls has size
max —min— 1.

* The overall running
time is then Q(n?).

So the overall running time is ©(n

1: procedure QUICKSORT(a, min, max)
2: p — SELECTPIVOT (g, min, max)
3: J — SPLIT(a, min, max, p)
4: QUICKSORT (@, min, j)
5: QUICKSORT(a,j+ 1, max)
6: end procedure
No matter what:

¢ Each call to SPLIT sorts at least one
element (the pivot)

¢ Each call to QUICKSORT takes time
O(n)

* — Running timeis O(n?)

’)

21/30

Running time of QuickSort?

1: procedure QUICKSORT(a, min, max)
2 p — SELECTPIVOT (g, min, max)

3 J — SPLIT(a, min, max, p)

4: QUICKSORT(a, min, j)
5
6:

PollEverywhere

What is the best-case
running time of

UICKSORT? .
QoGO QUICKSORT(a,j+ 1, max)

end procedure

pollev.com/comp526

21/30

https://pollev.com/comp526

Running time of QuickSort?

The Best Case Scenario:

1: procedure QUICKSORT (@, min, max)
e Each SPLIT partitions a 5 p — SELECTPIVOT (4, min, max)
perfectly in half 3 j— SPLIT(a, min, max, p)
* Analysis as in 4: QUICKSORT(a, min, j)
MERGESORT 5 QUICKSORT(q, j+ 1, max)
* — runningtime is 6: end procedure

O(nlogn)
Bonus: QUICKSORT sorts
in-place

* No extra arrays!

21/30

Random Pivot Selection

Suppose we choose each pivot randomly:

e SELECTPIVOT(a, min, max) returns ali] where iis chosen
uniformly from {min, min + 1,..., max}

22/30

Random Pivot Selection

Suppose we choose each pivot randomly:

e SELECTPIVOT(a, min, max) returns ali] where iis chosen
uniformly from {min, min + 1,..., max}

Intuition:

* Arandomly chosen pivot is “reasonably likely” to be “close” to the
median value

* with probability 1/2 p will be in the middle half of the values

e Perhaps this is enough to get a typical running time of O(nlogn)?

22/30

Random Pivot Selection

Suppose we choose each pivot randomly:

e SELECTPIVOT(a, min, max) returns ali] where iis chosen
uniformly from {min, min + 1,..., max}

Theorem
The expected running time of QUICKSORT with random pivot
selection is O(nlogn).
* This expectation is over the randomness of the algorithm, not
the input

—> (Expected) guarantee holds for all arrays

22/30

Random Pivot Selection

Theorem
The expected running time of QUICKSORT with random pivot
selection is O(nlogn).

Proof.
Analyze the comparisons made by QUICKSORT:

* Write thevaluesinaasa) <ap<---<ap

* Define X;; = 1 if ¢; and a; are compared in an execution

22/30

Random Pivot Selection

Theorem

The expected running time of QUICKSORT with random pivot
selection is O(nlogn).

Analyze the comparisons made by QUICKSORT:
* Write thevaluesinaasa) <ap<---<ap
* Define X;; = 1 if ¢; and a; are compared in an execution
* Xjj=1onlyif a; or gjis chosen in pivot in SPLIT that separates a; and a;

* This happens with probability p;; = 2/(j— i+ 1)

22/30

Random Pivot Selection

Theorem

The expected running time of QUICKSORT with random pivot
selection is O(nlogn).

Proof.
Analyze the comparisons made by QUICKSORT:
* Write thevaluesinaasa) <ap<---<ap
* Define X;; = 1 if ¢; and a; are compared in an execution
* Xjj=1onlyif a; or gjis chosen in pivot in SPLIT that separates a; and a;
* This happens with probability p;; = 2/(j— i+ 1)
* This contributes E(X;;) = p;j comparisons in expectation
* Summing over all i and j we get the expected number of comparisons to be
E (Z}Ll Yi<jpij) = Olnlogn) (Use £7°_, 1/k=©(logn)
O

22/30

Sorting So Far

Elementary Sorting Faster Sorting Good in Practice?
O(n?) worst case O (nlogn) worst case O(n?) worst case

* SELECTIONSORT e HEAPSORT ©(nlogn) in

* BUBBLESORT * MERGESORT EXEE A

®* QUICKSORT
® INSERTIONSORT Q

Can we sort in time o(nlogn)?

23/30

Comparison Based Sorting

High-level view of (sorting) algorithms (...so far)

* Access input, an array a
* Comparevalues of a:

¢ if ali] < aljl do something
* otherwise do something else

* These are comparison based algorithms

24/30

Comparison Based Sorting

High-level view of (sorting) algorithms (... so far)

* Access input, an array a
* Comparevalues of a:
¢ if ali] < aljl do something
* otherwise do something else
* These are comparison based algorithms
Consider

* any comparison based sorting algorithm A

* every possible input a to A where a stores distinct values between
1 and n.

® P, ={a|acontains distinct elements from 1 to 7}
* |Pyl=nl=n-(n-1)-(n—-2)---1

Question. How does A distinguish between a, be P,?

24/30

Decision Trees

For a comparison based algorithm A a binary tree Ty:
e vertices labelled with
® acomparison ali] <= alj] performed by A
* asubset of inputs
* root labels are (1) first comparison made by 4, and (2) P,

¢ each child corresponds to an outcome of comparison at parent
node

* left child labelled with TRUE inputs & next comparison
* right child labelled with FALSE inputs & next comparison

¢ leaf vertices correspond to completed computations

25/30

Example: InsertionSort

1: procedure INSERTIONSORT(a,)

2 fori=1,2,...,n—1do

3 j—i

4 while j >0 and alj] < alj— 1] do
5: SwAP(a,j,j—1)

6 j—Jj-1

7 end while

8 end for

9: end procedure

26/30

Example: InsertionSort

Unwrapping the Loops for n=3

1. al2] < all] 1: procedure INSERTIONSORT(a, 1)
2 fori=1,2,...,n—1do

2. al3] < al2] 3 jei

2.1 ifyes, check al2] < a[1] 4 while j> 0 and alj] < alj— 1] do
(after SWAP) 5: SWAP(a,j,j—1)

6 j—j-1
7 end while
8 end for
9: end procedure

26/30

Example: InsertionSort

Unwrapping the Loops for n=3

1. al2] < all] 1: procedure INSERTIONSORT(a, 1)
2 fori=1,2,...,n—1do
2. al3] < al2] 3 [
2.1 ifyes, check al2] < a[1] 4 while j> 0 and alj] < alj— 1] do
(after SWAP) 5: SWAP(a,j,j—1)

. . 6 je—j—-1

Decision tree structure 7 end while
e Start with all inputs 8: endfor

$=1{123,132,213,231,312,321} 9 end procedure
* Apply comparison 1:

* Sr=1{213,312,321} — {123,132,231}, then apply comparison 2
* Str=1{312,321} — {123,213}
* Srp={213}— {123}

* Sp=1{123,132,231}, then apply comparison 2
* Spr = {132,231} — {123,213}
* Srr=1{123}

26/30

InsertionSort Decision Tree

Note the set labels are sets of inputs

* INSERTIONSORT updates the arrays as it executes the decision tree

* The comparisons are applied to the updated arrays

{213,312,321}
al3] <al2]

{

123,132,213
231,312,321
al2] < a[l]

}

{312,321}
al2] <a[l]

g N\

{213}

/

\

{321}

{312}

{123,132,231}
al3] < al2]

{132,231}
al2] < a[l]

£ N\

{123}

/

\

{231}

{132}

27130

InsertionSort Decision Tree

Note the set labels are sets of inputs
* INSERTIONSORT updates the arrays as it executes the decision tree

* The comparisons are applied to the updated arrays

{ 123,132,213 }

231,312,321
A al2] < a[l] ~_,
{213,312,321} {123,132,231}

al3] <al2] al3] < al2]
{312 32,1} N {132 23,1} N
al2] < all]) al2] < a[l] s

/ \ / \
{321} | | {312} {231} | | {132}

Observation. Every leafhas corresponds to a unique input. Why?

27130

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results
¢ Aperformed same operations on a and b

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results
¢ Aperformed same operations on a and b

Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves.

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves.
Observation 3. A tree of depth d has at most 2¢ leaves.

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves.
Observation 3. A tree of depth d has at most 2¢ leaves.
Computation. Must have 2" = nl:
— n=log(n!) =log(n) +log(n—1)+--- +log(2) +log(l) = Q(nlogn)

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves.
Observation 3. A tree of depth d has at most 2¢ leaves.
Computation. Must have 2" = nl:
— n=log(n!) =log(n) +log(n—1)+--- +log(2) +log(l) = Q(nlogn)

Any comparison-based sorting algorithm requires Q(nlog n)
comparisons to sort arrays of length n in the worst case.

28/30

Next Time

* Non-comparison-based Sorting
* Can we sort in o(nlogn) time?

* Text Searching

29/30

Scratch Notes

30/30

	Sorting by Divide & Conquer
	QuickSort

