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Announcements

1. Fourth Quiz, due Friday

¢ Similar format to before
* Covers (Balanced) Binary Search Trees (Lectures 6-7)
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)

2. Programming Assignment (Draft) Posted
* Due Wednesday, 13 November

3. Attendance Code:

351153
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Meeting Goals

* Discuss Divide and Conquer approaches to sorting

* MERGESORT
® QUICKSORT

* Demonstrate lower bounds for comparison-based sorting
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From Last Time

We recalled the Sorting Task:

L
We discussed four sorting algorithms: _.CLL“ 3
1.

(7[1]2[5[3]4[8]6] — [1]2][3[4]5][6[7]8]
WY - cese OQY\"’B

SELECTIONSORT: find the (next) smallest element and put it in
place

BUBBLESORT: “pull” the largest values toward the end of the arra

INSERTIONSORT: sort prefixes of the array by inserting the “next”
element into sorted place

. HEAPSORT: make a (max) heap, then repeated call REMOVEMAX,

placing elements at the end of the array

(n loq w)
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Sorting by Divide
& Conquer



The Divide & Conquer Strategy

Generic Strategy
Given an algorithmic task:
1. Break the input into smaller instances of the task

2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting
MERGESORT: Divide by index QUICKSORT: Divide by value
¢ divide array into left and right  * pick a pivot value p
halves e split array according to p
* recursively sort halves * < ponleft, > ponright

* merge halves * recursively sort sub-arrays

6/30



Merging Sorted Arrays

Suppose we are given two sorted arrays, a and b. How can we merge
them into a single sorted array that contains all the values from both
arrays?

B[S
T2

7130



Merging Code Qo 0Ty

52 oW

forer
Merging sorted arrays a (size m) J( oJé 0‘7’

) . . 1: procedure MERGE(q, b, ¢, 5,
and b (size n) into array c starting Merge arrays aand b into array ¢

atindex s starting at index s. a has size m and b
has size n A Cur

2 ije—0,k—s — W
3:  while k<Js+m+nflo w\j\o& AN
4: if j= nor ali] < b[j] then \,c,&uu
5: clk] < ali] '
6: i—i+1 wa'
7: else o C
8: ( clk] — blj]
9: j—j+1

10: end if

11: k—k+1

12: end while

13: end procedure
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Merging Code

PollEverywhere

What is the running time of
MERGE?

)

2. ©(m-n)

pollev.com/comp526

Olarw)

3. O(log(m+ n)
4. O(logmn)

—_—

__——

procedure MERGE(a, b, ¢, s, m, n)
Merge arrays a and b into array ¢
starting at index s. a has size m and b
has'si'ze n S\'O*'(\ 5 \,\Mk‘/\

ij—0lk—s \¢

while k< s+ m+ ndo

[ifj: nor ali] < blj] then

clk] — alil

i—i+1
else

clk] < blj]

j—Jj+1
end if

end while
nd procedure

%\D cJ: ‘o
e cadions

N\

>



Sorting by Merging

MERGESORTStrategy:

* Tosortali...k:
* If i = k, then we're done
* Otherwise split
(sub)interval in half
°* Recursively sort halves
* Merge sorted halves

°* copy values to new
arrays for this

9/30



Sorting by Merging

MERGESORTStrategy:
e Tosortali...k]:
* If i = k, then we're done
* Otherwise split
(sub)interval in half

°* Recursively sort halves
* Merge sorted halves

1: procedure MERGESORT(q, i, k)

2 if i < k then wode
5 Je l+R2) € DwbLx
4 —> MERGESORT(q, i, )

5: — MERGESORT(q,j+ 1, k)
6
.
8

[b—Cory(a,i,j) |k
c—CorY(a,j+1,k) || &
MERGE(D, ¢, a, ) §

9: end 1t
10: end procedure

°* copy values to new
arrays for this

Olk=0)
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Sorting by Merging

1: procedure MERGESORT(q, i, k)
2 if i < kthen

3 J— 1+ k)/2]

4 MERGESORT(4, i, J)
5: MERGESORT(a,j+ 1, k)
6

7

8

PollEverywhere

Consider an execution of
MERGESORT(a,0,3) where
a=[4,2,1,3]. How many total calls
to MERGESORT are executed

(including the initial call)? = o)

c— CorY(a,j+1,k)

g MERGE(b, ¢, a, i)
9: end if
10: end procedure

pollev.com/comp526
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Sorting by Merging

Tracing the Recursive Calls

0,3
vy ke

Lhprocedure MERGESORT(q, i, k)

if i< k then

=j—L+K/2] , L
MERGESORT(4, i, J)
MERGESORT(a,jJ_rLl, k)
b— CoPY(a,i,j) 2
c— CorY(a,j+1,k)
MERGE(b, ¢, a, i)

Toval & of calls 9 endif

10: end procedure

N
O\ 1,5
7\

Lot 35
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A Larger Example

1: procedure

|39 | 27 | 43 | 3 | 9(82 | 10| \ MERGESORT(a, i, k)

2: if i < k then
'

J—LG+k)/2]
[39]27| [43]3]

MERGESORT (4, i, j)
ﬁhﬁ%

MERGESORT(a,j+ 1, k)
b— CoprY(a,i,j)

c— CorY(a,j+1,k)
MERGE(D, ¢, a, i)

end if

: end procedure

|3|9|10|27|39|43|82|

2. courtesy of SebGlav on t

Ckexchange.com
10/30



MergeSort Analysis

Question. What is the running time of MERGESORT?

PollEverywhere

What is the running time of

procedure MERGESORT(q, i, k)
if i < k then
j— L+ Kk)/2]

MERGESORT? .
MERGESORT (4, i, ))
1. ©(n) 3. @2 b :
2. O(nlogn) 4. O(n?) — CopY(a,i,))

1:

2

3

4

5: MERGESORT(a, j+ 1, k)
6

7 c—Cory(a,j+1,k)
8: MERGE(D, ¢, a, i)

9: end if

10: end procedure

pollev.com/comp526
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Running Time of Recursive Functions

Question. How do we analyze the running time of recursively defined
functions?
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Running Time of Recursive Functions

Question. How do we analyze the running time of recursively defined
functions?
General Approach. Write (and solve) a recursive formula for the
running time:
* Define|T(n] to be the worst case running time of all instances of
size n
* Find a (recursive) relationship between T'(n) and T(n') with n' < n

e Solve the recursive function for 7.
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A Recursive Formula for MergeSort

General Approach. Write (and solve) a recursive for
running time

* Define T(n) to be the worst case Li BRI OnE MERGESORT(“@
. . . . 2 if i < k then
running time of all instances of size n/ e L+ B2
* How is T(n) related to T(r') for 4: A MERGESORT (a,i
smaller values of n? B ERGESORT(a,j+ 1, k)
= K—p e W Wy g =CorV (@)
Wows o 7 c—CopY(a,j+1,k
SQ(«\— MERGE(b, ¢, a, i)

end if
10: end procedure
£ Tn/2)

= T("Vz) @) o u\"‘Pw"'
Ty & 2T() + Bn)
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A Recursive Formula for MergeSort

General Approach. Write (and solve) a recursive formula for the
running time

: procedure MERGESORT(q, i, k)
if i < k then

* Define T(n) to be the worst case
running time of all instances of size n je G+ 0/2]
* How is T(n) related to T(r') for MERGESORT(a, i, /)

1
2
3
\ 4:

smaller values of n? Sovwie (.\“‘Y” 5: MERGESORT(a, j+ 1, k)

. @ oGt 6: b— Cory(a, i)
7: c— CorY(a,j+1,k)
8: MERGE(b, ¢, a, i)
9

end if
10: end procedure
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A Recursive Formula for MergeSort

General Approach. Write (and solve) a recursive formula for the
running time

: procedure MERGESORT(q, i, k)

* Define T(n) to be the worst case 4
if i < k then

1
ing time of all inst fsi 2
running time of all instances of sizen e L+ K/2]
* How is T(n) related to T(n') for 4: MERGESORT(a, i, J)
2 : i

smaller values of 7? % O&\ N\ 2: MERGESORT(a, j+ 1, k)
7
8
9

* [T(m) =2T(n/2) + cn b—Corvia,i))
c— CorY(a,j+1,k)

* How do we solve this recursive MERGE(D, ¢, a, i)

formula? end if

10:: d d Las‘\’
T(U)ZZE(H/Z)I cn end procedure (L\) \»\uv\'-s

_ ‘ \Oq w w(-‘Q
=2(2T(n/4 +zc(n/2)ﬁ+cn Y L qL\’ n 'L
= 4[T(n/4)+2cn Zb—(w/ﬁs S g
= coo \\\\_____-_—_———”,,ffffa———"—-——.
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Inductive Argument

Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).
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Inductive Argument

Proposition
Suppose that for all n, T'(n) satisfies|T(n) <2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

We claim that for all k, T'(n) =l2k T(n/2k ) + kcn. l

* The base case k = 1 is the hypothesis of the proposition.

* For the inductive step, apply/inductive hypothesis along with the
base case for r' = n/2k. K 1 e
- 2T Wk peenly

M) K
O
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Inductive Argument

Proposition
Suppose that for all n, T'(n) satisfies T'(n) <2T(n/2) + cn and

Then T(n) = O(nlogn).

Proof.
We claim that for all k, T'(n) = 2KT(n/12%) + ken.
* The base case k =1 is the hypothesis of the proposition.

* For the inductive step, apply inductive hypothesis along with the
base case for ' = n/2k.

Now apply the claim for k = logn:

* T(n) S@T(‘n/ 2log "ﬁ + (logn)cn =|0(nlogn)
N 1 O
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Inductive Argument

Proposition
Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Consequence

The running time of MERGESORT is O(nlogn)
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Inductive Argument

Proposition
Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Consequence
The running time of MERGESORT is O(nlogn)

Also, MERGESORT performs reasonably well on large arrays in practice:

* Good locality of reference in MERGE operations
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Inductive Argument

Proposition
Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Consequence
The running time of MERGESORT is O(nlogn)

Also, MERGESORT performs reasonably well on large arrays in practice:

* Good locality of reference in MERGE operations
But MERGESORT operation requires ©(m) additional space

* MERGE operation copies values

14/30



Visualizing the Argument

ol ;,:\\\%

[39]27]43[3]9]82]10]

[39]27]
@kvx\ ‘Mﬁo{é

(@@%ﬁ O Wy i

U 3[27739] 43 W 82 (Q(M wO\PS

~ e \
[3]9]10[27]39]43]82] W \
tikztode courtesy of sebGrav o tex . stackexchange . com Q() @ (V\\, ‘{\

[43]3]

oQ?




QuickSort



QuickSort: Dividing by Value

¢ The MERGESORT algorithm 1: procedure QUICKSORT(a, min, max)
.. . 25 p — SELECTPIVOT (a4, min, max) é&=
divided arrays by index :

j < SPLIT(@, min, max, p) &
* QUICKSORT divides arrays by QUICKSORT(a, min, j)
value

QUICKSORT(q,j+ 1, max)
6: end procedure

1. pick a pivot value p from
the array

2. split the array into
sub-arrays

0 = Wb

of P
[:]KY alLg

® all...j—1] stores values

<p \L SP\I"'
°* afj...n—1] stores values -
>p )

3. recursivelysortafl...j—1] LiJ P W
and afj...n—1]
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Visualizing QuickSort

Select a pivot:

913|627 |8]4]|]1]O0 .

Split by pivot value:

[2[a]e]o]7[e]e 1 o]
M onnonnnnoo)

Recursively sort left and right sides:

|
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Hoare’s Splitting Method

L )

R VY
Vol




Splitting in Pseudocode OV

U

1: procedure SPLIT(a, min, max, p)
2 i — min
3 J— max \
4: hile i< j d O~
W, 1ef<] o ssfbvs ‘\V\&”‘
5: while a[i] < pdo Nbﬁ\’ '-V
6 i+l &\ o
7 end while
o
8 while a[j] > pdo S\D?ij‘ L
9: j—Jj-1 1L
10: end while W\ ARy v
g WAP(a, I, )
12: end while
13: Ewap pinto index i — l\J
14: returni—1 —

15: end procedure
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Splitting in Pseudocode

!
What is the running time of j
SPLIT(a, p)? A

5:

6

7

8

9:

10:

pollev.com/comp526 11:
12:

U = Wax = W,

hool Vet M @s14:
Cowsidecad

procedure SPLIT(a, min, max, p)

i — min N
J— max _— 5\'0 ? \U\M/
while i < jdo v
while a[i] < pdo
i—i+1
end while O (Y\\
while a[j] > pdo Hm—
il
en(i wl{ile \9 R Counst
SWAP(a, i, ) ene\
end while ‘\S ) .
swap pinto index i— 1 \/)f\\/lr1% L))
return i — 1 c\ 0%

15: end procedure \ M
20/30



Splitting in Pseudocode

What is the running time of
SPLIT(a, min, max, p)?

O(w) =
O (wax - V"L;V\).

1: procedure SPLIT (4, min, max, p)
2 i — min
3:  j<—max
4:  whilei<jdo
5: while a[i] < pdo
6: i—i+1
7: end while
8: while a[j] > pdo
9: j—Jj-1
10: end while
ihiE SWAP(a, 1, ))
12: end while
13: swap pinto index i—1
14: returni—1

15: end procedure

20/30



Running time of QuickSort? UK

™~.

procedure QUICKSORT (@, min, max)
p — SELECTPIVOT (g, min, max)
J — SPLIT(a, min, max, p)

E}UICKSORT(&Z, min, j)

PollEverywhere

What is the worst-case
running time of

UICKSORT? .
Q QUICKSORT(a,j+ 1, max)

1:
2
3
4:
5
6: end procedure

G
— VA

pollev.com/comp526
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Running time of m

The Worst Case: .
o 1: procedure QUICKSORT(a, min, max)
* the pivotis the largest 2. p— SELECTPIVOT(g, min, max)
or smallest element in 3. j— SPLIT(a, min, max, p)

almin... max]. 4:  QUICKSORT(a, min, j)

¢ Then one of the 5: QUICKSORT(a,j+ 1, max)
recursive calls has size 6: end procedure
max—min— L. No matter what:
* The overall running ¢ Each call to SPLIT sorts at least one
time is then Q(17?). element (the pivot)
¢ Each call to QUICKSORT takes time
O(n)
* — Running timeis O(n?)

So the overall running time is ©(7?)

—
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Running time of QuickSort?

1: procedure QUICKSORT(a, min, max)
2 p — SELECTPIVOT (a, min, max) &
3 J — SPLIT(a, min, max, p)

4: QUICKSORT(a, min, j)
5
6:

PollEverywhere

What is the best-case
running time of

UICKSORT? .
QoGO QUICKSORT(a,j+ 1, max)

end procedure

pollev.com/comp526
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Running time of QuickSort?

The Best Case Scenario:

1: procedure QUICKSORT(a, min, max)
e Each SPLIT partitions a 5 p — SELECTPIVOT (4, min, max)
perfectly in half 3 j— SPLIT(a, min, max, p)
* Analysis as in 4: QUICKSORT(a, min, j)
MERGESORT 5 QUICKSORT(q, j+ 1, max)
* — runningtime is 6: end procedure

O(nlogn)
Bonus: QUICKSORT sorts
in-place

* No extra arrays!
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Random Pivot Selection

Suppose we choose each pivot randomly:

e SELECTPIVOT(a, min, max) returns ali] where iis chosen
uniformly from {min, min + 1,..., max}
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Random Pivot Selection

Suppose we choose each pivot randomly:

e SELECTPIVOT(a, min, max) returns ali] where iis chosen
uniformly from {min, min + 1,..., max}

Intuition:

* Arandomly chosen pivot is “reasonably likely” to be “close” to the
median value

* with probability 1/2 p will be in the middle half of the values

e Perhaps this is enough to get a typical running time of O(nlogn)?

22/30



Random Pivot Selection

Suppose we choose each pivot randomly:

e SELECTPIVOT(a, min, max) returns ali] where iis chosen
uniformly from {min, min + 1,..., max}

Theorem
The expected running time of QUICKSORT with random pivot
selection is O(nlogn).
* This expectation is over the randomness of the algorithm, not
the input

—> (Expected) guarantee holds for all arrays

22/30



Random Pivot Selection

Theorem
The expected running time of QUICKSORT with random pivot
selection is O(nlogn).

Analyze the comparisons made by QUICKSORT:

* Write thevaluesinaasa) <ap <---<ap

* Define X;; =1 if ¢; and a; are compared in an execution

22/30



Random Pivot Selection

Theorem

The expected running time of QUICKSORT with random pivot
selection is O(nlogn).

Analyze the comparisons made by QUICKSORT:
* Write thevaluesinaasa) <ap <---<ap
* Define X;; = 1 if ¢; and a; are compared in an execution

* Xjj=1onlyif a; or gjis chosen in pivot in SPLIT that separates a; and a;

* This happens with probability p;; G-i+1 nﬁ L _&
X j

22/30



Random Pivot Selection

=
Theorem

The expected running time of QUICKSORT with random pivot
selection is O(nlogn).

Proof.
Analyze the comparisons made by QUICKSORT:

* Write thevaluesinaasa) <ap <---<ap

* Define X;; = 1 if ¢; and a; are compared in an execution

* Xjj=1onlyif a; or gjis chosen in pivot in SPLIT that separates a; and a;
* This happens with probability p;; = 2/(j— i+ 1)

* This contributes E(X;;) = p;j comparisons in expectation

* Summing over all i and j we get the expected number of comparisons to be
E(z]ﬂ:ékjpij): O(nlogn) (Use £7°_, 1/k=©(logn)
° O
@Qloq ))
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Sorting So Far

Elementary Sorting Faster Sorting

©(n?) worst case ©(nlogn) worst case
® SELECTIONSORT * HEAPSORT
* BUBBLESORT ®* MERGESORT

®* INSERTIONSORT

Good in Practice?
O(n?) worst case
O(nlog n) in
expectation

* QUICKSORT

Can we sort in time o(nlogn)?

Q) o read o\

VO.MS

23/30



Comparison Based Sorting

High-level view of (sorting) algorithms (...so far)

* Access input, an array a
* Comparevalues of a:

¢ if ali] < aljl do something
* otherwise do something else

* These are comparison based algorithms

24/30



Comparison Based Sorting

High-level view of (sorting) algorithms (...so far)

* Access input, an array a
* Comparevalues of a:
¢ if ali] < aljl do something
* otherwise do something else
* These are comparison based algorithms
Consider

* any comparison based sorting algorithm A

* every possible input a to A where a stores distinct values between
1 and n.

* P, ={a|acontains distinct elements from 1 to 7}
° |P,l :’@: ’3—'(’?;1)‘(”‘2)“'1
Question. How does A distinguish between a, be P,?

24/30



Decision Trees

For a comparison based algorithm A a binary tree Ty:
e vertices labelled with
® acomparison ali] <= alj] performed by A
* asubset of inputs
* root labels are (1) first comparison made by 4, and (2) P,

¢ each child corresponds to an outcome of comparison at parent
node

* left child labelled with TRUE inputs & next comparison
* right child labelled with FALSE inputs & next comparison

¢ leaf vertices correspond to completed computations

25/30



Example: InsertionSort

procedure INSERTIONSORT(a, )
fori=1,2,...,n—1do

1:

2:

3k j—1i

4: while j>0 a“dEU] <alj-1] &0
5: SWAP(a,j,j—

6:

7:

8

9:

J=ij-1
end while
end for
end procedure

26/30



|
Example: InsertionSort tom amlw

z\3
-~ A

Unwrapping the Loops for n =
1. al2] <all]
2. al3] < a[2]

2.1 ifﬁes, check a[2] < a[1]
(after SWAP)

1: procedure INSERTIONSORT(a, )

2 fori=1,2,...,n—1do

3 j—1i

4 while j> 0 and alj] < alj— 1] do
53 k SWAP(a,j,j—1)

6 j—j-1

7 end while

8 end for

9: end procedure

26/30



Example: InsertionSort

Unwrapping the Loops for n=3

1. al2] < all] 1: procedure INSERTIONSORT(a, 1)
2 fori=1,2,...,n—1do
2. al3] < al2] 3: e
2.1 ifyes, check al2] < a[1] 4: while j>0 ancl aljl < alj-1/do
(after SWAP) 5: SWAP(a, j,j—
.. 6: je—j-1
Decision tree structure 5 end while
C Start with all inputs 8:  endfor
={123,132,213,231,312,321} 9 end proced

° Apply comparlson 1:
{123,132,231}, then apply comparison 2
° STT:{312,321}—>{123,213}

° ={213} — {1'23}
* SF :l 123,132, 231}?}, then apply comparison 2
® ST = ) — {123,213}

* Srr=1{123}

26/30



InsertionSort Decision Tree

Note the set labels are sets of inputs
* INSERTIONSORT updates the arrays as it executes the decision tree

* The comparisons are applied to the updated arrays

123,132,213
231,312,321

S

/
{213,312,321} § {123,132,231}
) al3] < al2]
312 32, N {132 23,1} N
2] <all @ al2] < a[l] s
/  \ /  \

&) [

27130



InsertionSort Decision Tree

Note the set labels are sets of inputs
* INSERTIONSORT updates the arrays as it executes the decision tree

* The comparisons are applied to the updated arrays

{ 123,132,213 }

231,312,321
A al2] < all] ~_,
{213,312,321} {123,132,231}

al3] <al2] al3] < al2]
{312 32,1} N {132 23,1} N
al2] <all] ) al2] < a[l] s

/  \ /  \
{321} | | {312} {231} | | {132}

Observation. Every leafhas corresponds to a unique input. Why?

27130



Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth din T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b

28/30



Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results
¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b

then A did not sort both a and b.
Tl &\OOV&

W\ w
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Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in @ then T, must have at least
|Pal = "l' leaves.
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Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves. \OiV\‘”'f\F
Observation 3. Aytree of depth d has at most 29 Jeaves.
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Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves.
Observation 3. A tree of depth d has at most 2¢ leaves.
Computation. Must have@z nl:

= dz log(n!) =log(n) +log(n—1) +---+1og(2) +log(1) = Q(nlogn)
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Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves.
Observation 3. A tree of depth d has at most 2¢ leaves.
Computation. Must have 2" = nl:
— n=log(n!) =log(n) +log(n—1)+---+log(2) +log(l) = Q(nlogn)

Theorem

Anylcomparison-base@ sorting algorithm requires Q(nlog n)
comparisons to sort arrays of length n in the worst case.
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Next Time

* Non-comparison-based Sorting
* Can we sort in o(nlogn) time?

* Text Searching
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Scratch Notes
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