I"Il IIIII II"II]| "II] BS— 11 5—3 1

00000000000000000F00000000FGCUCFO0O0E000000000060000iI000800000000000000000Fgogoo]
123456 78 910012131 1516 1716192021 2223242526 27 2829 2% 3132 33 74 35 36 37 38 39 40 41 42 41 44 45 46 47 49 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT R ERRRRR! B ERRRRRI [R ERRER AR R R RN R RN R RN R RN R R R RS AR R R R RRRRRERRERRRT!
2202222222222222222222220222
3333233332333[3
A0444480444440404000444400444400444444404448404444404444444404444444042044444044
555555555555 505555505 5055555 QM5 5M555555555555555556555555555555555555555555555

66666666 66M66366666666656R6666666

Lecture O8: Sorting I

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: October 29, 2024 University of Liverpool

1/30

Announcements

1. Fourth Quiz, due Friday

¢ Similar format to before
* Covers (Balanced) Binary Search Trees (Lectures 6-7)
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)

2. Programming Assignment (Draft) Posted
* Due Wednesday, 13 November

3. Attendance Code:

351153

2/30

Meeting Goals

* Discuss Divide and Conquer approaches to sorting

* MERGESORT
® QUICKSORT

* Demonstrate lower bounds for comparison-based sorting

3/30

From Last Time

We recalled the Sorting Task:

L
We discussed four sorting algorithms: _.CLL“ 3
1.

(7[1]2[5[3]4[8]6] — [1]2][3[4]5][6[7]8]
WY - cese OQY\"’B

SELECTIONSORT: find the (next) smallest element and put it in
place

BUBBLESORT: “pull” the largest values toward the end of the arra

INSERTIONSORT: sort prefixes of the array by inserting the “next”
element into sorted place

. HEAPSORT: make a (max) heap, then repeated call REMOVEMAX,

placing elements at the end of the array

(n loq w)

4/30

Sorting by Divide
& Conquer

The Divide & Conquer Strategy

Generic Strategy
Given an algorithmic task:
1. Break the input into smaller instances of the task

2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting
MERGESORT: Divide by index QUICKSORT: Divide by value
¢ divide array into left and right * pick a pivot value p
halves e split array according to p
* recursively sort halves * < ponleft, > ponright

* merge halves * recursively sort sub-arrays

6/30

Merging Sorted Arrays

Suppose we are given two sorted arrays, a and b. How can we merge
them into a single sorted array that contains all the values from both
arrays?

B[S
T2

7130

Merging Code Qo 0Ty

52 oW

forer
Merging sorted arrays a (size m) J(oJé 0‘7’

) . . 1: procedure MERGE(q, b, ¢, 5,
and b (size n) into array c starting Merge arrays aand b into array ¢

atindex s starting at index s. a has size m and b
has size n A Cur

2 ije—0,k—s — W
3: while k<Js+m+nflo w\j\o& AN
4: if j= nor ali] < b[j] then \,c,&uu
5: clk] < ali] '
6: i—i+1 wa'
7: else o C
8: (clk] — blj]
9: j—j+1

10: end if

11: k—k+1

12: end while

13: end procedure

8/30

Merging Code

PollEverywhere

What is the running time of
MERGE?

)

2. ©(m-n)

pollev.com/comp526

Olarw)

3. O(log(m+ n)
4. O(logmn)

—_—

__——

procedure MERGE(a, b, ¢, s, m, n)
Merge arrays a and b into array ¢
starting at index s. a has size m and b
has'si'ze n S\'O*'(\ 5 \,\Mk‘/\

ij—0lk—s \¢

while k< s+ m+ ndo

[ifj: nor ali] < blj] then

clk] — alil

i—i+1
else

clk] < blj]

j—Jj+1
end if

end while
nd procedure

%\D cJ: ‘o
e cadions

N\

>

Sorting by Merging

MERGESORTStrategy:

* Tosortali...k:
* If i = k, then we're done
* Otherwise split
(sub)interval in half
°* Recursively sort halves
* Merge sorted halves

°* copy values to new
arrays for this

9/30

Sorting by Merging

MERGESORTStrategy:
e Tosortali...k]:
* If i = k, then we're done
* Otherwise split
(sub)interval in half

°* Recursively sort halves
* Merge sorted halves

1: procedure MERGESORT(q, i, k)

2 if i < k then wode
5 Je l+R2) € DwbLx
4 —> MERGESORT(q, i,)

5: — MERGESORT(q,j+ 1, k)
6
.
8

[b—Cory(a,i,j) |k
c—CorY(a,j+1,k) || &
MERGE(D, ¢, a,) §

9: end 1t
10: end procedure

°* copy values to new
arrays for this

Olk=0)

9/30

Sorting by Merging

1: procedure MERGESORT(q, i, k)
2 if i < kthen

3 J— 1+ k)/2]

4 MERGESORT(4, i, J)
5: MERGESORT(a,j+ 1, k)
6

7

8

PollEverywhere

Consider an execution of
MERGESORT(a,0,3) where
a=[4,2,1,3]. How many total calls
to MERGESORT are executed

(including the initial call)? = o)

c— CorY(a,j+1,k)

g MERGE(b, ¢, a, i)
9: end if
10: end procedure

pollev.com/comp526

9/30

Sorting by Merging

Tracing the Recursive Calls

0,3
vy ke

Lhprocedure MERGESORT(q, i, k)

if i< k then

=j—L+K/2] , L
MERGESORT(4, i, J)
MERGESORT(a,jJ_rLl, k)
b— CoPY(a,i,j) 2
c— CorY(a,j+1,k)
MERGE(b, ¢, a, i)

Toval & of calls 9 endif

10: end procedure

N
O\ 1,5
7\

Lot 35

9/30

A Larger Example

1: procedure

|39 | 27 | 43 | 3 | 9(82 | 10| \ MERGESORT(a, i, k)

2: if i < k then
'

J—LG+k)/2]
[39]27| [43]3]

MERGESORT (4, i, j)
ﬁhﬁ%

MERGESORT(a,j+ 1, k)
b— CoprY(a,i,j)

c— CorY(a,j+1,k)
MERGE(D, ¢, a, i)

end if

: end procedure

|3|9|10|27|39|43|82|

2. courtesy of SebGlav on t

Ckexchange.com
10/30

MergeSort Analysis

Question. What is the running time of MERGESORT?

PollEverywhere

What is the running time of

procedure MERGESORT(q, i, k)
if i < k then
j— L+ Kk)/2]

MERGESORT? .
MERGESORT (4, i,))
1. ©(n) 3. @2 b :
2. O(nlogn) 4. O(n?) — CopY(a,i,))

1:

2

3

4

5: MERGESORT(a, j+ 1, k)
6

7 c—Cory(a,j+1,k)
8: MERGE(D, ¢, a, i)

9: end if

10: end procedure

pollev.com/comp526

11/30

Running Time of Recursive Functions

Question. How do we analyze the running time of recursively defined
functions?

12/30

Running Time of Recursive Functions

Question. How do we analyze the running time of recursively defined
functions?
General Approach. Write (and solve) a recursive formula for the
running time:
* Define|T(n] to be the worst case running time of all instances of
size n
* Find a (recursive) relationship between T'(n) and T(n') with n' < n

e Solve the recursive function for 7.

12/30

A Recursive Formula for MergeSort

General Approach. Write (and solve) a recursive for
running time

* Define T(n) to be the worst case Li BRI OnE MERGESORT(“@
. . . . 2 if i < k then
running time of all instances of size n/ e L+ B2
* How is T(n) related to T(r') for 4: A MERGESORT (a,i
smaller values of n? B ERGESORT(a,j+ 1, k)
= K—p e W Wy g =CorV (@)
Wows o 7 c—CopY(a,j+1,k
SQ(«\— MERGE(b, ¢, a, i)

end if
10: end procedure
£ Tn/2)

= T("Vz) @) o u\"‘Pw"'
Ty & 2T() + Bn)

13/30

A Recursive Formula for MergeSort

General Approach. Write (and solve) a recursive formula for the
running time

: procedure MERGESORT(q, i, k)
if i < k then

* Define T(n) to be the worst case
running time of all instances of size n je G+ 0/2]
* How is T(n) related to T(r') for MERGESORT(a, i, /)

1
2
3
\ 4:

smaller values of n? Sovwie (.\“‘Y” 5: MERGESORT(a, j+ 1, k)

. @ oGt 6: b— Cory(a, i)
7: c— CorY(a,j+1,k)
8: MERGE(b, ¢, a, i)
9

end if
10: end procedure

13/30

A Recursive Formula for MergeSort

General Approach. Write (and solve) a recursive formula for the
running time

: procedure MERGESORT(q, i, k)

* Define T(n) to be the worst case 4
if i < k then

1
ing time of all inst fsi 2
running time of all instances of sizen e L+ K/2]
* How is T(n) related to T(n') for 4: MERGESORT(a, i, J)
2 : i

smaller values of 7? % O&\ N\ 2: MERGESORT(a, j+ 1, k)
7
8
9

* [T(m) =2T(n/2) + cn b—Corvia,i))
c— CorY(a,j+1,k)

* How do we solve this recursive MERGE(D, ¢, a, i)

formula? end if

10:: d d Las‘\’
T(U)ZZE(H/Z)I cn end procedure (L\) \»\uv\'-s

_ ‘ \Oq w w(-‘Q
=2(2T(n/4 +zc(n/2)ﬁ+cn Y L qL\’ n 'L
= 4[T(n/4)+2cn Zb—(w/ﬁs S g
= coo _____-_—_———”,,ffffa———"—-——.

13/30

Inductive Argument

Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

14/30

Inductive Argument

Proposition
Suppose that for all n, T'(n) satisfies|T(n) <2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

We claim that for all k, T'(n) =l2k T(n/2k) + kcn. l

* The base case k = 1 is the hypothesis of the proposition.

* For the inductive step, apply/inductive hypothesis along with the
base case for r' = n/2k. K 1 e
- 2T Wk peenly

M) K
O

14/30

Inductive Argument

Proposition
Suppose that for all n, T'(n) satisfies T'(n) <2T(n/2) + cn and

Then T(n) = O(nlogn).

Proof.
We claim that for all k, T'(n) = 2KT(n/12%) + ken.
* The base case k =1 is the hypothesis of the proposition.

* For the inductive step, apply inductive hypothesis along with the
base case for ' = n/2k.

Now apply the claim for k = logn:

* T(n) S@T(‘n/ 2log "ﬁ + (logn)cn =|0(nlogn)
N 1 O

14/30

Inductive Argument

Proposition
Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Consequence

The running time of MERGESORT is O(nlogn)

14/30

Inductive Argument

Proposition
Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Consequence
The running time of MERGESORT is O(nlogn)

Also, MERGESORT performs reasonably well on large arrays in practice:

* Good locality of reference in MERGE operations

14/30

Inductive Argument

Proposition
Suppose that for all n, T(n) satisfies T'(n) < 2T(n/2) + cn and
T(1) = O(1). Then T(n) = O(nlogn).

Consequence
The running time of MERGESORT is O(nlogn)

Also, MERGESORT performs reasonably well on large arrays in practice:

* Good locality of reference in MERGE operations
But MERGESORT operation requires ©(m) additional space

* MERGE operation copies values

14/30

Visualizing the Argument

ol ;,:\\\%

[39]27]43[3]9]82]10]

[39]27]
@kvx\ ‘Mﬁo{é

(@@%ﬁ O Wy i

U 3[27739] 43 W 82 (Q(M wO\PS

~ e \
[3]9]10[27]39]43]82] W \
tikztode courtesy of sebGrav o tex . stackexchange . com Q() @ (V\\, ‘{\

[43]3]

oQ?

QuickSort

QuickSort: Dividing by Value

¢ The MERGESORT algorithm 1: procedure QUICKSORT(a, min, max)
.. . 25 p — SELECTPIVOT (a4, min, max) é&=
divided arrays by index :

j < SPLIT(@, min, max, p) &
* QUICKSORT divides arrays by QUICKSORT(a, min, j)
value

QUICKSORT(q,j+ 1, max)
6: end procedure

1. pick a pivot value p from
the array

2. split the array into
sub-arrays

0 = Wb

of P
[:]KY alLg

® all...j—1] stores values

<p \L SP\I"'
°* afj...n—1] stores values -
>p)

3. recursivelysortafl...j—1] LiJ P W
and afj...n—1]

17/30

Visualizing QuickSort

Select a pivot:

913|627 |8]4]|]1]O0 .

Split by pivot value:

[2[a]e]o]7[e]e 1 o]
M onnonnnnoo)

Recursively sort left and right sides:

|

18/30

Hoare’s Splitting Method

L)

R VY
Vol

Splitting in Pseudocode OV

U

1: procedure SPLIT(a, min, max, p)
2 i — min
3 J— max \
4: hile i< j d O~
W, 1ef<] o ssfbvs ‘\V\&”‘
5: while a[i] < pdo Nbﬁ\’ '-V
6 i+l &\ o
7 end while
o
8 while a[j] > pdo S\D?ij‘ L
9: j—Jj-1 1L
10: end while W\ ARy v
g WAP(a, I,)
12: end while
13: Ewap pinto index i — l\J
14: returni—1 —

15: end procedure

20/30

Splitting in Pseudocode

!
What is the running time of j
SPLIT(a, p)? A

5:

6

7

8

9:

10:

pollev.com/comp526 11:
12:

U = Wax = W,

hool Vet M @s14:
Cowsidecad

procedure SPLIT(a, min, max, p)

i — min N
J— max _— 5\'0 ? \U\M/
while i < jdo v
while a[i] < pdo
i—i+1
end while O (Y\\
while a[j] > pdo Hm—
il
en(i wl{ile \9 R Counst
SWAP(a, i,) ene\
end while ‘\S) .
swap pinto index i— 1 \/)f\\/lr1% L))
return i — 1 c\ 0%

15: end procedure \ M
20/30

Splitting in Pseudocode

What is the running time of
SPLIT(a, min, max, p)?

O(w) =
O (wax - V"L;V\).

1: procedure SPLIT (4, min, max, p)
2 i — min
3: j<—max
4: whilei<jdo
5: while a[i] < pdo
6: i—i+1
7: end while
8: while a[j] > pdo
9: j—Jj-1
10: end while
ihiE SWAP(a, 1,))
12: end while
13: swap pinto index i—1
14: returni—1

15: end procedure

20/30

Running time of QuickSort? UK

™~.

procedure QUICKSORT (@, min, max)
p — SELECTPIVOT (g, min, max)
J — SPLIT(a, min, max, p)

E}UICKSORT(&Z, min, j)

PollEverywhere

What is the worst-case
running time of

UICKSORT? .
Q QUICKSORT(a,j+ 1, max)

1:
2
3
4:
5
6: end procedure

G
— VA

pollev.com/comp526

21/30

Running time of m

The Worst Case: .
o 1: procedure QUICKSORT(a, min, max)
* the pivotis the largest 2. p— SELECTPIVOT(g, min, max)
or smallest element in 3. j— SPLIT(a, min, max, p)

almin... max]. 4: QUICKSORT(a, min, j)

¢ Then one of the 5: QUICKSORT(a,j+ 1, max)
recursive calls has size 6: end procedure
max—min— L. No matter what:
* The overall running ¢ Each call to SPLIT sorts at least one
time is then Q(17?). element (the pivot)
¢ Each call to QUICKSORT takes time
O(n)
* — Running timeis O(n?)

So the overall running time is ©(7?)

—

21/30

Running time of QuickSort?

1: procedure QUICKSORT(a, min, max)
2 p — SELECTPIVOT (a, min, max) &
3 J — SPLIT(a, min, max, p)

4: QUICKSORT(a, min, j)
5
6:

PollEverywhere

What is the best-case
running time of

UICKSORT? .
QoGO QUICKSORT(a,j+ 1, max)

end procedure

pollev.com/comp526

21/30

Running time of QuickSort?

The Best Case Scenario:

1: procedure QUICKSORT(a, min, max)
e Each SPLIT partitions a 5 p — SELECTPIVOT (4, min, max)
perfectly in half 3 j— SPLIT(a, min, max, p)
* Analysis as in 4: QUICKSORT(a, min, j)
MERGESORT 5 QUICKSORT(q, j+ 1, max)
* — runningtime is 6: end procedure

O(nlogn)
Bonus: QUICKSORT sorts
in-place

* No extra arrays!

21/30

Random Pivot Selection

Suppose we choose each pivot randomly:

e SELECTPIVOT(a, min, max) returns ali] where iis chosen
uniformly from {min, min + 1,..., max}

22/30

Random Pivot Selection

Suppose we choose each pivot randomly:

e SELECTPIVOT(a, min, max) returns ali] where iis chosen
uniformly from {min, min + 1,..., max}

Intuition:

* Arandomly chosen pivot is “reasonably likely” to be “close” to the
median value

* with probability 1/2 p will be in the middle half of the values

e Perhaps this is enough to get a typical running time of O(nlogn)?

22/30

Random Pivot Selection

Suppose we choose each pivot randomly:

e SELECTPIVOT(a, min, max) returns ali] where iis chosen
uniformly from {min, min + 1,..., max}

Theorem
The expected running time of QUICKSORT with random pivot
selection is O(nlogn).
* This expectation is over the randomness of the algorithm, not
the input

—> (Expected) guarantee holds for all arrays

22/30

Random Pivot Selection

Theorem
The expected running time of QUICKSORT with random pivot
selection is O(nlogn).

Analyze the comparisons made by QUICKSORT:

* Write thevaluesinaasa) <ap <---<ap

* Define X;; =1 if ¢; and a; are compared in an execution

22/30

Random Pivot Selection

Theorem

The expected running time of QUICKSORT with random pivot
selection is O(nlogn).

Analyze the comparisons made by QUICKSORT:
* Write thevaluesinaasa) <ap <---<ap
* Define X;; = 1 if ¢; and a; are compared in an execution

* Xjj=1onlyif a; or gjis chosen in pivot in SPLIT that separates a; and a;

* This happens with probability p;; G-i+1 nﬁ L _&
X j

22/30

Random Pivot Selection

=
Theorem

The expected running time of QUICKSORT with random pivot
selection is O(nlogn).

Proof.
Analyze the comparisons made by QUICKSORT:

* Write thevaluesinaasa) <ap <---<ap

* Define X;; = 1 if ¢; and a; are compared in an execution

* Xjj=1onlyif a; or gjis chosen in pivot in SPLIT that separates a; and a;
* This happens with probability p;; = 2/(j— i+ 1)

* This contributes E(X;;) = p;j comparisons in expectation

* Summing over all i and j we get the expected number of comparisons to be
E(z]ﬂ:ékjpij): O(nlogn) (Use £7°_, 1/k=©(logn)
° O
@Qloq))

22/30

Sorting So Far

Elementary Sorting Faster Sorting

©(n?) worst case ©(nlogn) worst case
® SELECTIONSORT * HEAPSORT
* BUBBLESORT ®* MERGESORT

®* INSERTIONSORT

Good in Practice?
O(n?) worst case
O(nlog n) in
expectation

* QUICKSORT

Can we sort in time o(nlogn)?

Q) o read o\

VO.MS

23/30

Comparison Based Sorting

High-level view of (sorting) algorithms (...so far)

* Access input, an array a
* Comparevalues of a:

¢ if ali] < aljl do something
* otherwise do something else

* These are comparison based algorithms

24/30

Comparison Based Sorting

High-level view of (sorting) algorithms (...so far)

* Access input, an array a
* Comparevalues of a:
¢ if ali] < aljl do something
* otherwise do something else
* These are comparison based algorithms
Consider

* any comparison based sorting algorithm A

* every possible input a to A where a stores distinct values between
1 and n.

* P, ={a|acontains distinct elements from 1 to 7}
° |P,l :’@: ’3—'(’?;1)‘(”‘2)“'1
Question. How does A distinguish between a, be P,?

24/30

Decision Trees

For a comparison based algorithm A a binary tree Ty:
e vertices labelled with
® acomparison ali] <= alj] performed by A
* asubset of inputs
* root labels are (1) first comparison made by 4, and (2) P,

¢ each child corresponds to an outcome of comparison at parent
node

* left child labelled with TRUE inputs & next comparison
* right child labelled with FALSE inputs & next comparison

¢ leaf vertices correspond to completed computations

25/30

Example: InsertionSort

procedure INSERTIONSORT(a,)
fori=1,2,...,n—1do

1:

2:

3k j—1i

4: while j>0 a“dEU] <alj-1] &0
5: SWAP(a,j,j—

6:

7:

8

9:

J=ij-1
end while
end for
end procedure

26/30

|
Example: InsertionSort tom amlw

z\3
-~ A

Unwrapping the Loops for n =
1. al2] <all]
2. al3] < a[2]

2.1 ifﬁes, check a[2] < a[1]
(after SWAP)

1: procedure INSERTIONSORT(a,)

2 fori=1,2,...,n—1do

3 j—1i

4 while j> 0 and alj] < alj— 1] do
53 k SWAP(a,j,j—1)

6 j—j-1

7 end while

8 end for

9: end procedure

26/30

Example: InsertionSort

Unwrapping the Loops for n=3

1. al2] < all] 1: procedure INSERTIONSORT(a, 1)
2 fori=1,2,...,n—1do
2. al3] < al2] 3: e
2.1 ifyes, check al2] < a[1] 4: while j>0 ancl aljl < alj-1/do
(after SWAP) 5: SWAP(a, j,j—
.. 6: je—j-1
Decision tree structure 5 end while
C Start with all inputs 8: endfor
={123,132,213,231,312,321} 9 end proced

° Apply comparlson 1:
{123,132,231}, then apply comparison 2
° STT:{312,321}—>{123,213}

° ={213} — {1'23}
* SF :l 123,132, 231}?}, then apply comparison 2
® ST =) — {123,213}

* Srr=1{123}

26/30

InsertionSort Decision Tree

Note the set labels are sets of inputs
* INSERTIONSORT updates the arrays as it executes the decision tree

* The comparisons are applied to the updated arrays

123,132,213
231,312,321

S

/
{213,312,321} § {123,132,231}
) al3] < al2]
312 32, N {132 23,1} N
2] <all @ al2] < a[l] s
/ \ / \

&) [

27130

InsertionSort Decision Tree

Note the set labels are sets of inputs
* INSERTIONSORT updates the arrays as it executes the decision tree

* The comparisons are applied to the updated arrays

{ 123,132,213 }

231,312,321
A al2] < all] ~_,
{213,312,321} {123,132,231}

al3] <al2] al3] < al2]
{312 32,1} N {132 23,1} N
al2] <all]) al2] < a[l] s

/ \ / \
{321} | | {312} {231} | | {132}

Observation. Every leafhas corresponds to a unique input. Why?

27130

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth din T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results
¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b

then A did not sort both a and b.
Tl &\OOV&

W\ w

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in @ then T, must have at least
|Pal = "l' leaves.

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves. \OiV\‘”'f\F
Observation 3. Aytree of depth d has at most 29 Jeaves.

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves.
Observation 3. A tree of depth d has at most 2¢ leaves.
Computation. Must have@z nl:

= dz log(n!) =log(n) +log(n—1) +---+1og(2) +log(1) = Q(nlogn)

28/30

Comparison Based Lower Bounds

Obsevation 1. If arrays a and b are in the same label at a vertex v at
depth d in T, then:

* first d comparisons in a and b had same results

¢ Aperformed same operations on a and b
Observation 2. If a # b and a leaf of T, is labelled with both a and b
then A did not sort both a and b.
Consequence. If A sorts all arrays in Py, then T4 must have at least
|P4| = n! leaves.
Observation 3. A tree of depth d has at most 2¢ leaves.
Computation. Must have 2" = nl:
— n=log(n!) =log(n) +log(n—1)+---+log(2) +log(l) = Q(nlogn)

Theorem

Anylcomparison-base@ sorting algorithm requires Q(nlog n)
comparisons to sort arrays of length n in the worst case.

28/30

Next Time

* Non-comparison-based Sorting
* Can we sort in o(nlogn) time?

* Text Searching

29/30

Scratch Notes

30/30

