
Lecture 07: Sorting I
COMP526: Efficient Algorithms

Updated: October 24, 2024
Will Rosenbaum
University of Liverpool

1 / 33



Announcements
1. Third Quiz, due Friday

• Similar format to before
• Covers fundamental data structures (Lectures 4–6)
• Quiz is closed resource

• No books, notes, internet, etc.
• Do not discuss until after submission deadline (Friday night, after

midnight)

2. Programming Assignment (Draft) Posted
• Due Wednesday, 13 November

3. Attendance Code:

2 / 33



Meeting Goals
• Finish up balanced binary trees

• Discuss the sorting task

• Introduce HEAPSORT

• Discuss Divide and Conquer approaches to sorting
• MERGESORT

• QUICKSORT

3 / 33



AVL Trees



From Last Time
Binary Search Trees

15

10

5

3 7

12

20

18

17

25

22

Height and Balance
• height of v = max distance to a descendent leaf
• T is height balanced if for every v, the heights of v’s children differ by at most 1
• Properties of height balanced trees

• height h satisfies h ≤ 2logn
• CONTAINS, ADD, REMOVE run in O(logn) time

Question. How can we efficiently maintain height balance for any
sequence of operations?

5 / 33



Creating Imbalance
A Minimal Working Example (MWE) balanced

40 1

2

0

8

1

6

0

5

9

0

Question. What happens when we
ADD(5)?

PollEverywhere

Which vertices are
unbalanced?

pollev.com/comp526

6 / 33

https://pollev.com/comp526


Creating Imbalance
A Minimal Working Example (MWE) unbalanced

40 1

2

0

8

1

6

0

5

9

0

Question. What happens when we
ADD(5)?

PollEverywhere

Which vertices are
unbalanced?

pollev.com/comp526

6 / 33

https://pollev.com/comp526


Creating Imbalance
A Minimal Working Example (MWE)

40 1

2

0

8

1

6

0

5

9

0

Question. What happens when we
ADD(5)?

PollEverywhere

Which vertices are
unbalanced?

pollev.com/comp526

6 / 33

https://pollev.com/comp526


Fixing Imbalance

40 2

2

0

8

2

6

1

5

9

0

61 1

4

1

2

0
8

1

5

0

9

0

General Strategy. Find the “lowest” unbalanced vertex, and “pull up”
its lower child.

7 / 33



Unbalanced Observations
Suppose T was balanced before ADD(x) and unbalanced after ADD(x).
Then:

1. ADD(x) can only change the height/balance of x’s ancestors.

2. The height of any vertex can can only increase by one as the result
of ADD(x).

This means:

• We only need to check x’s ancestors for imbalance after ADD(x).

• We only need to correct an imbalance of 2 to restore balance in
the tree after ADD(x).

8 / 33



Unbalanced Observations
Suppose T was balanced before ADD(x) and unbalanced after ADD(x).
Then:

1. ADD(x) can only change the height/balance of x’s ancestors.

2. The height of any vertex can can only increase by one as the result
of ADD(x).

This means:

• We only need to check x’s ancestors for imbalance after ADD(x).

• We only need to correct an imbalance of 2 to restore balance in
the tree after ADD(x).

8 / 33



Rotations

=⇒ right rotation at y =⇒
...

y

x

T1 T2

T3

...

x

y

T1

T2 T3

⇐= left rotation at x ⇐=

Main Observation. If T is a BST, then it remains a BST after any
rotation.

9 / 33



Rotations

=⇒ right rotation at y =⇒
...

y

x

T1 T2

T3

...

x

y

T1

T2 T3

⇐= left rotation at x ⇐=

Main Observation. If T is a BST, then it remains a BST after any
rotation.

9 / 33



Restoring Balance After Add
Suppose T was balanced
before ADD(w) and is
unbalanced after the
operation. Then define

• z is w’s closest
unbalanced ancestor

• y is z’s child towards w
• x is y’s child towards w

• Why do these
vertices exist?

...

z

y

xT1

T2 T3

T4

10 / 33



Heights After Add

PollEverywhere

If z had height h before
ADD(w), what are the
heights of z, T1, y, and x
afterward?

pollev.com/comp526

...

z

y

xT1

T2 T3

T4

Question. How to “pull” T2 up?

11 / 33

https://pollev.com/comp526


Heights After Add
Heights after ADD(w)

• z : h+1

• y : h

• x : h−1

• T1 : h−2
• T2 : h−2

• why not h−3?

• T3 : h−3
• why not h−4?

• T4 : h−2

...

z

y

xT1

T2 T3

T4

Question. How to “pull” T2 up?

11 / 33



Heights After Add
Heights after ADD(w)

• z : h+1

• y : h

• x : h−1

• T1 : h−2
• T2 : h−2

• why not h−3?

• T3 : h−3
• why not h−4?

• T4 : h−2

...

z

y

xT1

T2 T3

T4

Question. How to “pull” T2 up?

11 / 33



Heights After Right Rotation at y

PollEverywhere

What is the new height of z’s
right child?

pollev.com/comp526

...

z

x

yT1

T2

T3 T4

Damn! What if we try again?

12 / 33

https://pollev.com/comp526


Heights After Right Rotation at y

Heights after Right
Rotation at y

• z : h+1

• y : h−1

• x : h

• T1 : h−2

• T2 : h−2

• T3 : h−3

• T4 : h−2

...

z

x

yT1

T2

T3 T4

Damn! What if we try again?

12 / 33



Heights After Right Rotation at y

Heights after Right
Rotation at y

• z : h+1

• y : h−1

• x : h

• T1 : h−2

• T2 : h−2

• T3 : h−3

• T4 : h−2

...

z

x

yT1

T2

T3 T4

Damn! What if we try again?

12 / 33



Heights After Left Rotation at z

Heights after Right
Rotation at y

• z :

• y :

• x :

• T1 : h−2

• T2 : h−2

• T3 : h−3

• T4 : h−2

...

x

z y

T1 T2 T3 T4

Hooray! We restored balance!!

• . . . Not just at in our subtree, but on the whole tree?

13 / 33



Heights After Left Rotation at z

Heights after Right
Rotation at y

• z :

• y :

• x :

• T1 : h−2

• T2 : h−2

• T3 : h−3

• T4 : h−2

...

x

z y

T1 T2 T3 T4

Hooray! We restored balance!!

• . . . Not just at in our subtree, but on the whole tree?

13 / 33



Other Cases
Example we considered

...

z

y

x
T1

T2 T3

T4

Another Possibility

...

z

y

x
T1

T2

T3 T4

Only one rotation needed!
Also to consider: mirror images.

• These are the only 4 possibilities for z, y, and x.

14 / 33



Implementation Details
Unfortunately to pull this off, we need more overhead.

• More storage:
• maintain height of each vertex (in

addition to references to children,
parent)

• More work on each ADD/REMOVE:
• update the heights of vertices
• check for imbalance
• restore balance as above

15 / 33



Implementation Details
Unfortunately to pull this off, we need more overhead.

• More storage:
• maintain height of each vertex (in

addition to references to children,
parent)

• More work on each ADD/REMOVE:
• update the heights of vertices
• check for imbalance
• restore balance as above

PollEverywhere
What is the add’l cost of
checking/restoring balance for
ADD?

1. Θ(1)

2. Θ(logn)

3. Θ(
p

n)

4. Θ(n)

pollev.com/comp526

15 / 33

https://pollev.com/comp526


Implementation Details
Unfortunately to pull this off, we need more overhead.

• More storage:
• maintain height of each vertex (in

addition to references to children,
parent)

• More work on each ADD/REMOVE:
• update the heights of vertices

• Only need to update ancestors of
added vertex

• check for imbalance
• Only need to check ancestors of

added vertex
• restore balance as above

• Only takes O(1) time!

PollEverywhere
What is the add’l cost of
checking/restoring balance for
ADD?

1. Θ(1)

2. Θ(logn)

3. Θ(
p

n)

4. Θ(n)

pollev.com/comp526

15 / 33

https://pollev.com/comp526


They Payoff
This scheme for balancing BST is called AVL trees

• Named for Adelson-Velsky and Landis (1962)

Similar re-balancing technique also works for REMOVE method

• Re-balancing removal also takes worst case Θ(logn) time.

Big Deal: We can now implement ORDEREDSETs and MAPs where all
operations are performed in worst case O(logn) time!

Other balanced (binary) tree implementations also exist:

• Red-Black trees

• Scapegoat trees

• 2-3 trees

• . . .

All have similar worst case, asymptotic running time

• different implementations suited for different applications

16 / 33



They Payoff
This scheme for balancing BST is called AVL trees

• Named for Adelson-Velsky and Landis (1962)

Similar re-balancing technique also works for REMOVE method

• Re-balancing removal also takes worst case Θ(logn) time.

Big Deal: We can now implement ORDEREDSETs and MAPs where all
operations are performed in worst case O(logn) time!

Other balanced (binary) tree implementations also exist:

• Red-Black trees

• Scapegoat trees

• 2-3 trees

• . . .

All have similar worst case, asymptotic running time

• different implementations suited for different applications
16 / 33



ADT & Data Structure Recap
Simple ADTs

• STACK

• QUEUE

• DEQUE

Efficient implementation with
linear data structures:

• arrays

• linked lists

All operations performed in
(amortized) Θ(1) time.

Sophisticated ADTs

• PRIORITYQUEUE

• MAP (associative array,
dictionary, symbol table)

Efficient implementation with
tree-like data structures

• heaps

• (balanced) binary search trees

All operations in (amortized)
O(logn) time.

17 / 33



ADT & Data Structure Recap
Simple ADTs

• STACK

• QUEUE

• DEQUE

Efficient implementation with
linear data structures:

• arrays

• linked lists

All operations performed in
(amortized) Θ(1) time.

Sophisticated ADTs

• PRIORITYQUEUE

• MAP (associative array,
dictionary, symbol table)

Efficient implementation with
tree-like data structures

• heaps

• (balanced) binary search trees

All operations in (amortized)
O(logn) time.

17 / 33



Sorting



The Sorting Task
Fundamental Task: sorting a list of elements from smallest to largest

7 1 2 5 3 4 8 6 7−→ 1 2 3 4 5 6 7 8

Typical basic (unit cost) operations:

• compare two elements to see which is larger

• swap two elements in the array

(Perhaps) surprisingly sorting is still an active area of study/research!

• practical and theoretical improvements still being found
• algorithms for different contexts

• e.g., non-standard sorting models

19 / 33



The Sorting Task
Fundamental Task: sorting a list of elements from smallest to largest

7 1 2 5 3 4 8 6 7−→ 1 2 3 4 5 6 7 8

Typical basic (unit cost) operations:

• compare two elements to see which is larger

• swap two elements in the array

(Perhaps) surprisingly sorting is still an active area of study/research!

• practical and theoretical improvements still being found
• algorithms for different contexts

• e.g., non-standard sorting models

19 / 33



Elementary Sorting
Iterative sorting:

• Sort in phases where each phase accomplishes some global task.

Three Basic Strategies

1. SELECTIONSORT

• Each phase i finds the smallest element in a[i . . .n−1] and swaps it
into position i

• Uses (asymptotically) fewest SWAPs possible

2. BUBBLESORT

• Each phase iterates over adjacent pairs and swaps those which are
out of order

• after phase i, a[n−i−1. . .n−1] contains the i largest elements sorted

• Used mostly for illustrative purposes.

3. INSERTIONSORT

• Each phase i inserts x = a[i] into sorted order in a[0 . . . i]
• Typically fast for small sequences and “almost sorted” sequences

20 / 33



Elementary Sorting
Iterative sorting:

• Sort in phases where each phase accomplishes some global task.

Three Basic Strategies

1. SELECTIONSORT

• Each phase i finds the smallest element in a[i . . .n−1] and swaps it
into position i

• Uses (asymptotically) fewest SWAPs possible

2. BUBBLESORT

• Each phase iterates over adjacent pairs and swaps those which are
out of order

• after phase i, a[n−i−1. . .n−1] contains the i largest elements sorted

• Used mostly for illustrative purposes.

3. INSERTIONSORT

• Each phase i inserts x = a[i] into sorted order in a[0 . . . i]
• Typically fast for small sequences and “almost sorted” sequences

20 / 33



Elementary Sorting
Iterative sorting:

• Sort in phases where each phase accomplishes some global task.

Three Basic Strategies

1. SELECTIONSORT

• Each phase i finds the smallest element in a[i . . .n−1] and swaps it
into position i

• Uses (asymptotically) fewest SWAPs possible

2. BUBBLESORT

• Each phase iterates over adjacent pairs and swaps those which are
out of order

• after phase i, a[n−i−1. . .n−1] contains the i largest elements sorted

• Used mostly for illustrative purposes.

3. INSERTIONSORT

• Each phase i inserts x = a[i] into sorted order in a[0 . . . i]
• Typically fast for small sequences and “almost sorted” sequences

20 / 33



InsertionSort in Detail
Phases i = 1,2, . . . ,n−1:

• Phase i moves x = a[i]
into sorted position in
a[0 . . . i].

• Performed via adjacent
comparisons:

• if x is smaller than
left neighbor, swap
x with left neighbor

1: procedure INSERTIONSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: j ← i
4: while j > 0 and a[j] < a[j−1] do
5: SWAP(a, j, j−1)
6: j ← j−1
7: end while
8: end for
9: end procedure

21 / 33



InsertionSort in Detail

PollEverywhere

What is the worst case
running time of
INSERTIONSORT?

1. Θ(n)

2. Θ(n logn)

3. Θ(n2)

4. Θ(2n)

pollev.com/comp526

1: procedure INSERTIONSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: j ← i
4: while j > 0 and a[j] < a[j−1] do
5: SWAP(a, j, j−1)
6: j ← j−1
7: end while
8: end for
9: end procedure

21 / 33

https://pollev.com/comp526


InsertionSort in Detail
State after each phase:

0 1 2 3 4

4 3 5 1 2

3 4 5 1 2

3 4 5 1 2

1 3 4 5 2

1 2 3 4 5

1: procedure INSERTIONSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: j ← i
4: while j > 0 and a[j] < a[j−1] do
5: SWAP(a, j, j−1)
6: j ← j−1
7: end while
8: end for
9: end procedure

3 4 5 1 2

3 4 1 5 2

3 1 4 5 2

1 3 4 5 2

21 / 33



Sorting Using Heaps
Recall the (array backed) heap data structure:

0

2

1

3

2

13

3

10

4

6

5

66

6

39

7

42

8

17

9

96

10

70

11

89

12

95

13

98

14

63

Heap Operations in O(logn) time:

• INSERT(x)

• REMOVEMIN().

Question. How to use heaps to sort efficiently (o(n2) time)?

• Add all elements to a heap.

• Repeatedly REMOVEMIN and add elements back to sorted array

What is the running time of this procedure?

• Θ(n logn) This is much better than Θ(n2)!

Another Question. Do we need a separate heap?

22 / 33



Sorting Using Heaps
Recall the (array backed) heap data structure:

0

2

1

3

2

13

3

10

4

6

5

66

6

39

7

42

8

17

9

96

10

70

11

89

12

95

13

98

14

63

Heap Operations in O(logn) time:

• INSERT(x)

• REMOVEMIN().

Question. How to use heaps to sort efficiently (o(n2) time)?

• Add all elements to a heap.

• Repeatedly REMOVEMIN and add elements back to sorted array

What is the running time of this procedure?

• Θ(n logn) This is much better than Θ(n2)!

Another Question. Do we need a separate heap?

22 / 33



Sorting Using Heaps
Recall the (array backed) heap data structure:

0

2

1

3

2

13

3

10

4

6

5

66

6

39

7

42

8

17

9

96

10

70

11

89

12

95

13

98

14

63

Heap Operations in O(logn) time:

• INSERT(x)

• REMOVEMIN().

Question. How to use heaps to sort efficiently (o(n2) time)?

• Add all elements to a heap.

• Repeatedly REMOVEMIN and add elements back to sorted array

What is the running time of this procedure?

• Θ(n logn) This is much better than Θ(n2)!

Another Question. Do we need a separate heap?
22 / 33



Sorting In-Place
Heap Modification: MaxHeap

• Same as MinHeap, but all
inequalities reversed

• Largest value at root
• Children store smaller

values

HEAPSORT outline:

1. Make array a MaxHeap
• HEAPIFY by calling

BUBBLEUP at each index

2. Sort from right side of array
• swap a[0] with a[n− i−1]
• TRICKLEDOWN from a[0] to

a[n− i−1]

1: procedure HEAPSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: BUBBLEUP(a, i)
4: ▷ Start from index i
5: end for
6: for i = n−1,n−2, . . . ,1 do
7: SWAP(a,0, i)
8: TRICKLEDOWN(a, i−1)
9: ▷ Stop at index i−1

10: end for
11: end procedure

Question. What is the running time of HEAPSORT?

23 / 33



Sorting In-Place
Heap Modification: MaxHeap

• Same as MinHeap, but all
inequalities reversed

• Largest value at root
• Children store smaller

values

HEAPSORT outline:

1. Make array a MaxHeap
• HEAPIFY by calling

BUBBLEUP at each index

2. Sort from right side of array
• swap a[0] with a[n− i−1]
• TRICKLEDOWN from a[0] to

a[n− i−1]

1: procedure HEAPSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: BUBBLEUP(a, i)
4: ▷ Start from index i
5: end for
6: for i = n−1,n−2, . . . ,1 do
7: SWAP(a,0, i)
8: TRICKLEDOWN(a, i−1)
9: ▷ Stop at index i−1

10: end for
11: end procedure

Question. What is the running time of HEAPSORT?

23 / 33



Sorting In-Place
Heap Modification: MaxHeap

• Same as MinHeap, but all
inequalities reversed

• Largest value at root
• Children store smaller

values

HEAPSORT outline:

1. Make array a MaxHeap
• HEAPIFY by calling

BUBBLEUP at each index

2. Sort from right side of array
• swap a[0] with a[n− i−1]
• TRICKLEDOWN from a[0] to

a[n− i−1]

1: procedure HEAPSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: BUBBLEUP(a, i)
4: ▷ Start from index i
5: end for
6: for i = n−1,n−2, . . . ,1 do
7: SWAP(a,0, i)
8: TRICKLEDOWN(a, i−1)
9: ▷ Stop at index i−1

10: end for
11: end procedure

Question. What is the running time of HEAPSORT?

23 / 33



HeapSort Example
Step 1: HEAPIFY!

0 1 2 3 4

4 3 5 1 2

4 3 5 1 2

5 3 4 1 2

5 3 4 1 2

5 3 4 1 2

1: procedure HEAPSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: BUBBLEUP(a, i)
4: ▷ Start from index i
5: end for
6: for i = n−1,n−2, . . . ,1 do
7: SWAP(a,0, i)
8: TRICKLEDOWN(a, i−1)
9: ▷ Stop at index i−1

10: end for
11: end procedure

Worst case running time is Θ(logn), but HEAPSORT doesn’t perform
great in practice (for large arrays)

• poor locality of reference

24 / 33



HeapSort Example
Step 2: Remove maximum values!

0 1 2 3 4

5 4 3 1 2

4 2 3 1 5

3 2 1 4 5

2 1 3 4 5

1 2 3 4 5

1: procedure HEAPSORT(a,n)
2: for i = 1,2, . . . ,n−1 do
3: BUBBLEUP(a, i)
4: ▷ Start from index i
5: end for
6: for i = n−1,n−2, . . . ,1 do
7: SWAP(a,0, i)
8: TRICKLEDOWN(a, i−1)
9: ▷ Stop at index i−1

10: end for
11: end procedure

Worst case running time is Θ(logn), but HEAPSORT doesn’t perform
great in practice (for large arrays)

• poor locality of reference
24 / 33



Sorting by Divide
& Conquer



The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

1. Break the input into smaller instances of the task

2. Solve the smaller instances
• this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting

MERGESORT: Divide by index

• divide array into left and right
halves

• recursively sort halves

• merge halves

QUICKSORT: Divide by value

• pick a pivot value p
• split array according to p

• ≤ p on left, > p on right

• recursively sort sub-arrays

26 / 33



The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

1. Break the input into smaller instances of the task

2. Solve the smaller instances
• this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting

MERGESORT: Divide by index

• divide array into left and right
halves

• recursively sort halves

• merge halves

QUICKSORT: Divide by value

• pick a pivot value p
• split array according to p

• ≤ p on left, > p on right

• recursively sort sub-arrays

26 / 33



The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

1. Break the input into smaller instances of the task

2. Solve the smaller instances
• this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting

MERGESORT: Divide by index

• divide array into left and right
halves

• recursively sort halves

• merge halves

QUICKSORT: Divide by value

• pick a pivot value p
• split array according to p

• ≤ p on left, > p on right

• recursively sort sub-arrays

26 / 33



Merging Sorted Arrays

Question

Suppose we are given two sorted arrays, a and b. How can we merge
them into a single sorted array that contains all the values from both
arrays?

0

2

1

3

2

6

3

7

4

8

0

1

1

4

2

5

3

9

0 1 2 3 4 5 6 7 8

27 / 33



Merging Code
Merging sorted arrays a (size m)
and b (size n) into array c starting
at index s

PollEverywhere

What is the running time of
MERGE?

1. Θ(m+n)

2. Θ(m ·n)

3. Θ(log(m+n))

4. Θ(logmn)

pollev.com/comp526

1: procedure MERGE(a,b,c,s,m,n) ▷

Merge arrays a and b into array c
starting at index s. a has size m and b
has size n

2: i, j ← 0, k ← s
3: while k < s+m+n do
4: if j = n or a[i] < b[j] then
5: c[k] ← a[i]
6: i ← i+1
7: else
8: c[k] ← b[j]
9: j ← j+1

10: end if
11: k ← k+1
12: end while
13: end procedure

28 / 33

https://pollev.com/comp526


Merging Code

PollEverywhere

What is the running time of
MERGE?

1. Θ(m+n)

2. Θ(m ·n)

3. Θ(log(m+n))

4. Θ(logmn)

pollev.com/comp526

1: procedure MERGE(a,b,c,s,m,n) ▷

Merge arrays a and b into array c
starting at index s. a has size m and b
has size n

2: i, j ← 0, k ← s
3: while k < s+m+n do
4: if j = n or a[i] < b[j] then
5: c[k] ← a[i]
6: i ← i+1
7: else
8: c[k] ← b[j]
9: j ← j+1

10: end if
11: k ← k+1
12: end while
13: end procedure

28 / 33

https://pollev.com/comp526


Sorting by Merging
MERGESORTStrategy:

• To sort a[i . . .k]:
• If i = k, then we’re done
• Othewise split (sub)interval

in half
• Recursively sort halves
• Merge sorted halves

• copy values to new
arrays for this

1: procedure MERGESORT(a, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b ← COPY(a, i, j)
7: c ← COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure

29 / 33



Sorting by Merging
MERGESORTStrategy:

• To sort a[i . . .k]:
• If i = k, then we’re done
• Othewise split (sub)interval

in half
• Recursively sort halves
• Merge sorted halves

• copy values to new
arrays for this

1: procedure MERGESORT(a, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b ← COPY(a, i, j)
7: c ← COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure

29 / 33



Sorting by Merging

PollEverywhere

Consider an execution of
MERGESORT(a,0,3) where
a = [4,2,1,3]. How many total calls
to MERGESORT are executed
(including the initial call)?

pollev.com/comp526

1: procedure MERGESORT(a, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b ← COPY(a, i, j)
7: c ← COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure

29 / 33

https://pollev.com/comp526


Sorting by Merging
Tracing the Recursive Calls

1: procedure MERGESORT(a, i,k)
2: if i < k then
3: j ←⌊(i+k)/2⌋
4: MERGESORT(a, i, j)
5: MERGESORT(a, j+1,k)
6: b ← COPY(a, i, j)
7: c ← COPY(a, j+1,k)
8: MERGE(b,c,a, i)
9: end if

10: end procedure

29 / 33



A Larger Example

3 9 10 27 39 43 82

9 10 82

10

10

9 82

829

3 27 39 43

3 43

343

27 39

2739

39 27 43 3 9 82 10

39 27 43 3

39 27

39 27

43 3

43 3

9 82 10

9 82

9 82

10

10

tikz code courtesy of SebGlav on tex.stackexchange.com
30 / 33

https://tex.stackexchange.com/questions/592155/how-to-draw-a-merge-sort-algorithm-figure


MergeSort Analysis
Question. What is the running time of MERGESORT?

• How do we analyzing the running time of a recursive function?

Think about this for next time.

31 / 33



MergeSort Analysis
Question. What is the running time of MERGESORT?

• How do we analyzing the running time of a recursive function?

Think about this for next time.

31 / 33



Next Time: More Sorting

• MERGESORT analysis
• QUICKSORT

• Lower Bounds
• Non-comparison Based Methods
• More Sorting Algorithms?

32 / 33



Scratch Notes

33 / 33


	AVL Trees
	Sorting
	Sorting by Divide & Conquer

