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Announcements

1. Third Quiz, due Friday

¢ Similar format to before
* Covers fundamental data structures (Lectures 4—6)
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after

= midnight) CDW(SQ'
2. Programming Assignment (Draft) Posted/[ 3 \_Q_,
i * Due Wednesday, 13 November wd() \

3. Attendance Code:

qLB0L3
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Meeting Goals

* Finish up balanced binary trees
* Discuss the sorting task
* Introduce HEAPSORT

* Discuss Divide and Conquer approaches to sorting

* MERGESORT
® QUICKSORT

3/33



AVL Trees



From Last Time

Binary Search Trees

goadl”

Height and Balance
¢ height of v = max distance to a descendent leaf
* Tis height balanced if for every v, the heights of v’s children differ by at most 1
* Properties of height balanced trees
* height h satisfies h < 2logn
* CONTAINS, ADD, REMOVE run in O(log n) time
Question. How can we efficiently maintain height balance for any
sequence of operations?
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Creating Imbalance

A Minimal Working Example (MWE) balanced

Question. What happens when we
ADD(5)?
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Creating Imbalance

A Minimal Working Example (MWE) unbalanced

Question. What happens when we
ADD(5)?
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Creating Imbalance

A Minimal Working Example (MWE) 5 ,{\\Y mv\\o m\&Vl \ﬂflj
\l 0 0

PollEverywhere

Which vertices are
unbalanced?

Question. What happens when we

pollev.com/comp526
ADD(5)?
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Fixing Imbalance

General Strategy. Find the “lowest” unbalanced vertex, and “pull up”

its lower child.

@/@\@@
@

7133



Unbalanced Observations

Suppose T was balanced before ADD(x) and unbalanced after ADD(x).
Then:

1. ADD(x) can only change the height/balance of x’s ancestors.

2. The height of any vertex can can only increase by one as the result
of ADD(x).

\ Vs OV\\\/ "WAK

\?W‘S Cown
CMCLV\?/\.
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Unbalanced Observations

Suppose T was balanced before ADD(x) and unbalanced after ADD(x).

Then:
1. ADD(x) can only change the height/balance of x’s ancestors.

2. The height of any vertex can can only increase by one as the result
of ADD(x).

This means:
* We only need to check x’s ancestors for imbalance after ADD(x).

* We only need to correct an imbalance of 2 to restore balance in
the tree after ADD(x).

8/33



Rotations

— right rotation at y =

/ 1 13
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Rotations

Nale g\\lu\

— right rotation at y = K Of \/

Colehien

can 0% {

A
"

o)
Hiwa

¥ < left rotation at x <

Main Observation. If T is a BST, then it remains a BST after any

rotation.
9/33



Restoring Balance After Add

Suppose T was balanced
before ADD (] and is
unbalanced after the
operation. Then define
c zis(w’s lclosest
unbalanced ancestor
* yis z’s child towards w
* xis y’s child towards w

* Why do these
vertices exist?

10/33



Heights After Add

\N,(U\\’\\/ :@ T S
Q¥ O 0
PollEverywhere 25 (O
If zhad height  before i
ADD(w), what ar

heights of z,
afterward?

pollev.com/comp526 )
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e Wighd o 2 Changd
Heights After Add - -ljmﬂmc& by 1

Heights after ADD(w)
* z:h+1

* y:h
* x:h-1
leh—z
Tg:h—z

* why not 2—3?
T3:h—3

* why not 2—4?
Ty:h—2
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Heights After Add

Heights after ADD(w)

* z:h+1

* y:h

* x:h-1

e Th:h-2

°* Th:h-2

* why not 2—3?
T3:h—3

* why not 2—4?
* Ty:h-2

Question. How to “pull” 7> up?
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Heights After Add

Heights after ADD(w)

* z:h+1

* y:h

* x:h-1
Ty:h-2
To:h-2

* why not 2—3?
T3:h—3

* why not 2—4?
* Ty:h-2

Questign.\How to “pull”



Heights After Right Rotation at y

PollEverywhere

What is the new height of z's
right child?

pollev.com/comp526
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Heights After Right Rotation at y

Heights after Right
Rotation at y

* z:h+1 :

e y:h-1 e
* x:h
* Ty:

- )
* Th:h-2 A
* T3:h-3

h—2

° Ty:
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Heights After Right Rotation at y

Heights after Right LS SY
Rotition aty : /\'_(\( \( 0&0\35\6\/‘
* z:h+1 : OL(( T
e y:h-1 Q’ ﬁ\
* x:h >

°* Th:h-2 e

* Th:h-2 A

* T3:h-3 a
h—2

° Ty:

Damn! What if we try again?
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Heights After Left Rotation at z

Heights after Right
Rotation at y

* z:
° y:
* X:
e Ti:h
e Th:h—
° T3:h
° Ty:h

@@\mu— CeSYoie &
%{ Q,V\HM, Heo
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Heights After Left Rotation at z

Heights after Right
Rotation at y

® zZ:

Hooray! We restored balance!!

e ...Notjust at in our subtree, but on the whole tree?
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Other Cases

Example we considered Another Possibility

— Only one rotation needed!
Also to consider: mirror images.

* These are the only 4 possibilities for z, y, and x.
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Implementation Details

Unfortunately to pull this off, we need more overhead.

* More storage:

° maintain height of each vertex (in
addition to references to children,
parent)

* More work on each ADD/REMOVE:

* update the heights of vertices

* check for imbalance

* restore balance as above
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Implementation Details

Unfortunately to pull this off, we need more overhead.

* More storage: PollE h
° maintain height of each vertex (in .

addition to references to children, What is the add’l cost of
parent) checking/restoring balance for
ADD?
* More work on each ADD/REMOVE: e s own
* update the heights of vertices > S - 0(n
2. O(ogn) 4. O(n)

* check for imbalance
* restore balance as above

pollev.com/comp526
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W= @Qq w)

Implementation Details L \Lah

Unfortunately to pull this off, we need more overhead. S \0""\

* More storage: PolIE h
° maintain height of each vertex (in T

addition to references to children, Whatis the add’l cost of
parent) checking/restoring balance for
ADD?
* More work on each ADD/REMOVE:
° update the heights of vertices 1. 6w 3. 6wn
2. O(logn) 4. O(n)

* Only need to update ancestors of

added vertex (9(,\0(\ V\\ 1 Q)('SY\ W

* check for imbalance

* Only need to check ancestors of @(\Ot\ "
added vertex \{dé ':Eq -
* restore balance as above G r iy

-LOnly takes O(1) time! (} E

pollev.com/comp526
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They Payoff

This scheme for balancing BST is called AVL trees
* Named for Adelson-Velsky and Landis (1962)

Similar re-balancing technique also works for REMOVE method
* Re-balancing removal also takes worst case @(logn) time.

Big Deal: We can now implement ORDEREDSETs and MAPs where all
YURDEREDS] \PS
operations are performed in worst case O(log n) time!
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They Payoff

This scheme for balancing BST is called AVL trees
* Named for Adelson-Velsky and Landis (1962)
Similar re-balancing technique also works for REMOVE method

* Re-balancing removal also takes worst case @(logn) time.

Big Deal: We can now implement ORDEREDSETs and MAPs where all
operations are performed in worst case O(log n) time!

Other balanced (binary) tree implementations also exist:
* Red-Black trees <—
* Scapegoat trees
e 2-3trees
O 4oo
All have similar worst case, asymptotic running time

¢ different implementations suited for different applications
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ADT & Data Structure Recap

Simple ADTs
* STACK
* QUEUE
* DEQUE

Efficient implementation with
linear data structures:

* arrays
e linked lists

All operations performed in
(amortized) ©(1) time.
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ADT & Data Structure Recap

Simple ADTs Sophisticated ADTs
* STACK PRIORITYQUEUE
°* QUEUE * MAP (associative array,
* DEQUE dictionary, symbol table)

o odened St

Efficient implementation with
tree-like data structures

Efficient implementation with
linear data structures:
* arrays * heaps

¢ linked lists ¢ (balanced) binary search trees

All operations performed in All operations in (amortized)
(amortized) ©(1) time. O(logn) time.
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Sorting



The Sorting Task

Fundamental Task: sorting a list of elements from smallest to largest

[7]1]2]5]3]4]8][6] — [1]2]3]4][5][6][7]8]

Typical basic (unit cost) operations:
* compare two elements to see which is larger

* swap two elements in the array
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The Sorting Task

Fundamental Task: sorting a list of elements from smallest to largest

[7]1]2]5]3]4]8][6] — [1]2]3]4][5][6][7]8]

Typical basic (unit cost) operations:
* compare two elements to see which is larger

* swap two elements in the array

(Perhaps) surprisingly sorting is still an active area of study/research!
e practical and theoretical improvements still being found

¢ algorithms for different contexts
° e.g., non-standard sorting models
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Elementary Sorting

Iterative sorting:
¢ Sort in phases where each phase accomplishes some global task.
Three Basic Strategies

1. SELECTIONSORT

* Each phase i finds the smallest element in a[i...n— 1] and swaps it
into position i
* Uses (asymptotically) fewest SWAPs possible
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Elementary Sorting

Iterative sorting:
¢ Sort in phases where each phase accomplishes some global task.

Three Basic Strategies
1. SELECTIONSORT
* Each phase i finds the smallest element in a[i...n— 1] and swaps it
into position i
* Uses (asymptotically) fewest SWAPs possible
2. BUBBLESORT

* Each phase iterates over adjacent pairs and swaps those which are
out of order

* after phase i, a[n—i—1...n—1] contains the ilargest elements sorted
* Used mostly for illustrative purposes. lll‘( %4 C‘Zl unf
N gt e
i T t\\]&l}m\" . .
WM AR second \ou(q//%z
WAQ O“CM P\ADSL - 20/33




Elementary Sorting

Iterative sorting:
¢ Sort in phases where each phase accomplishes some global task.

Three Basic Strategies
1. SELECTIONSORT
* Each phase i finds the smallest element in a[i...n— 1] and swaps it
into position i
* Uses (asymptotically) fewest SWAPs possible
2. BUBBLESORT

* Each phase iterates over adjacent pairs and swaps those which are
out of order

* after phase i, a[n—i—1...n—1] contains the ilargest elements sorted
* Used mostly for illustrative purposes.
3. INSERTIONSORT
* Each phase iinserts x = a[i] into sorted order in a[0... i
* Typically fast for small sequences and “almost sorted” sequences

20/33



InsertionSort in Detail

Phasesi=1,2,...,n—1:

1: procedure INSERTIONSORT(a, 1) \\m
* Phase imoves x = ali] 2 fori=1,2,..,n-1do o= PMSC
into sorted position in 3 j—i
alo...i. 4 while j> 0 and aljl < ajj- 1] do
* Performed via adjacent 5: SWAP(a, j,j— 1)
comparisons: 6 j—j-1
* if xis smaller than 7 end while
left neighbor, swap
8 d fi
x with left neighbor encior
= 9: end procedure
Q?‘J\OS'- ¢
v
HINANZ
E— el
Sol led
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PollEverywhere

What is the worst case
running time of

INSERTIONSORT?
1. 9w 3. O(n?)
2. ©(nlogn) 4. ©2"

pollev.com/comp526

1

2

3

4: while j> 0 and a[jl < alj— 1] do

5: SwAP(4,j,j— 1)

6: j=i-1

7 end while }

8: end for

9: end procedure L ’ |L@~Aha\4§
o\ B

; : XX
Suwawming P s 05 '\Y

1y 2F%kY e 0
vﬁf_,—-—)

-—
—
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InsertionSort in Detail

State after each phase:

L & & -

Iy

0

1

2

8

4

1: procedure INSERTIONSORT(a, 1)
2 fori=1,2,...,n—1do

3 j—i

4 while j > 0 and alj] < alj- 1] do
5: SWAP(a,j,j—1)

6 j—j-1
7 end while
8 end for

9: end procedure

0

| 3] 4 5
7 |3 4| 5

O

NN (NN

?\\&S@ 3
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Sorting Using Heaps

(array backed) heap data structure:

Recal

l/o{%‘h?ﬂ‘ﬂ[ﬂ&s 6 7 8 9 10 11 12 13 14

,2 3 /13 )10’)6 66 |39 |42 |17 (96|70 89|95 |98 |63
L —

Heap Op n O(log n) time:

® INSERT(x)

* REMOVEMIN().

Question. How to use heaps to sort efficiently (o(n?) fime)?
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Sorting Using Heaps

Recall the (array backed) heap data structure:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
213 |13[10| 6 |66|39|42|17|96|70 (89|95 |98 |63

Heap Operations in O(log n) time:
* INSERT(x)
* REMOVEMIN().
Question. How to use heaps to sort efficiently (o(1%) time)?
* Add all elements to aheap. — [T\ ° \og oQ
T ggg S e ¢85
* Repeatedly REMOVEMIN and add elements back to sorted array

What is the running time of this procedure? VLZ_
G (n lDC/ n > LA
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Sorting Using Heaps

Recall the (array backed) heap data structure:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
213 |13[10| 6 |66|39|42|17|96|70 (89|95 |98 |63

Heap Operations in O(log n) time:

* INSERT(x)

* REMOVEMIN().
Question. How to use heaps to sort efficiently (o(n?) time)?

* Add all elements to a heap.

* Repeatedly REMOVEMIN and add elements back to sorted array
What is the running time of this procedure?

* ©(nlogn) This is much better than O (n?)!

Another Question. Do we need a separate heap?
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_ o QX Shogh
Sorting In-Place — = (o \odous

Heap Modification: MaxHeap

e Same as MinHeap, but all
inequalities reversed

* Largest value at root
* Children store smaller

values
HEAPSORT outline: ,T ( \ T [ (

1. Make array a MaxHeap \O_RQKQ‘( (\/ WMo Weed
° HEAPIFY by calling N w3~

BUBBLEUP at each index M\ 1
2. Sort from right side of array ( \ \ \
* swap al0] with a[n—i-1]
* TRICKLEDOWN from a[0] to
aln—i—1]
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Sorting In-Place

Heap Modification: MaxHeap

e Same as MinHeap, but all
inequalities reversed

* Largest value at root
* Children store smaller
values
HEAPSORT outline:
1. Make array a MaxHeap
° HEAPIFY by calling
BUBBLEUP at each index
2. Sort from right side of array
* swap al0] with a[n—i-1]
* TRICKLEDOWN from a[0] to
aln—i—1]

3:
4:
5:
6:
7:
8:
9:

10:
11:

ot W % m@“’d\/

1: procedure HEAPSORT(a, n)

fori=1,2,...,n—1do

BUBBLEUP(q, i)
> Start from index i
end for
—for i = n-1,n-2,...,1do
SWAP(a, 0, i)
TRICKLEDOWN (a,i— 1)
> Stop atindex i—1
l/end for
end procedure

23/33



Sorting In-Place — Hm?\ﬁj

Heap Modification: MaxHeap

* Same as MinHeap, but all 1: procedure HEAPSORT(a, 1)
inequalities reversed 2: ori=1 .n—1do
* Largest value at root 3 BUBBLEUP(q, i) OU@[ “)
* Children store smaller 4 om index i
values 5: end for
HEAPSORT outline: 6 fori=n-1,n-2,...,1do
1. Make array a MaxHeap 7 SWAP(a,0, i) &loq W
° HEAPIFY by calling 8 TRICKLEDOWN (a,i— 1)
BUBBLEUP at each index 9 > Stop atindex i— 1
2. Sort from right side of array 10:  end for
* swap a[0] with a[n—i— 1] 11: end procedure
* TRICKLEDOWN from a[0] to
aln—i—1]

O (1 log n)

23/33
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HeapSort Example

Step 1: HEAPIFY!

e s’ &

1: procedure HEAPSORT(a, n)

2 ori=1,2,...,n—1do

3: BUBBLEUP(q, i)

4 > Start from index i

5 end for
fori=n-1,n-2,...,1do

7 SWAP(a, 0, i)

TRICKLEDOWN (a,i— 1)
> Stop atindex i—1

CONNCE

10: end for
11: end procedure
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HeapSort Example

Step 2: Remove maximum values!
=R

W ﬂ%\z\l proced'ure HEAPSORT(a, n)
\ k fori=1,2,...,n-1do

1:

i) \'& 2
u{ EE 1173 3 BUBBLEUP(q, i)
@’: [ 213 ] 1 4: > Start from index i
1 5. end for
E_E__l/ 6 fori=n-1,n-2,...,1do

2 1 7 SWAP(a, 0, i)
| 8 TRICKLEDOWN (a,i— 1)

1 9 > Stop atindex i—1

10:  end for
S0 \4)\ 11: end procedure

Worst case running time is ©(logn), but HEAPSORT doesn’t perform

great in practice (for large arrays) @ (W \Oﬂ '\) AN\

* poor locality of reference

- —
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Sorting by Divide
& Conquer



The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

1. Break the input into smaller instances of the task
2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

V/

Se € olo- 9 o\olesms J

Ny
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The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:
1. Break the input into smaller instances of the task

2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting s
MERGESORT: Divide by index 0 J( h-
¢ divide array into left and right L\ \{ L
halves R,
* recursively sort halves S ot Sor ~ \,tg

* merge halves ld\\’\/ ¥ \C'
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The Divide & Conquer Strategy

Generic Strategy
Given an algorithmic task:
1. Break the input into smaller instances of the task

2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting
MERGESORT: Divide by index QUICKSORT: Divide by value
¢ divide array into left and right  * pick a pivot value p
halves e split array according to p
* recursively sort halves * =ponleft, > ponright

* merge halves * recursively sort sub-arrays

26/33



‘ oot
Merging Sorted Arrays /f\\‘“k\( ‘\i{\

Suppose we are given two sorted arrays, a and b. How can we merge
them into a single sorted array that contains all the values from both
arrays?

0 1 2 3 4 0 1 2 3
213|678 1145 ]9

27133



Merging Code

Merging sorted arrays a (size m)
and b (size n) into array c starting
atindex s

1: procedure MERGE(a, b, ¢, s, m, n) >
Merge arrays a and b into array ¢
starting at index s. a has size m and b
has size n
i,j—0,k—s
while k< s+ m+ ndo
if j = nor ali] < b[j] then
clk] — alil
i—i+1
else
clk] — blj]
j—Jj+1
end if
11: k—k+1
12: end while
13: end procedure

—_
e
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Merging Code

PollEverywhere

What is the running time of
MERGE?

1. ©(m+n) 3. O(log(m+ n)
2. ©(m-n) 4. O(logmn)

pollev.com/comp526

1: procedure MERGE(a, b, ¢, s, m, n) >
Merge arrays a and b into array ¢
starting at index s. a has size m and b
has size n
i,j—0,k—s
while k< s+ m+ ndo
if j = nor ali] < b[j] then
clk] — ali]
i—i+1
else
clk] < blj]
j—Jj+1
end if
11: k—k+1
12: end while
13: end procedure

—_
e
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Sorting by Merging

MERGESORTStrategy:

* Tosortali...k:
* If i = k, then we're done
* Othewise split (sub)interval
in half
°* Recursively sort halves
* Merge sorted halves

°* copy values to new
arrays for this

29/33



Sorting by Merging

MERGESORTStrategy:

) procedure MERGESORT(a, i, k)
* Tosortali...kl:

if i < k then
* If i = k, then we're done

* Othewise split (sub)interval Jj— i+ k)/2] .
i MERGESORT (4, i, j)
in half

1:

2

3

4

* Recursively sort halves & MERGESORT(a,j+1, k)

* Merge sorted halves 6 b— CoPY(a,i,j)
7 c— CorY(a,j+1,k)
8: MERGE(b, ¢, a, i)

9: end if
10: end procedure

°* copy values to new
arrays for this
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Sorting by Merging

1: procedure MERGESORT(q, i, k)
2 if i < kthen

3 J— 1+ k)/2]

4 MERGESORT(4, i, J)
5: MERGESORT(a,j+ 1, k)
6

7

8

PollEverywhere

Consider an execution of
MERGESORT(a,0,3) where
a=[4,2,1,3]. How many total calls
to MERGESORT are executed

(including the initial call)? = o)

c— CorY(a,j+1,k)

g MERGE(b, ¢, a, i)
9: end if
10: end procedure

pollev.com/comp526
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Sorting by Merging

Tracing the Recursive Calls procedure MERGESORT(4, , k)

1:
2 if i < k then
3 J— 1+ k)/2]

4 MERGESORT(4, i, J)
5: MERGESORT(a,j+ 1, k)
6 b— CoPY(a,i,j)
7 c— CorY(a,j+1,k)
8: MERGE(b, ¢, a, i)

9: end if
10: end procedure
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A Larger Example

139]27]43[3]9]82]10]

[3]9]10[27[39]43]82]

tikz code courtesy of SebGlav on tex.stackexchange.com
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MergeSort Analysis

Question. What is the running time of MERGESORT?

* How do we analyzing the running time of a recursive function?
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MergeSort Analysis

Question. What is the running time of MERGESORT?

* How do we analyzing the running time of a recursive function?

Think about this for next time.
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Next Time: More Sorting

* MERGESORT analysis

* QUICKSORT

* Lower Bounds

* Non-comparison Based Methods
* More Sorting Algorithms?
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Scratch Notes
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