11 1 m 1 m 1]]
00000000000000000F00000000FGCUCFO0O0E000000000060000iI000800000000000000000Fgogoo]
123456 78 910012131 1516 1716192021 2223242526 27 2829 2% 3132 33 74 35 36 37 38 39 40 41 42 41 44 45 46 47 49 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT R ERRRRR! B ERRRRRI [R ERRER AR R R RN R RN R RN R RN R R R RS AR R R R RRRRRERRERRRT!
2202222222222222222222220222
3333233332333[3
A0444480444440404000444400444400444444404448404444404444444404444444042044444044
555555555555 505555505 5055555 QM5 5M555555555555555556555555555555555555555555555

66666666 66M66366666666656R6666666

Lecture O7: Sorting | q 1602.3

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: October 24, 2024 University of Liverpool

1/33

Announcements

1. Third Quiz, due Friday

¢ Similar format to before
* Covers fundamental data structures (Lectures 4—6)
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after

= midnight) CDW(SQ'
2. Programming Assignment (Draft) Posted/[3 _Q_,
i * Due Wednesday, 13 November wd() \

3. Attendance Code:

qLB0L3

2/33

Meeting Goals

* Finish up balanced binary trees
* Discuss the sorting task
* Introduce HEAPSORT

* Discuss Divide and Conquer approaches to sorting

* MERGESORT
® QUICKSORT

3/33

AVL Trees

From Last Time

Binary Search Trees

goadl”

Height and Balance
¢ height of v = max distance to a descendent leaf
* Tis height balanced if for every v, the heights of v’s children differ by at most 1
* Properties of height balanced trees
* height h satisfies h < 2logn
* CONTAINS, ADD, REMOVE run in O(log n) time
Question. How can we efficiently maintain height balance for any
sequence of operations?

5/33

Creating Imbalance

A Minimal Working Example (MWE) balanced

Question. What happens when we
ADD(5)?

6/33

Creating Imbalance

A Minimal Working Example (MWE) unbalanced

Question. What happens when we
ADD(5)?

6/33

Creating Imbalance

A Minimal Working Example (MWE) 5 ,{\\Y mv\\o m\&Vl \ﬂflj
\l 0 0

PollEverywhere

Which vertices are
unbalanced?

Question. What happens when we

pollev.com/comp526
ADD(5)?

6/33

Fixing Imbalance

General Strategy. Find the “lowest” unbalanced vertex, and “pull up”

its lower child.

@/@\@@
@

7133

Unbalanced Observations

Suppose T was balanced before ADD(x) and unbalanced after ADD(x).
Then:

1. ADD(x) can only change the height/balance of x’s ancestors.

2. The height of any vertex can can only increase by one as the result
of ADD(x).

\ Vs OV\\\/ "WAK

\?W‘S Cown
CMCLV\?/\.

8/33

Unbalanced Observations

Suppose T was balanced before ADD(x) and unbalanced after ADD(x).

Then:
1. ADD(x) can only change the height/balance of x’s ancestors.

2. The height of any vertex can can only increase by one as the result
of ADD(x).

This means:
* We only need to check x’s ancestors for imbalance after ADD(x).

* We only need to correct an imbalance of 2 to restore balance in
the tree after ADD(x).

8/33

Rotations

— right rotation at y =

/ 1 13

9/33

Rotations

Nale g\\lu\

— right rotation at y = K Of \/

Colehien

can 0% {

A
"

o)
Hiwa

¥ < left rotation at x <

Main Observation. If T is a BST, then it remains a BST after any

rotation.
9/33

Restoring Balance After Add

Suppose T was balanced
before ADD (] and is
unbalanced after the
operation. Then define
c zis(w’s lclosest
unbalanced ancestor
* yis z’s child towards w
* xis y’s child towards w

* Why do these
vertices exist?

10/33

Heights After Add

\N,(U\\’\\/ :@ T S
Q¥ O 0
PollEverywhere 25 (O
If zhad height before i
ADD(w), what ar

heights of z,
afterward?

pollev.com/comp526)

11/33

e Wighd o 2 Changd
Heights After Add - -ljmﬂmc& by 1

Heights after ADD(w)
* z:h+1

* y:h
* x:h-1
leh—z
Tg:h—z

* why not 2—3?
T3:h—3

* why not 2—4?
Ty:h—2

11/33

Heights After Add

Heights after ADD(w)

* z:h+1

* y:h

* x:h-1

e Th:h-2

°* Th:h-2

* why not 2—3?
T3:h—3

* why not 2—4?
* Ty:h-2

Question. How to “pull” 7> up?

11/33

Heights After Add

Heights after ADD(w)

* z:h+1

* y:h

* x:h-1
Ty:h-2
To:h-2

* why not 2—3?
T3:h—3

* why not 2—4?
* Ty:h-2

Questign.\How to “pull”

Heights After Right Rotation at y

PollEverywhere

What is the new height of z's
right child?

pollev.com/comp526

12/33

Heights After Right Rotation at y

Heights after Right
Rotation at y

* z:h+1 :

e y:h-1 e
* x:h
* Ty:

-)
* Th:h-2 A
* T3:h-3

h—2

° Ty:

12/33

Heights After Right Rotation at y

Heights after Right LS SY
Rotition aty : /\'_(\(\(0&0\35\6\/‘
* z:h+1 : OL((T
e y:h-1 Q’ ﬁ\
* x:h >

°* Th:h-2 e

* Th:h-2 A

* T3:h-3 a
h—2

° Ty:

Damn! What if we try again?

12/33

Heights After Left Rotation at z

Heights after Right
Rotation at y

* z:
° y:
* X:
e Ti:h
e Th:h—
° T3:h
° Ty:h

@@\mu— CeSYoie &
%{ Q,V\HM, Heo

13/33

Heights After Left Rotation at z

Heights after Right
Rotation at y

® zZ:

Hooray! We restored balance!!

e ...Notjust at in our subtree, but on the whole tree?

13/33

Other Cases

Example we considered Another Possibility

— Only one rotation needed!
Also to consider: mirror images.

* These are the only 4 possibilities for z, y, and x.

14/33

Implementation Details

Unfortunately to pull this off, we need more overhead.

* More storage:

° maintain height of each vertex (in
addition to references to children,
parent)

* More work on each ADD/REMOVE:

* update the heights of vertices

* check for imbalance

* restore balance as above

15/33

Implementation Details

Unfortunately to pull this off, we need more overhead.

* More storage: PollE h
° maintain height of each vertex (in .

addition to references to children, What is the add’l cost of
parent) checking/restoring balance for
ADD?
* More work on each ADD/REMOVE: e s own
* update the heights of vertices > S - 0(n
2. O(ogn) 4. O(n)

* check for imbalance
* restore balance as above

pollev.com/comp526

15/33

W= @Qq w)

Implementation Details L \Lah

Unfortunately to pull this off, we need more overhead. S \0""\

* More storage: PolIE h
° maintain height of each vertex (in T

addition to references to children, Whatis the add’l cost of
parent) checking/restoring balance for
ADD?
* More work on each ADD/REMOVE:
° update the heights of vertices 1. 6w 3. 6wn
2. O(logn) 4. O(n)

* Only need to update ancestors of

added vertex (9(,\0(\ V\\ 1 Q)('SY\ W

* check for imbalance

* Only need to check ancestors of @(\Ot\ "
added vertex \{dé ':Eq -
* restore balance as above G r iy

-LOnly takes O(1) time! (} E

pollev.com/comp526

15/33

They Payoff

This scheme for balancing BST is called AVL trees
* Named for Adelson-Velsky and Landis (1962)

Similar re-balancing technique also works for REMOVE method
* Re-balancing removal also takes worst case @(logn) time.

Big Deal: We can now implement ORDEREDSETs and MAPs where all
YURDEREDS] \PS
operations are performed in worst case O(log n) time!

16/33

They Payoff

This scheme for balancing BST is called AVL trees
* Named for Adelson-Velsky and Landis (1962)
Similar re-balancing technique also works for REMOVE method

* Re-balancing removal also takes worst case @(logn) time.

Big Deal: We can now implement ORDEREDSETs and MAPs where all
operations are performed in worst case O(log n) time!

Other balanced (binary) tree implementations also exist:
* Red-Black trees <—
* Scapegoat trees
e 2-3trees
O 4oo
All have similar worst case, asymptotic running time

¢ different implementations suited for different applications

16/33

ADT & Data Structure Recap

Simple ADTs
* STACK
* QUEUE
* DEQUE

Efficient implementation with
linear data structures:

* arrays
e linked lists

All operations performed in
(amortized) ©(1) time.

17/33

ADT & Data Structure Recap

Simple ADTs Sophisticated ADTs
* STACK PRIORITYQUEUE
°* QUEUE * MAP (associative array,
* DEQUE dictionary, symbol table)

o odened St

Efficient implementation with
tree-like data structures

Efficient implementation with
linear data structures:
* arrays * heaps

¢ linked lists ¢ (balanced) binary search trees

All operations performed in All operations in (amortized)
(amortized) ©(1) time. O(logn) time.

17/33

Sorting

The Sorting Task

Fundamental Task: sorting a list of elements from smallest to largest

[7]1]2]5]3]4]8][6] — [1]2]3]4][5][6][7]8]

Typical basic (unit cost) operations:
* compare two elements to see which is larger

* swap two elements in the array

19/33

The Sorting Task

Fundamental Task: sorting a list of elements from smallest to largest

[7]1]2]5]3]4]8][6] — [1]2]3]4][5][6][7]8]

Typical basic (unit cost) operations:
* compare two elements to see which is larger

* swap two elements in the array

(Perhaps) surprisingly sorting is still an active area of study/research!
e practical and theoretical improvements still being found

¢ algorithms for different contexts
° e.g., non-standard sorting models

19/33

Elementary Sorting

Iterative sorting:
¢ Sort in phases where each phase accomplishes some global task.
Three Basic Strategies

1. SELECTIONSORT

* Each phase i finds the smallest element in a[i...n— 1] and swaps it
into position i
* Uses (asymptotically) fewest SWAPs possible

20/33

Elementary Sorting

Iterative sorting:
¢ Sort in phases where each phase accomplishes some global task.

Three Basic Strategies
1. SELECTIONSORT
* Each phase i finds the smallest element in a[i...n— 1] and swaps it
into position i
* Uses (asymptotically) fewest SWAPs possible
2. BUBBLESORT

* Each phase iterates over adjacent pairs and swaps those which are
out of order

* after phase i, a[n—i—1...n—1] contains the ilargest elements sorted
* Used mostly for illustrative purposes. lll‘(%4 C‘Zl unf
N gt e
i T t\\]&l}m\" . .
WM AR second \ou(q//%z
WAQ O“CM P\ADSL - 20/33

Elementary Sorting

Iterative sorting:
¢ Sort in phases where each phase accomplishes some global task.

Three Basic Strategies
1. SELECTIONSORT
* Each phase i finds the smallest element in a[i...n— 1] and swaps it
into position i
* Uses (asymptotically) fewest SWAPs possible
2. BUBBLESORT

* Each phase iterates over adjacent pairs and swaps those which are
out of order

* after phase i, a[n—i—1...n—1] contains the ilargest elements sorted
* Used mostly for illustrative purposes.
3. INSERTIONSORT
* Each phase iinserts x = a[i] into sorted order in a[0... i
* Typically fast for small sequences and “almost sorted” sequences

20/33

InsertionSort in Detail

Phasesi=1,2,...,n—1:

1: procedure INSERTIONSORT(a, 1) \\m
* Phase imoves x = ali] 2 fori=1,2,..,n-1do o= PMSC
into sorted position in 3 j—i
alo...i. 4 while j> 0 and aljl < ajj- 1] do
* Performed via adjacent 5: SWAP(a, j,j— 1)
comparisons: 6 j—j-1
* if xis smaller than 7 end while
left neighbor, swap
8 d fi
x with left neighbor encior
= 9: end procedure
Q?‘J\OS'- ¢
v
HINANZ
E— el
Sol led

21/33

PollEverywhere

What is the worst case
running time of

INSERTIONSORT?
1. 9w 3. O(n?)
2. ©(nlogn) 4. ©2"

pollev.com/comp526

1

2

3

4: while j> 0 and a[jl < alj— 1] do

5: SwAP(4,j,j— 1)

6: j=i-1

7 end while }

8: end for

9: end procedure L ’ |L@~Aha\4§
o\ B

; : XX
Suwawming P s 05 '\Y

1y 2F%kY e 0
vﬁf_,—-—)

-—
—

21/33

InsertionSort in Detail

State after each phase:

L & & -

Iy

0

1

2

8

4

1: procedure INSERTIONSORT(a, 1)
2 fori=1,2,...,n—1do

3 j—i

4 while j > 0 and alj] < alj- 1] do
5: SWAP(a,j,j—1)

6 j—j-1
7 end while
8 end for

9: end procedure

0

| 3] 4 5
7 |3 4| 5

O

NN (NN

?\\&S@ 3

21/33

Sorting Using Heaps

(array backed) heap data structure:

Recal

l/o{%‘h?ﬂ‘ﬂ[ﬂ&s 6 7 8 9 10 11 12 13 14

,2 3 /13)10’)6 66 |39 |42 |17 (96|70 89|95 |98 |63
L —

Heap Op n O(log n) time:

® INSERT(x)

* REMOVEMIN().

Question. How to use heaps to sort efficiently (o(n?) fime)?

22/33

Sorting Using Heaps

Recall the (array backed) heap data structure:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
213 |13[10| 6 |66|39|42|17|96|70 (89|95 |98 |63

Heap Operations in O(log n) time:
* INSERT(x)
* REMOVEMIN().
Question. How to use heaps to sort efficiently (o(1%) time)?
* Add all elements to aheap. — [T\ ° \og oQ
T ggg S e ¢85
* Repeatedly REMOVEMIN and add elements back to sorted array

What is the running time of this procedure? VLZ_
G (n lDC/ n > LA

22/33

Sorting Using Heaps

Recall the (array backed) heap data structure:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
213 |13[10| 6 |66|39|42|17|96|70 (89|95 |98 |63

Heap Operations in O(log n) time:

* INSERT(x)

* REMOVEMIN().
Question. How to use heaps to sort efficiently (o(n?) time)?

* Add all elements to a heap.

* Repeatedly REMOVEMIN and add elements back to sorted array
What is the running time of this procedure?

* ©(nlogn) This is much better than O (n?)!

Another Question. Do we need a separate heap?

22/33

_ o QX Shogh
Sorting In-Place — = (o \odous

Heap Modification: MaxHeap

e Same as MinHeap, but all
inequalities reversed

* Largest value at root
* Children store smaller

values
HEAPSORT outline: ,T (\ T [(

1. Make array a MaxHeap \O_RQKQ‘((\/ WMo Weed
° HEAPIFY by calling N w3~

BUBBLEUP at each index M\ 1
2. Sort from right side of array (\ \ \
* swap al0] with a[n—i-1]
* TRICKLEDOWN from a[0] to
aln—i—1]

23/33

Sorting In-Place

Heap Modification: MaxHeap

e Same as MinHeap, but all
inequalities reversed

* Largest value at root
* Children store smaller
values
HEAPSORT outline:
1. Make array a MaxHeap
° HEAPIFY by calling
BUBBLEUP at each index
2. Sort from right side of array
* swap al0] with a[n—i-1]
* TRICKLEDOWN from a[0] to
aln—i—1]

3:
4:
5:
6:
7:
8:
9:

10:
11:

ot W % m@“’d\/

1: procedure HEAPSORT(a, n)

fori=1,2,...,n—1do

BUBBLEUP(q, i)
> Start from index i
end for
—for i = n-1,n-2,...,1do
SWAP(a, 0, i)
TRICKLEDOWN (a,i— 1)
> Stop atindex i—1
l/end for
end procedure

23/33

Sorting In-Place — Hm?\ﬁj

Heap Modification: MaxHeap

* Same as MinHeap, but all 1: procedure HEAPSORT(a, 1)
inequalities reversed 2: ori=1 .n—1do
* Largest value at root 3 BUBBLEUP(q, i) OU@[“)
* Children store smaller 4 om index i
values 5: end for
HEAPSORT outline: 6 fori=n-1,n-2,...,1do
1. Make array a MaxHeap 7 SWAP(a,0, i) &loq W
° HEAPIFY by calling 8 TRICKLEDOWN (a,i— 1)
BUBBLEUP at each index 9 > Stop atindex i— 1
2. Sort from right side of array 10: end for
* swap a[0] with a[n—i— 1] 11: end procedure
* TRICKLEDOWN from a[0] to
aln—i—1]

O (1 log n)

23/33

Question. What is the running time of HEAPSORT?

HeapSort Example

Step 1: HEAPIFY!

e s’ &

1: procedure HEAPSORT(a, n)

2 ori=1,2,...,n—1do

3: BUBBLEUP(q, i)

4 > Start from index i

5 end for
fori=n-1,n-2,...,1do

7 SWAP(a, 0, i)

TRICKLEDOWN (a,i— 1)
> Stop atindex i—1

CONNCE

10: end for
11: end procedure

24/33

HeapSort Example

Step 2: Remove maximum values!
=R

W ﬂ%\z\l proced'ure HEAPSORT(a, n)
\ k fori=1,2,...,n-1do

1:

i) \'& 2
u{ EE 1173 3 BUBBLEUP(q, i)
@’: [213] 1 4: > Start from index i
1 5. end for
E_E__l/ 6 fori=n-1,n-2,...,1do

2 1 7 SWAP(a, 0, i)
| 8 TRICKLEDOWN (a,i— 1)

1 9 > Stop atindex i—1

10: end for
S0 \4)\ 11: end procedure

Worst case running time is ©(logn), but HEAPSORT doesn’t perform

great in practice (for large arrays) @ (W \Oﬂ '\) AN\

* poor locality of reference

- —

24/33

Sorting by Divide
& Conquer

The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:

1. Break the input into smaller instances of the task
2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

V/

Se € olo- 9 o\olesms J

Ny

26/33

The Divide & Conquer Strategy

Generic Strategy

Given an algorithmic task:
1. Break the input into smaller instances of the task

2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting s
MERGESORT: Divide by index 0 J(h-
¢ divide array into left and right L\ \{ L
halves R,
* recursively sort halves S ot Sor ~ \,tg

* merge halves ld\\’\/ ¥ \C'

26/33

The Divide & Conquer Strategy

Generic Strategy
Given an algorithmic task:
1. Break the input into smaller instances of the task

2. Solve the smaller instances
* this is typically recursive!

3. Combine smaller solutions to a solution to the whole task

Divide & Conquer Sorting
MERGESORT: Divide by index QUICKSORT: Divide by value
¢ divide array into left and right * pick a pivot value p
halves e split array according to p
* recursively sort halves * =ponleft, > ponright

* merge halves * recursively sort sub-arrays

26/33

‘ oot
Merging Sorted Arrays /f\\‘“k\(‘\i{\

Suppose we are given two sorted arrays, a and b. How can we merge
them into a single sorted array that contains all the values from both
arrays?

0 1 2 3 4 0 1 2 3
213|678 1145]9

27133

Merging Code

Merging sorted arrays a (size m)
and b (size n) into array c starting
atindex s

1: procedure MERGE(a, b, ¢, s, m, n) >
Merge arrays a and b into array ¢
starting at index s. a has size m and b
has size n
i,j—0,k—s
while k< s+ m+ ndo
if j = nor ali] < b[j] then
clk] — alil
i—i+1
else
clk] — blj]
j—Jj+1
end if
11: k—k+1
12: end while
13: end procedure

—_
e

28/33

Merging Code

PollEverywhere

What is the running time of
MERGE?

1. ©(m+n) 3. O(log(m+ n)
2. ©(m-n) 4. O(logmn)

pollev.com/comp526

1: procedure MERGE(a, b, ¢, s, m, n) >
Merge arrays a and b into array ¢
starting at index s. a has size m and b
has size n
i,j—0,k—s
while k< s+ m+ ndo
if j = nor ali] < b[j] then
clk] — ali]
i—i+1
else
clk] < blj]
j—Jj+1
end if
11: k—k+1
12: end while
13: end procedure

—_
e

28/33

Sorting by Merging

MERGESORTStrategy:

* Tosortali...k:
* If i = k, then we're done
* Othewise split (sub)interval
in half
°* Recursively sort halves
* Merge sorted halves

°* copy values to new
arrays for this

29/33

Sorting by Merging

MERGESORTStrategy:

) procedure MERGESORT(a, i, k)
* Tosortali...kl:

if i < k then
* If i = k, then we're done

* Othewise split (sub)interval Jj— i+ k)/2] .
i MERGESORT (4, i, j)
in half

1:

2

3

4

* Recursively sort halves & MERGESORT(a,j+1, k)

* Merge sorted halves 6 b— CoPY(a,i,j)
7 c— CorY(a,j+1,k)
8: MERGE(b, ¢, a, i)

9: end if
10: end procedure

°* copy values to new
arrays for this

29/33

Sorting by Merging

1: procedure MERGESORT(q, i, k)
2 if i < kthen

3 J— 1+ k)/2]

4 MERGESORT(4, i, J)
5: MERGESORT(a,j+ 1, k)
6

7

8

PollEverywhere

Consider an execution of
MERGESORT(a,0,3) where
a=[4,2,1,3]. How many total calls
to MERGESORT are executed

(including the initial call)? = o)

c— CorY(a,j+1,k)

g MERGE(b, ¢, a, i)
9: end if
10: end procedure

pollev.com/comp526

29/33

Sorting by Merging

Tracing the Recursive Calls procedure MERGESORT(4, , k)

1:
2 if i < k then
3 J— 1+ k)/2]

4 MERGESORT(4, i, J)
5: MERGESORT(a,j+ 1, k)
6 b— CoPY(a,i,j)
7 c— CorY(a,j+1,k)
8: MERGE(b, ¢, a, i)

9: end if
10: end procedure

29/33

A Larger Example

139]27]43[3]9]82]10]

[3]9]10[27[39]43]82]

tikz code courtesy of SebGlav on tex.stackexchange.com
30/33

MergeSort Analysis

Question. What is the running time of MERGESORT?

* How do we analyzing the running time of a recursive function?

31/33

MergeSort Analysis

Question. What is the running time of MERGESORT?

* How do we analyzing the running time of a recursive function?

Think about this for next time.

31/33

Next Time: More Sorting

* MERGESORT analysis

* QUICKSORT

* Lower Bounds

* Non-comparison Based Methods
* More Sorting Algorithms?

32/33

Scratch Notes

33/33

