
Lecture 6: Data Structures III
COMP526: Efficient Algorithms

Updated: October 22, 2024
Will Rosenbaum
University of Liverpool

1 / 31

Announcements
1. Third Quiz, due Friday

• Similar format to before
• Covers fundamental data structures (Lectures 4–6)
• Quiz is closed resource

• No books, notes, internet, etc.
• Do not discuss until after submission deadline (Friday night, after

midnight)

2. Programming Assignment (Draft) Posted
• Due Wednesday, 13 November

3. Attendance Code:

2 / 31

Meeting Goals
• Finish up heaps

• Give an efficient array-backed PRIORITYQUEUE

• Introduce two more ADTs:
• ORDEREDSET

• MAP

• Introduce binary search trees

• Discuss balanced binary search trees

3 / 31

Heaps

Last Time: Priority Queues and Heaps
Priority Queues, Formally

• S is the state of the queue,
initially S =∅

• S.INSERT(x,p(x)) : S =
x0x1 · · ·xixi+1 · · ·xn−1 7→
x0x1 · · ·xi x xi+1 · · ·xn−1

• where p(xi) ≤ p(x) <
p(xi+1)

• S.MIN() : returns x0 where
S = x0x1 · · ·xn−1

• S.REMOVEMIN() : xS 7→ S,
returns x

Heap Implementation

2

4

5

7 13

8

16 3

6

12 9

• INSERT via BUBBLEUP procedure

• REMOVEMIN via TRICKLEDOWN procedure

• Issue: using NODEs incurs overhead

• locality of reference
• storing additional references

Question. How can we represent heaps as arrays?
5 / 31

A Clue: Number the Vertices

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

PollEverywhere Question

Suppose a vertex is assigned a label
i > 0 in this numbering of the ver-
tices. What is the label of i’s parent
in the labeling?

pollev.com/comp526
6 / 31

https://pollev.com/comp526

Arrays as Heaps
Associate numbering of tree vertices as array indexes!

• If i > 0, then i’s
parent has index
⌊(i−1)/2⌋

• i’s left child has
index 2i+1

• i’s right child has
index 2i+2

Complete binary tree representation

2

3

10

42 17

6

96 70

13

66

89 95

39

98 63

Array representation

0

2

1

3

2

13

3

10

4

6

5

66

6

39

7

42

8

17

9

96

10

70

11

89

12

95

13

98

14

63

7 / 31

Example: Array BUBBLEUP

We can apply heap procedures
directly to the array without
reference to the tree itself!

• If i > 0, then i’s parent has index
⌊(i−1)/2⌋

• i’s left child has index 2i+1

• i’s right child has index 2i+2

Example. INSERT(4)

1: procedure INSERT(p)
2: v ← new vertex storing p
3: u ← first vtx with < 2 children
4: add v as u’s child
5: PARENT(v) ← u
6: while value(v) < value(u) and u ̸=⊥ do
7: SWAP(value(v),value(u))
8: v ← u
9: u ← PARENT(v)

10: end while
11: end procedure

0

2

1

3

2

13

3

10

4

6

5

66

6

39

7

42

8

17

9

96

10

70

11

89

12

95

13

98

14

8 / 31

Array Backed Operations
Using arrays, we can define INSERT and REMOVEMIN much more
cleanly!

1: procedure INSERT(p)
2: i ← n ▷ n is heap size
3: a[i] ← p
4: n ← n+1
5: j ←⌊(i−1)/2⌋ ▷ j is i’s parent
6: while i > 0 and a[i] < a[j] do
7: SWAP(a, i, j)
8: i ← j
9: j ←⌊(i−1)/2⌋

10: end while
11: end procedure

1: procedure REMOVEMIN

2: m ← a[0]
3: a[0] ← a[n−1]
4: n ← n−1
5: i ← 0
6: j ← argmin{a[2i+1],a[2i+2]}
7: while j < n and a[i] > a[j] do
8: SWAP(a, i, j)
9: i ← j

10: j ← argmin{a[2i+1],a[2i+2]}
11: end while
12: return m
13: end procedure

Both of these operations still complete after O(logn) iterations
• very little overhead, since only array operations are used!

9 / 31

Ordered Sets
and Maps

Adding Order to Elements
Question. What made our operations on heaps efficient?

• Answer: Order! We can order/compare priorities.

Two more ADT with ordered elements:
Ordered Sets store a collection
(set) of distinct elements from an
ordered universe.

• CONTAINS(x) check if the set
contains x′ = x and return x′

• ADD(x) add x to the set if x was not
present

• REMOVE(x) remove x if x was present

Mapsa store a collection of values
with associated ordered keys with
array-like access.

• PUT(k,v) set the value associated
with key k to v

• GET(k) return the value associated
with key k

• REMOVE(k) remove the pair
associated with k

• CONTAINS(k) check if the map
contains a value associated with k

aAka: associative arrays, dictionaries
(Python dict), symbol table

11 / 31

Ordered Sets vs Maps
Ordered Sets

• CONTAINS(x) check if the set
contains x′ = x and return x′

• ADD(x) add x to the set if x was not
present

• REMOVE(x) remove x if x was present

Maps
• PUT(k,v) set the value associated

with key k to v

• GET(k) return the value associated
with key k

• REMOVE(k) remove the pair
associated with k

• CONTAINS(k) check if the map
contains a value associated with k

PollEverywhere Question

If we are given an ORDEREDSET

implementation, how could we
use it to implement a MAP?

pollev.com/comp526
12 / 31

https://pollev.com/comp526

Ordered Sets via Arrays
ORDEREDSETs can be implemented by arrays:

• Maintain a sorted array a = [x0,x1, . . . ,xn] with each xi ≤ xi+1.
• ADD(x) and REMOVE(x) implemented inΘ(n) worst case time

• To ADD find index i such that xi ≤ x < xi+1• Shift elements xj with j ≥ i+1 to next index
• This usesΘ(n) time

• Set a[i+1] ← x

Example. How to ADD(42)?

0

2

1

3

2

10

3

28

4

31

5

34

6

39

7

51

8

63

9

70

10

74

11

82

12

87

13

91

14

95

15

Question. How can we implement CONTAINS(x) more quickly?

13 / 31

Efficient Search
Idea. Binary Search:

• Start at the middle index j

• x ≤ a[j] =⇒ index of x must
be i ≤ j

• otherwise i > j

• Apply procedure to remaining

interval with half excluded

• compare x to midpoint of
remaining interval

• eliminate half of the
interval

• Repeat

1: procedure BINARYSEARCH(x)
2: i ← 0,k ← n−1
3: j ←⌊(i+k)/2⌋
4: while i < j do
5: if x ≤ a[j] then
6: k ← j
7: else
8: i ← j
9: end if

10: end while
11: return i
12: end procedure

0

2

1

3

2

10

3

28

4

31

5

34

6

39

7

42

8

51

9

63

10

70

11

74

12

82

13

87

14

91

15

95

14 / 31

Efficiency of Binary Search

PollEverywhere

What is the (worst case) running
time of BINARYSEARCH on an array
of length n?

pollev.com/comp526

1: procedure BINARYSEARCH(x)
2: i ← 0,k ← n−1
3: j ←⌊(i+k)/2⌋
4: while i < j do
5: if x ≤ a[j] then
6: k ← j
7: else
8: i ← j
9: end if

10: end while
11: return i
12: end procedure

15 / 31

https://pollev.com/comp526

Efficiency of Binary Search

Proposition

The worst-case running time of
BINARYSEARCH isΘ(logn).

Proof.
• Consider the value of k− i.

• After ℓ iterations of the loop,
have k− i ≤ n

2ℓ
(induction)

• Termination when k− i < 1

• ℓ= ⌈logn⌉+1 =⇒ n
2ℓ

≤ 1

1: procedure BINARYSEARCH(x)
2: i ← 0,k ← n−1
3: j ←⌊(i+k)/2⌋
4: while i < j do
5: if x ≤ a[j] then
6: k ← j
7: else
8: i ← j
9: end if

10: end while
11: return i
12: end procedure

15 / 31

Making All Operations Efficient?

A Nagging Question

For ORDEREDSETs, we can perform all operations in o(n) time?

• Array implementation only gives CONTAINS in O(logn) time

• Other operations areΘ(n)

• This seems harder than efficient PRIORITYQUEUE as elements can
be added and removed from anywhere in the data structure

Up next: A solution in two parts

1. Binary Search Trees

2. Balancing Binary Trees

16 / 31

Binary Search
Trees

Binary Search Tree Definition

Definition
Suppose T is a binary tree and every vertex v in T has an associated
value. We say T is a binary search tree (BST) if for every vertex (value)
v:

1. every left descendant u satisfies u ≤ v,

2. every right descendant w satisfies w ≥ v.

15

10

5

3 7

12

20

18

17

25

22

18 / 31

BST Search

Question

Given a BST T , how can we search for a value x in T?

CONTAINS(19)?

15

10

5

3 7

12

20

18

17

25

22

19 / 31

BST Search

Question

Given a BST T , how can we search for a value x in T?

1: procedure CONTAINS(x)
2: v = tree root
3: while v ̸= x and v ̸=⊥ do
4: if x < v then
5: v ← LEFTCHILD(v)
6: else
7: v ← RIGHTCHILD(v)
8: end if
9: end while

10: return v
11: end procedure

PollEverywhere

What is the (worst case)
running time of CONTAINS

on a tree with n vertices?

pollev.com/comp526

19 / 31

https://pollev.com/comp526

BST CONTAINS Efficiency

Observation
The (worst-case) running time of
CONTAINS on T isΘ(h) where h is
the height of T

• h is the length of the longest
path from root to any leaf in T

The height of T can be:

• As small as logn

• As large as n−1

The Moral
The efficiency of CONTAINS

depends on the structure of T .

20 / 31

BST Add

Question

How could we ADD(19) to the following BST so it remains a BST?

15

10

5

3 7

12

20

18

17

25

22

Observation. To ADD(x), we should add a new vertex wherever the
CONTAINS(x) execution fails to find x.

21 / 31

Adding in Pseudocode
1: procedure ADD(x)
2: v,u ← root
3: while v ̸=⊥ do
4: if x = v then
5: return
6: else if x < v then
7: u ← v
8: v ← LEFTCHILD(v)
9: else

10: u ← v
11: v ← RIGHTCHILD(v)
12: end if
13: end while
14: if x < v then
15: set x as v’s left child
16: else
17: set x as v’s right child
18: end if
19: end procedure

Example. ADD(8)

15

10

5

3

1

7

6

12

20

18

17

25

22

22 / 31

Adding in Pseudocode
1: procedure ADD(x)
2: v,u ← root
3: while v ̸=⊥ do
4: if x = v then
5: return
6: else if x < v then
7: u ← v
8: v ← LEFTCHILD(v)
9: else

10: u ← v
11: v ← RIGHTCHILD(v)
12: end if
13: end while
14: if x < v then
15: set x as v’s left child
16: else
17: set x as v’s right child
18: end if
19: end procedure

PollEverywhere Question

Describe a sequence of ADD(x) operations
starting from an empty BST such that
every operation takesΩ(n) time.

pollev.com/comp526

22 / 31

https://pollev.com/comp526

BST Remove

Question

How could we remove an element from a BST?

15

10

5

3 7

12

20

18

17

25

22

Case 1: A leaf. Just remove it!

23 / 31

BST Remove

Question

How could we remove an element from a BST?

15

10

5

3 7

12

20

18

17

25

22

Case 2: A vertex v with single child. Splice! Set v’s child to be its
parent’s child.

23 / 31

BST Remove

Question

How could we remove an element from a BST?

15

10

5

3 7

12

20

18

17

25

22

Case 3: A vertex v with two children.

1. Find next smallest value w.

2. Copy w’s value to v.

3. Remove w
23 / 31

So Far. . .
. . . we’ve implemented

• CONTAINS(x)

• ADD(x)

• REMOVE(x)

for ORDEREDSETs.

But we haven’t improved efficiency
• All of these operations can cost as much asΘ(n)

• efficiency depends on previous operations performed!

Idea. We can restructure BSTs.

• Goal: ensure that the BST has small height.
• After each update, check and update tree structure.

• maintain BST property
• updates performed efficiently

24 / 31

Balanced Binary
Trees

Distinguishing the Good from the Bad

26 / 31

Height Balanced Trees

Definition (Left and Right Height)

Let v be a vertex in a tree. We define:

• h(⊥) =−1

• h(v) = 1+max(h(LEFTCHILD(v)),h(RIGHTCHILD(v)))

• hℓ(v) = h(LEFTCHILD(v))

• hr(v) = h(RIGHTCHILD(v))

15

10

5

3 7

12

20

18

17

25

22

27 / 31

Height Balanced Trees

Definition (Left and Right Height)

Let v be a vertex in a tree. We define:

• h(⊥) =−1

• h(v) = 1+max(h(LEFTCHILD(v)),h(RIGHTCHILD(v)))

• hℓ(v) = h(LEFTCHILD(v))

• hr(v) = h(RIGHTCHILD(v))

Def. (Height Balanced)

We call a tree height
balanced if for every
vertex v, |hℓ(v)−hr(v)| ≤ 1.

15

10

5

3 7

12

20

18

17

25

22

27 / 31

Properties of Height Balanced Trees

Proposition

Suppose T is a height balanced tree of height h. Then T has n ≥ 2h/2

vertices.

Proof.
Let M(h) denote the minimum size of a height balanced tree of height
h.

• Observe that M(0) = 1, M(1) = 2.
• In general M(h) ≥ 1+M(h−1)+M(h−2)

• one subtree of the root is a height balanced tree of height h−1
• other subtree is height balanced with height at least h−2

• So M(h) ≥ 2M(h−2)

• Inductive argument =⇒ M(h) ≥ 2h/2.

28 / 31

Properties of Height Balanced Trees

Proposition

Suppose T is a height balanced tree of height h. Then T has n ≥ 2h/2

vertices.

Consequences.

If T is a height balanced tree with n vertices, then its height h satisfies
h ≤ 2logn

=⇒ CONTAINS(x) takes time O(logn)

=⇒ ADD(x) takes time O(logn)

=⇒ REMOVE(x) takes time O(logn)

28 / 31

Maintaining Height Balance
Our Strategy. Maintain a BST that is height balanced for any sequence
of operations performed.

• No one is forcing us to keep the tree structure determined by our
ADD/REMOVE operations

• there are many valid BSTs that store the same collection of
elements!

• Starting from a balanced tree, ADD(x) may introduce imbalance.
• If imbalance is introduced try to fix it:

• find closest unbalanced vertex to x and correct its balance
• look for other imbalance and correct it

For next time. Think about how you could implement this strategy.

• Where could imbalance occur? And how much?

• What local operations can fix the imbalance?

• What is the worst-case running time of restoring balance?

29 / 31

Next Time: Sorting

• Finishing Balanced BSTs
• The Sorting Task
• Efficient Sorting by Divide and Conquer

30 / 31

Scratch Notes

31 / 31

	Heaps
	Ordered Sets and Maps
	Binary Search Trees
	Balanced Binary Trees

