11 1 m 1 m 1]]
00000000000000000F00000000FGCUCEO0O0E000000000060000iI000800000000000000000ggoRoo]
123456 78 310012131 1516 1716192021 2223242526 272829 2% 3132 33 34 35 36 37 38 39 40 41 42 41 44 45 46 47 4 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT BRI ERRRRRY B ERRRRRI [R ERRER AR R RN R RN R RN R RN R R R RS AR R R R RRRERERRERRRT!
22022222222222220222222220222
3333233333333333303333333[333333333[333]3
A444444444444000848444444440000440444440444404084444448440444844444444444044444]44
555555555555[5055555 055055555 MB55M55555055555555555555555555555555655555555555555

66666666 66M66%66666666656R6666666

Lecture 6: Data Structures lll
COMP526: Efficient Algorithms

Will Rosenbaum
Updated: October 22, 2024 University of Liverpool

1/31

Announcements

1. Third Quiz, due Friday

¢ Similar format to before
* Covers fundamental data structures (Lectures 4—6)
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)

2. Programming Assignment (Draft) Posted
* Due Wednesday, 13 November

3. Attendance Code:

2/31

Meeting Goals

* Finish up heaps
* Give an efficient array-backed PRIORITYQUEUE
* Introduce two more ADTs:

®* ORDEREDSET
° MAP

¢ Introduce binary search trees

* Discuss balanced binary search trees

3/31

Heaps

Last Time: Priority Queues and Heaps

Priority Queues, Formally Heap Implementation

* Sis the state of the queue,

initially S= @ e
® S.INSERT(x, p(x)):S=
XX - - XjXjy] *Xp-1"— ° e
XX - - XjXXj+] " Xp-1
* where p(x;) < p(x) < e ° @ o
i 0000
* S.MIN(): returns xo where

S=XxpX1° Xp-1
o S.REMOVEMIN() : xS— S, * INSERT via BUBBLEUP procedure

returns x * REMOVEMIN via TRICKLEDOWN procedure
¢ Issue: using NODEs incurs overhead

* locality of reference
* storing additional references

Question. How can we represent heaps as arrays? o

A Clue: Number the Vertices

PollEverywhere Question

Suppose a vertex is assigned a label
i > 0 in this numbering of the ver-
tices. What is the label of i’s parent
in the labeling?

6/31

https://pollev.com/comp526

Arrays as Heaps

Associate numbering of tree vertices as array indexes!

* Ifi>0, thenis
parent has index
LE-1)/2]

¢ s left child has

Complete binary tree representation

index 2i+1
* {sright child has
index 2i+2
Array representation
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
213 (13|10| 6 [66 |39 42|17 |96 |70 |89 |95 98|63

7131

Example: Array BUBBLEUP

We can apply heap procedures

directly to the array without

reference to the tree itself!

e If i> 0, then i's parent has index

LG-1)/2]

¢ {’sleft child has index 2i+ 1

e 7’sright child has index 2i+2

Example. INSERT(4)

1: procedure INSERT(p)

2 v — new vertex storing p

3 u — first vtx with < 2 children

4: add v as u’s child

5: PARENT(v) — u

6: while value(v) < value(u) and u#1 do
7 SWAP(value(v), value(u))

8 vV—u

9 u — PARENT(v)

10: end while
11: end procedure

8 9 10 11 12 13 14

10

66

39

42

17196 | 70 | 89 | 95 | 98

8/31

Array Backed Operations

Using arrays, we can define INSERT and REMOVEMIN much more

cleanly!

1: procedure INSERT(p)

2: i—n > nis heap size
3 alil = p

4: n—n+l

5% Jj—LE-1)/2] > jis i's parent
6 while i > 0 and a[i] < a[j] do

7 SWAP(a, i, j)

8 i—j

9 Jj—Lli-1)/2]

10: end while

11: end procedure

1: procedure REMOVEMIN

2: m — al0]

3: al0] — aln—1]

4: n—n-1

55 i—0

6 j—argmin{al2i+1],al2i+ 2]}
7 while j < n and a[i] > a[j] do
8
9

SWAP(a, i,)

i—j
10: Jj—argmin{al2i+1],al2i+ 2]}
11: end while
12: return m

13: end procedure

Both of these operations still complete after O(log n) iterations
e very little overhead, since only array operations are used!

9/31

Ordered Sets
and Maps

Adding Order to Elements

Question. What made our operations on heaps efficient?
* Answer: Order! We can order/compare priorities.
Two more ADT with ordered elements:

Ordered Sets store a collection Maps“ store a collection of values
(set) of distinct elements from an with associated ordered keys with
ordered universe. array-like access.
* CONTAINS(x) check if the set * PuT(k, v) set the value associated
contains x' = x and return x’ with key k to v
* ADD(x) add x to the set if x was not ¢ GET(k) return the value associated
present with key k
* REMOVE(x) remove x if x was present * REMOVE(k) remove the pair

associated with k

* CONTAINS(k) check if the map
contains a value associated with k

“Aka: associative arrays, dictionaries
(Python dict), symbol table

11/31

Ordered Sets vs Maps

Ordered Sets Maps
* CONTAINS(x) check if the set * PuT(k, v) set the value associated
contains x' = x and return x’ with key k to v
* ADD(x) add x to the set if x was not * GET(k) return the value associated
present with key k
* REMOVE(x) remove x if x was present * REMOVE(k) remove the pair

associated with k

* CONTAINS(k) check if the map
contains a value associated with k

PollEverywhere Question

If we are given an ORDEREDSET
implementation, how could we
use it to implement a MAP?

Pk
pollev.com/comp526

12/31

https://pollev.com/comp526

Ordered Sets via Arrays

ORDEREDSETSs can be implemented by arrays:

* Maintain a sorted array a = [xp, X1, . .., X,] with each x; < x;4;.
* ADD(x) and REMOVE(x) implemented in ©(7n) worst case time

¢ To ADD find index i such that x; < x < xj1
* Shift elements x; with j= i+ 1 to next index

Example. How to ADD(42)?

1

* This uses O(n) time
* Setali+1] —x

2

6

7

8

9

10

11

12

13

14

15

3

10

28

31

34

39

51

63

70

74

82

87

o)l

95

Question. How can we implement CONTAINS(x) more quickly?

13/31

Efficient Search

Idea. Binary Search:

* Start at the middle index j 1: procedure BINARYSEARCH (X)
. 20 i—0k—n-1
C xs'a[ﬂ' = index of x must 3 jeli+hk/2)
bei<j 4 while i < jdo
* otherwise i> j 5: if x < a[j] then
* Apply procedure to remaining 2 g k—j
interval with half excluded ; € SG;. §
° compare x to midpoint of 9 end if
remaining interval 10: end while
* eliminate half of the 11: returni
interval 12: end procedure
* Repeat
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 (10(28|31|34(39[42|51|63|70|74|82|87|91]95

14/31

Efficiency of Binary Search

PollEverywhere 1: procedure BINARYSEARCH (X)
. . 2 i—0,k—n-1
What is the (worst case) running 5 i LG+ 10/2]
time of BINARYSEARCH on an array J .
of length n? 4 while i < jdo
’ 5: if x < a[j] then
6 k—j
7 else
8 i—j
9 end if
10: end while
11: return i

pollev.com/comp526 12: end procedure

15/31

https://pollev.com/comp526

Efficiency of Binary Search

procedure BINARYSEARCH (X)
i—0,k—n-1
j—Li+Kk)/2]
while i < jdo

t
2
3
4:
A
6:
7
8
9

The worst-case running time of
BINARYSEARCH is O(logn).

k—j
* Consider the value of k— i. J
else
* After ¢ iterations of the loop, i—j
have k- i< ; (induction) end if
* Termination when k—i<1 10: end while
e /=[logn]+1 = 2_351 11: return i

12: end procedure

15/31

Making All Operations Efficient?

A Nagging Question

For ORDEREDSETS, we can perform all operations in o(n) time?
e Array implementation only gives CONTAINS in O(logn) time
e Other operations are ©(n)
* This seems harder than efficient PRIORITYQUEUE as elements can
be added and removed from anywhere in the data structure
Up next: A solution in two parts
1. Binary Search Trees

2. Balancing Binary Trees

16/31

Binary Search
Trees

Binary Search Tree Definition

Definition

Suppose T is a binary tree and every vertex vin T has an associated
value. We say T is a binary search tree (BST) if for every vertex (value)
v:

1. every left descendant u satisfies u< v,

2. every right descendant w satisfies w = v.

18/31

BST Search

Question
Given a BST T, how can we search for a value x in 77?

CONTAINS(19)?

19/31

BST Search

Given a BST T, how can we search for a value x in 77?

1: procedure CONTAINS(X) PollEverywhere
2: U = tree root .

. What is the (worst case)
3 while v # xand v #.L do . .

. running time of CONTAINS
4 if x < vthen . .

on a tree with n vertices?
5: v<— LEFTCHILD (V)
6 else
7 v+ RIGHTCHILD (v)
8 end if
9 end while
10: return v

11: end procedure pollev.com/comp526

19/31

https://pollev.com/comp526

BST ConTtaINs Efficiency

The (worst-case) running time of
CONTAINS on T is ©(h) where his
the height of T’

* histhe length of the longest
path from root to any leafin T

The height of T can be:
* Assmall aslogn

* Aslargeasn—1

The Moral

The efficiency of CONTAINS
depends on the structure of T.

20/31

BST Add

How could we ADD(19) to the following BST so it remains a BST?

Observation. To ADD(x), we should add a new vertex wherever the
CONTAINS(x) execution fails to find x.

21/31

Adding in Pseudocode

1: procedure ADD(x) Example, ADD(8)
2 v, U — root

3 while v#1 do

4 if x = v then

5: return

6 else if x < v then

7 U—7v

8 v<— LEFTCHILD(v)

9 else

10: Uu—"v

11: v <— RIGHTCHILD (v)
12: end if

13: end while

14: if x < v then

15: set x as U's left child
16: else

17: set x as v's right child
18: end if

19: end procedure

22/31

Adding in Pseudocode

1:
2
&
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

16:
17:
18:

procedure ADD (x)

U, U — 100t
while v#1 do
if x = v then
return
else if x < v then
U—v
v <— LEFTCHILD (V)
else
U—v
v <— RIGHTCHILD(v)
end if
end while
if x < v then
set x as U's left child
else
set x as v's right child
end if

19: end procedure

PollEverywhere Question

Describe a sequence of ADD(x) operations
starting from an empty BST such that
every operation takes Q(n) time.

pollev.com/comp526

22/31

https://pollev.com/comp526

BST Remove

How could we remove an element from a BST?

Case 1: A leaf. Just remove it!

23/31

BST Remove

How could we remove an element from a BST?

Case 2: A vertex v with single child. Splice! Set v’s child to be its
parent’s child.

23/31

BST Remove

How could we remove an element from a BST?

Case 3: A vertex v with two children.
1. Find next smallest value w.
2. Copy w's value to v.

3. Remove w
23/31

So Far...

...we've implemented
* CONTAINS(X)
* ADD(x)
* REMOVE(x)

for ORDEREDSETS.

But we haven't improved efficiency
* All of these operations can cost as much as ©(n)
¢ efficiency depends on previous operations performed!

Idea. We can restructure BSTs.
* Goal: ensure that the BST has small height.
¢ After each update, check and update tree structure.
* maintain BST property
* updates performed efficiently

24/31

Balanced Binary
Trees

Distinguishing the Good from the Bad

Height Balanced Trees

Let v be a vertex in a tree. We define:
* p(l)=-1
* h(v) =1+ max(h(LEFTCHILD(v)), h(RIGHTCHILD()))
* hy(v) = h(LEFTCHILD(v))
* h,(v) = h(RIGHTCHILD(v))

27/31

Height Balanced Trees

Let v be a vertex in a tree. We define:
* h(l)=-1
* h(v) =1+ max(h(LEFTCHILD(v)), h(RIGHTCHILD()))
* hy(v) = h(LEFTCHILD(v))
* h,(v) = h(RIGHTCHILD(v))

@@@

We call a tree height e @ @ @
balanced if for every e G @ @

vertex v, |hy(v) — hy (V)| < 1.

27/31

Properties of Height Balanced Trees

Proposition

Suppose T is a height balanced tree of height k. Then T has n > 2"/?
vertices.

Proof.
Let M(h) denote the minimum size of a height balanced tree of height
h.

* Observe that M(0) =1, M(1) = 2.

e Ingeneral M(h) =1+ M(h—-1)+M((h-2)

* one subtree of the root is a height balanced tree of height -1
* other subtree is height balanced with height atleast h—2

* So M(h)=2M(h-2)

e Inductive argument — M(h) = 2hi2,

28/31

Properties of Height Balanced Trees

Proposition

Suppose T is a height balanced tree of height k. Then T has n > 2"/?
vertices.

Consequences.
If T is a height balanced tree with 7 vertices, then its height # satisfies
h<2logn

—> CONTAINS(x) takes time O(logn)
—> ADD(x) takes time O(logn)
—> REMOVE(x) takes time O(logn)

28/31

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence
of operations performed.
* No one is forcingus to keep the tree structure determined by our
ADD/REMOVE operations
* there are many valid BSTs that store the same collection of
elements!

e Starting from a balanced tree, ADD(x) may introduce imbalance.

e Ifimbalance is introduced try to fix it:
¢ find closest unbalanced vertex to x and correct its balance
* look for other imbalance and correct it

For next time. Think about how you could implement this strategy.
* Where could imbalance occur? And how much?
* What local operations can fix the imbalance?

* What is the worst-case running time of restoring balance?

29/31

Next Time: Sorting

* Finishing Balanced BSTs
* The Sorting Task
* Efficient Sorting by Divide and Conquer

30/31

Scratch Notes

31/31

	Heaps
	Ordered Sets and Maps
	Binary Search Trees
	Balanced Binary Trees

