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Announcements

1. Third Quiz, due Friday

¢ Similar format to before
* Covers fundamental data structures (Lectures 4—6)
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)

2. Programming Assignment (Draft) Posted 'roc&o.\(
* Due Wednesday, 13 November

3. Attendance Code:

187201
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Meeting Goals

* Finish up heaps
* Give an efficient array-backed PRIORITYQUEUE
* Introduce two more ADTs:

® ORDEREDSET
°* MAP

¢ Introduce binary search trees

* Discuss balanced binary search trees
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Last Time: Priority Queues and Heaps

Priority Queues, Formally

Lo

Sis the state of the queue,
initially S= &
S.INSERT(x, p(x)) : S=
XX - - XjXjy] *Xp-1"—
XX - - XjXXj4] " Xp-1
* where p(x;) < p(x) <

p(xir1)
S.MIN() : returns xp where
S=XxpX1° Xp-1

S.REMOVEMIN() : xS— S,
returns x

Heap Implementation ,(-00«{—

¢ INSERT via BUBBLEUP procedure

* REMOVEMIN via TRICKLEDOWN procedure

0([00| w) SkPs
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Last Time: Priority Queues and Heaps

Priority Queues, Formally Heap Implementation

* Sis the state of the queue,

initially S= @ e
® S.INSERT(x, p(x)):S=
XX - - XjXjy] *Xp-1"— ° e
XX - - XjXXj4] " Xp-1
* where p(x;) < p(x) < e ° @ o
i 0000
* S.MIN(): returns xo where

S=XxpX1° Xp-1
o S.REMOVEMIN() : xS— S, * INSERT via BUBBLEUP procedure
returns x

Noc\e

* REMOVEMIN via TRICKLEDOWN procedure

@& 3 ¢ Issue: using NODEs incurs overhead

et Cualdh

W ad
esent heaps as arrays?

* locality of reference
* storing additional references

Question.
5/31



A Clue: Number the Vertices

—  loodng o
NG T AN

PollEverywhere Question

Suppose a vertex is assigned a label
i > 0 in this numbering of the ver-
tices. What is the label of i’s parent
in the labeling?
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A Clue: Number the Vertices

Relationships:
e Ifi> 0, then i's parent has index [(i—1)/2]



A Clue: Number the Vertices

Relationships:
e Ifi> 0, then i's parent has index [(i—1)/2]
* j’sleft child has index 2i+ 1
* j’sright child has index 2i+ 2
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Arrays as Heaps

Associate numbering of tree vertices as array indexes!
Complete binary tree representation
° Ifi>0,thenis
parent has index
LG-D/2]
* s left child has
index 2i+1

7131



Example: Array BUBBLEUP

We can apply heap procedures
directly to the array without
reference to the tree itself!

e If i> 0, then i's parent has index
LE-1)/2]

e s left child has index 2i+ 1
e 7’sright child has index 2i+2

10:

: procedure INSERT (p)

l(’o\ {o

yieo)

nr\c
PY\\ )‘

v — new vertex storing p

1
2
3
4:
5:
6.
7
8
9

u — first vtx with < 2 chlldre
add v as u’s child \
PARENT (V) «— u \N"\\B
while value(v) < value(u) and u#1 do
SWAP(value(v), value(u)) 30
ve—u
u — PARENT(v)
end while

11: end procedure
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Example: Array BUBBLEUP

We can apply heap procedures
directly to the array without
reference to the tree itself!

1: procedure INSERT(p)

2 v — new vertex storing p

3 u — first vtx with < 2 children

* If i>0, then /s parent has index 4 addvas u'schild

Li=1)/2] 5: PARENT(v) — u
6: while value(v) < value(u) and u#1 do
7 SWAP(value(v), value(u))
8 V—1u
9: u — PARENT(v)
10: end while
11: end procedure

e s left child has index 2i+ 1
e 7’sright child has index 2i+2

Example. INSERT(4)

Vo Svee
N1 2\ 3 4 5 (67 8 9 10 11 12 13 (14

(/3 LIS)IO 6 | 66 l39 42 | 17 | 96 | 70 | 89 | 95 98&)4’

G ~— N —

Y B4\% 29
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Array Backed Operations

Using arrays, we can define INSERT and REMOVEMIN much more

cleanly!

1: procedure INSERT(p)

2: i—n > nis heap size
3 alil = p

4: n—n+l

5% Jj—LGE-1)/2] > jis i's parent
6 while i > 0 and a[i] < a[j] do

7 SWAP(a, i, ))

8 i—j

9 Jj—Lli-1)/2]

10: end while

11: end procedure

1: procedure REMOVEMIN

2: m — al0]

3: al0] — aln—1]

4: n—n-1

55 i—0

6 j—argmin{al2i+1],al2i+ 2]}
7 while j < n and a[i] > a[j] do
8
9

SWAP(a, i, )

i—j
10: Jj—argmin{al2i+1],al2i+ 2]}
11: end while
12: return m

13: end procedure

Both of these operations still complete after)O(log ) [iterations
e very little overhead, since only array operations are used!
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Ordered Sets
and Maps



Adding Order to Elements

\J'l \Q( \‘\’\"'\

Question. What
* Answer: @ We can order/compare priorities.
Two more ADT with ordered elements:
Ordered Sets store a collection
(set) of distinct elements from an
e ——
ordered universe.

* CONTAINS(x) check if the set %
contains x' = x and return x’

ade our operations on heaps efficient?

* ADD(x) add x to the set if x was not
present

* REMOVE(x) remove x if x was present
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Adding Order to Elements

Question. What made our operations on heaps efficient?
* Answer: Order! We can order/compare priorities.
Two more ADT with ordered elements:

Ordered Sets store a collection Maps“ store a collection of values
(set) of distinct elements from an with associated ordered keys with
ordered universe. array-like access.

* CONTAINS(x) check if the set
contains x' = x and return x’

¢, PuT(k, v) set the value associated
with key k to v

* ADD(x) add x to the set if x was * GET(k) return the value associated

present with key k
* REMOVE(x) remove ¥if x was prese * REMOVE(k) remove the pair
associated with k
* CONTAINS(k) check if the map
&D‘] &V contains a value associated with k

&E 12 —S @Aka: associative arrays, dictionaries
(Python dict), symbol table
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Ordered Sets vs Maps

Ordered Sets Maps
o ONTAIngx) check if the set < PuT(k, 1) set the value associated
ains X' = x and return x’ with key kto v

ADD(x) add x to the set if x was not * GET(k) return the value associated
present with key k

* REMOVE(x) remove x if x was present * REMOVE(k) remove the pair

\ assgciated with k

* CONTAINS(k) check if the map
ntains a value associated with k

PollEverywhere Question

If we are given an ORDEREDSET
implementation, how could we
use it to implement a MAP?

pollev. com/comp526
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Ordered Sets vs Maps

Ordered Sets
* CONTAINS(x) check if the set
contains x' = x and return x’

ADD(x) add x to the set if x was not

present
REMOVE (x) remove x if x was present

Maps via Ordered Sets
To PUT(k, v), use REMOVE((Kk, -))

¢ Create an ordered set that stores o
pairs (1) (HupW then ADD((k,v)) ——
pdlls \, V)
* Compare (R)v) < (@ V) <= k<k * To GET(k), use
- (k, v) — CONTAINS((k,-)) and return
¢ CONTAINS, REMOVE are same b " &
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Ordered Sets via Arrays

ORDEREDSETSs can be implemented by arrays:
L
* Maintain a sorted array a = [xo, X1, . - .,g'xn] with each x; < x4 1.
* ADD(x) and REMOVE(x) implemented in ©(7n) worst case time

¢ To ADD find index i such that x; < x < xj11
* Shift elements x; with j= i+ 1 to next index

* This uses O(n) time
* Setali+1] —x

[/
Example. How to ADD(42)? UZ 9 0 Y

¢

123456,‘789101112131415
3 10|28 |31 (3439|5163 |70 8287|9195

L[—‘LVM)M ) T
—Q-(-V\S 13/31




Ordered Sets via Arrays

ORDEREDSETSs can be implemented by arrays:
* Maintain a sorted array a = [xp, X1, . .., X,] with each x; < x;4;.
* ADD(x) and REMOVE(x) implemented in ©(7n) worst case time

¢ To ADD find index i such that x; < x < xj11
* Shift elements x; with j= i+ 1 to next index

* This uses O(n) time
* Setali+1] —x

Question. How can we implement CONTAINS(x) more quickly?
it
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Efficient Search

Idea. Binary Search:

* Start at the middle index j

* x<aljl = index of x must /
beis<j Wz el

* otherwise i> j o) 1 —

* Apply procedure to remaining | % W 1
interval with half excluded A

° compare x to midpoint of K O /‘
remaining interval Y(\\‘\f"\{' 5 A \\.UL

* eliminate half of the \L J

interval . C alt .

* Repeat
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Efficient Search

SoX o gl

Idea. Binary Search:

l t_\,,\— N \VY \\‘\.\"s\

ot O
proce{ ure BINARYSEARCH(X) _ \/\\'

* Start at the middle index j L
. 2: k«— n-1| &— (\‘1
* x<aljl = index of x must 3 T+ R/2] (& k.
bei<j 4:  whilei<jdo
* otherwise i> j 5: if x < a[j] then
* Apply procedure to remaining 6 g k—j
interval with half excluded ; € SG;. E
° compare x to midpoint of 9: end if 3
remaining interval 10:  end while «C\ f\é (7' ¢
* eliminate half of the 11:  returni
interval 12: end procedure
* Repeat .
O— 1T 2 3 4+—S5——~6)7 9 10 |11 |2—33—T12—15
213171028 34%9—42'51 63 | 70 74|“°40L7 195

b L

s

',(., Z___— ‘L 14/31



Efficiency of Binary Search

PollEverywhere 1: procedure BINARYSEARCH (X)
. . 2 i—0,k—n-1
What is the (worst case) running 5 i LG+ 1072
time of BINARYSEARCH on an array J .
of length n? 4 while i < jdo
’ 5: if x < a[j] then
6 k—j
7 else
8 i—j
9 end if
10: end while
11: return i

pollev.com/comp526 12: end procedure
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Efficiency of Binary Search

1: procedure BINARYSEARCH (X)
2 i—0,k—n-1

3 j—Li+Kk)/2]

4 while i < jdo

5: if x < a[j] then
6
.
8

9

Proposition

The worst-case running time of
BINARYSEARCH is O(logn).

k—j
else
i—j
end if
10: end while
11: return i
12: end procedure
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Efficiency of Binary Search |
G oF achoe owhvel

Proposition 1: procedure BINARYSEARCH (X)
The worst-case running time of 2 ' (L)(’ k+7<)72_J 1
BINARYSEARCH is O(logn). J . l, .
4 while i < jdo
5: if x < a[j] then
: ; 6 k—j
* Consider the value 0@ . else
* After ¢ iterations of the loop, 3 i—j
have k- i</7%((induction) 9 end if
* Termination when k—ig1 10: end while
* 0=Tlognl+1 = £ =<1 11:  return i
,]\ \ . end procedure

loy W n
;iwﬁm wp Pows Jor winodes .
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Making All Operations Efficient?

For ORDEREDSETS, we can perform all operations in o(n) time?
e Array implementation only gives CONTAINS in O(logn) time
e Other operations are ©(n)

* This seems harder than efficient PRIORITYQUEUE as elements can
be added and removed from anywhere in the data structure
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Making All Operations Efficient?

A Nagging Question

For ORDEREDSETS, we can perform all operations in o(n) time?
e Array implementation only gives CONTAINS in O(logn) time
e Other operations are ©(n)
* This seems harder than efficient PRIORITYQUEUE as elements can
be added and removed from anywhere in the data structure
Up next: A solution in two parts
1. Binary Search Trees

2. Balancing Binary Trees
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Binary Search
Trees



Binary Search Tree Definition

Definition

Suppose T is a binary tree and every vertex vin T has an associated
value. We say T is a binary search tree((BST) if for every vertex (value)

v: C e cdaldien

1. every left descendant u satisfies u< v,

2. every right descendant w satisfies w= v. —




BST Search

Given a BST T, how can we search for a value x in 72
CONTAINS(19)? I S e ok oY

- O
(4 wast be do cightod {8§ 5?“[\"\'
18 doeyht heve righk g v oot



BST Search

Given a BST T, how can we search for a value x in 77?

1L "pupt b ndicedt
procedure CONTAIN s(xy DN - LS ek nose

v = tree root

1:

2

3 while ix and(v #1\do

4 if x < vthen

5 "0 — LEFTCHILD () Ao leb ¥
6 else i
7 v— RIGHTCHILD(v) 9o \{
8 end if

9 end while

10: —sreturn v

11: end procedure

c(\d
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BST Search

Given a BST T, how can we search for a value x in 7?

1: procedure CONTAINS(X) PollEverywhere
2: U = tree root .

. What is the (worst case)
3 while v # xand v #.1 do . .

. running time of CONTAINS
4 if x < vthen . .

on a tree with n vertices?
5: v<— LEFTCHILD (V)
6 else
7 v+ RIGHTCHILD (v)
8 end if
9 end while
10: return v

11: end procedure pollev.com/comp526
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BST ConTtaINs Efficiency
o

The (worst-case) running time of
CONTAINS onj[,is ©(h) where his

the height of T{

* histhe length of the longest
path fromroot to anyleafin T O \

N

The height of T can be; \QN\\LS‘

* Assmall aslogn oo L oy
* Aslargeasn—1

The Moral

The efficiency of CONTAINS
depends on the structure of T.

W

0o\
J &\ \}00 \
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BST Add

How could we ADD(19) to the following BST so it remains a BST?
$ otk Sear M

foc \9

Mmantains BT
propaltied



BST Add

How could we ADD(19) to the following BST so it remains a BST?

Observation. To ADD(x), we should add a new vertex wherever the
CONTAINS(x) execution fails to find x.
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Adding in Pseudocode

;: procedure ADD (%) isSn Example. ADD(8) VRN
U, U — 1QQt JPars

3. while@#do Y

4 if x =7 then

5: return

6: else if x < v then

7 U—7v

8 v<— LEFTCHILD(v)

9 else

10: Uu—"v

11: v <— RIGHTCHILD (v)

12: end if

13: end while

14: if x <gthen

15: set x as s left child

16: else

17: set x as s right child

18: end if

19: end procedure
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Adding in Pseudocode

1:
2
&
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

16:
17:
18:

procedure ADD (x)

U, U — 100t
while v#1 do
if x = v then
return
else if x < v then
U—v
v — LEFTCHILD ()
else
U—v
v <— RIGHTCHILD(v)
end if
end while
if x < v then
set x as v's left child
else
set x as v's right child
end if

19: end procedure

PollEverywhere Question

Describe a sequence of ADD(x) operations
starting from an empty BST such that
every operation takes @ time.

pollev.com/comp526
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Adding in Pseudocode

1: procedure ADD(x)
2 v, U — root
3 while v#1 do
4 if x = v then
5: return
6: else if x < v then
7 U—7v
8 v<— LEFTCHILD(v)
9: else
10: Uu—"v
11: v <— RIGHTCHILD (v)
12: end if

13: end while
14: if x < v then

15: set x as v's left child
16: else

17: set x as v's right child
18: end if

19: end procedure

ABadSequence: [ 23 - N\

opS* ILU:Q P

2
@

)

Mi«j\&\' BN

Re M eeunple

h = n-=l

= 20w
09S .

\

®

22/31



BST Remove

Question
How could we remove an element from a BST?
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BST Remove

Question

How could we remove an element from a BST?

Case 1: A leaf. Just remove it!
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BST Remove

How could we remove an element from a BST?

Case 2: A vertex v with single child. Splice! Set v’s child to be its
parent’s child.

23/31



BST Remove

Question

How could we remove an element from a BST?

Case 3: A vertex v wi

1. Find next smallestvalueﬂ

2. Copy w's value to v. oot e O o ot
3. Remove w \&— 1 oWt , S S Sy

A



So Far...

...we've implemented
* CONTAINS(X)
* ADD(x)
* REMOVE(x)

for ORDEREDSETS.

But we haven't improved efficiency
* All of these operations can cost as much as ©(n)
¢ efficiency depends on previous operations performed!

Idea. We can restructure BSTs.
* Goal: ensure that the BST has small height.
¢ After each update, check and update tree structure.
* maintain BST property
* updates performed efficiently
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Balanced Binary
Trees



Distinguishing the Good from the Bad

—_—

15

(s00

—_




Height Balanced Trees

Definition (Left and Right Height)
Let vbe a vertex in a tree. We define:
* h(l)=-1
* h() =1+max(h(LEFTCHILD(v)), h(RIGHTCHILD(1))) /-l

o ]_zL(v) = h(LEFTCHILD(v))

* h,(v) = h(RIGHTCHILD(v))
fo fechast
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Height Balanced Trees

Let v be a vertex in a tree. We define:
* h(l)=-1
* h(v) =1+ max(h(LEFTCHILD(v)), h(RIGHTCHILD(?)))
* hy(v) = h(LEFTCHILD(v))
* h,(v) = h(RIGHTCHILD(v))

Def. (Height Balanced)

We call a tree height
balanced if for every
vertex v, |hy(v) — hy (V)| < 1.
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Properties of Height Balanced Trees

Proposition
Suppose T is a height balanced tree of height k. Then T has|n > 2"/2
vertices.
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Properties of Height Balanced Trees

Proposition

Suppose T is a height balanced tree of height k. Then T has n > 2"/?
vertices.

Proof.
Let M(h) denote the minimum size of a height balanced tree of height
h.

* Observe that M(0) =1, M(1) = 2.

e Ingeneral M(h) =1+ M(h—-1)+M(h-2)

° one subtree of the root is a height balanced tree of height -1
* other subtree is height balanced with height atleast i —2

* SoM(h)=2M(h-2)

* Inductive argument — M(h) = 2hi2,
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Properties of Height Balanced Trees

Proposition

Suppose T is a height balanced tree of height k. Then T has n > 2"/?
vertices.

Consequences.

If T is a height balanced tree with 7 vertices, then its height h satisfies
—> CONTAINS(x) takes time O(logn)

—> ADD(x) takes time O(logn)

—> REMOVE(x) takes time O(logn)
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Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence
of operations performed.

* No one is forcingus to keep the tree structure determined by our
ADD/REMOVE operations

* there are many valid BSTs that store the same collection of
elements!
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Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence
of operations performed.

* No one is forcingus to keep the tree structure determined by our

ADD/REMOVE operations
* there are many valid BSTs that store the same collection of
elements!
e Starting from a balanced tree, ADD(x) may introduce imbalance.
e Ifimbalance is introduced try to fix it:

¢ find closest unbalanced vertex to x and correct its balance
* Jook for other imbalance and correct it
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Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence
of operations performed.
* No one is forcingus to keep the tree structure determined by our
ADD/REMOVE operations
* there are many valid BSTs that store the same collection of
elements!

e Starting from a balanced tree, ADD(x) may introduce imbalance.

e Ifimbalance is introduced try to fix it:
¢ find closest unbalanced vertex to x and correct its balance
* look for other imbalance and correct it

For next time. Think about how you could implement this strategy.
* Where could imbalance occur? And how much?
* What local operations can fix the imbalance?

* What is the worst-case running time of restoring balance?
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Next Time: Sorting

* Finishing Balanced BSTs
* The Sorting Task
* Efficient Sorting by Divide and Conquer
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Scratch Notes
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