11 1 m i m 1] 1
00000000000000000F00000000FOCUOFO000F00000000000000I000000000000000000000FF 000l
123456 78 9100121314 1516 1716192021 222324 2526 27 28 29 2% 3132 33 34 35 36 37 38 39 40 41 42 41 44 4546 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 67 68 69 70 71 72 73 14 1575 77 /8 19 80

1] ARRRERREEE NI RN RRRRREI Al ARl | Rl ARRRR RN R R R R R R R SRR AR R R R
2202222222222222022222222002222222220022
33333333333333333W3333333333333333P333]3
4444444444444444444444044444040444404J444444404844440404444448444444444440444]44
555555555555 5555550555555 555 Mo9555055555555555555555585555555555555555555555
66666666 66M66366666666656R6666666

Lecture 6: Data Structures lll
COMP526: Efficient Algorithms

Will Rosenbaum
Updated: October 22, 2024 University of Liverpool

ac: 383201

1/31

Announcements

1. Third Quiz, due Friday

¢ Similar format to before
* Covers fundamental data structures (Lectures 4—6)
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)

2. Programming Assignment (Draft) Posted 'roc&o.\(
* Due Wednesday, 13 November

3. Attendance Code:

187201

2/31

Meeting Goals

* Finish up heaps
* Give an efficient array-backed PRIORITYQUEUE
* Introduce two more ADTs:

® ORDEREDSET
°* MAP

¢ Introduce binary search trees

* Discuss balanced binary search trees

3/31

Heaps

Last Time: Priority Queues and Heaps

Priority Queues, Formally

Lo

Sis the state of the queue,
initially S= &
S.INSERT(x, p(x)) : S=
XX - - XjXjy] *Xp-1"—
XX - - XjXXj4] " Xp-1
* where p(x;) < p(x) <

p(xir1)
S.MIN() : returns xp where
S=XxpX1° Xp-1

S.REMOVEMIN() : xS— S,
returns x

Heap Implementation ,(-00«{—

¢ INSERT via BUBBLEUP procedure

* REMOVEMIN via TRICKLEDOWN procedure

0([00| w) SkPs

5/31

Last Time: Priority Queues and Heaps

Priority Queues, Formally Heap Implementation

* Sis the state of the queue,

initially S= @ e
® S.INSERT(x, p(x)):S=
XX - - XjXjy] *Xp-1"— ° e
XX - - XjXXj4] " Xp-1
* where p(x;) < p(x) < e ° @ o
i 0000
* S.MIN(): returns xo where

S=XxpX1° Xp-1
o S.REMOVEMIN() : xS— S, * INSERT via BUBBLEUP procedure
returns x

Noc\e

* REMOVEMIN via TRICKLEDOWN procedure

@& 3 ¢ Issue: using NODEs incurs overhead

et Cualdh

W ad
esent heaps as arrays?

* locality of reference
* storing additional references

Question.
5/31

A Clue: Number the Vertices

— loodng o
NG T AN

PollEverywhere Question

Suppose a vertex is assigned a label
i > 0 in this numbering of the ver-
tices. What is the label of i’s parent
in the labeling?

6/31

A Clue: Number the Vertices

Relationships:
e Ifi> 0, then i's parent has index [(i—1)/2]

A Clue: Number the Vertices

Relationships:
e Ifi> 0, then i's parent has index [(i—1)/2]
* j’sleft child has index 2i+ 1
* j’sright child has index 2i+ 2

6/31

Arrays as Heaps

Associate numbering of tree vertices as array indexes!
Complete binary tree representation
° Ifi>0,thenis
parent has index
LG-D/2]
* s left child has
index 2i+1

7131

Example: Array BUBBLEUP

We can apply heap procedures
directly to the array without
reference to the tree itself!

e If i> 0, then i's parent has index
LE-1)/2]

e s left child has index 2i+ 1
e 7’sright child has index 2i+2

10:

: procedure INSERT (p)

l(’o\ {o

yieo)

nr\c
PY\\)‘

v — new vertex storing p

1
2
3
4:
5:
6.
7
8
9

u — first vtx with < 2 chlldre
add v as u’s child \
PARENT (V) «— u \N"\\B
while value(v) < value(u) and u#1 do
SWAP(value(v), value(u)) 30
ve—u
u — PARENT(v)
end while

11: end procedure

8/31

Example: Array BUBBLEUP

We can apply heap procedures
directly to the array without
reference to the tree itself!

1: procedure INSERT(p)

2 v — new vertex storing p

3 u — first vtx with < 2 children

* If i>0, then /s parent has index 4 addvas u'schild

Li=1)/2] 5: PARENT(v) — u
6: while value(v) < value(u) and u#1 do
7 SWAP(value(v), value(u))
8 V—1u
9: u — PARENT(v)
10: end while
11: end procedure

e s left child has index 2i+ 1
e 7’sright child has index 2i+2

Example. INSERT(4)

Vo Svee
N1 2\ 3 4 5 (67 8 9 10 11 12 13 (14

(/3 LIS)IO 6 | 66 l39 42 | 17 | 96 | 70 | 89 | 95 98&)4’

G ~— N —

Y B4\% 29

8/31

Array Backed Operations

Using arrays, we can define INSERT and REMOVEMIN much more

cleanly!

1: procedure INSERT(p)

2: i—n > nis heap size
3 alil = p

4: n—n+l

5% Jj—LGE-1)/2] > jis i's parent
6 while i > 0 and a[i] < a[j] do

7 SWAP(a, i,))

8 i—j

9 Jj—Lli-1)/2]

10: end while

11: end procedure

1: procedure REMOVEMIN

2: m — al0]

3: al0] — aln—1]

4: n—n-1

55 i—0

6 j—argmin{al2i+1],al2i+ 2]}
7 while j < n and a[i] > a[j] do
8
9

SWAP(a, i,)

i—j
10: Jj—argmin{al2i+1],al2i+ 2]}
11: end while
12: return m

13: end procedure

Both of these operations still complete after)O(log) [iterations
e very little overhead, since only array operations are used!

9/31

Ordered Sets
and Maps

Adding Order to Elements

\J'l \Q(\‘\’\"'\

Question. What
* Answer: @ We can order/compare priorities.
Two more ADT with ordered elements:
Ordered Sets store a collection
(set) of distinct elements from an
e ——
ordered universe.

* CONTAINS(x) check if the set %
contains x' = x and return x’

ade our operations on heaps efficient?

* ADD(x) add x to the set if x was not
present

* REMOVE(x) remove x if x was present

11/31

Adding Order to Elements

Question. What made our operations on heaps efficient?
* Answer: Order! We can order/compare priorities.
Two more ADT with ordered elements:

Ordered Sets store a collection Maps“ store a collection of values
(set) of distinct elements from an with associated ordered keys with
ordered universe. array-like access.

* CONTAINS(x) check if the set
contains x' = x and return x’

¢, PuT(k, v) set the value associated
with key k to v

* ADD(x) add x to the set if x was * GET(k) return the value associated

present with key k
* REMOVE(x) remove ¥if x was prese * REMOVE(k) remove the pair
associated with k
* CONTAINS(k) check if the map
&D‘] &V contains a value associated with k

&E 12 —S @Aka: associative arrays, dictionaries
(Python dict), symbol table

11/31

Ordered Sets vs Maps

Ordered Sets Maps
o ONTAIngx) check if the set < PuT(k, 1) set the value associated
ains X' = x and return x’ with key kto v

ADD(x) add x to the set if x was not * GET(k) return the value associated
present with key k

* REMOVE(x) remove x if x was present * REMOVE(k) remove the pair

\ assgciated with k

* CONTAINS(k) check if the map
ntains a value associated with k

PollEverywhere Question

If we are given an ORDEREDSET
implementation, how could we
use it to implement a MAP?

pollev. com/comp526

12/31

Ordered Sets vs Maps

Ordered Sets
* CONTAINS(x) check if the set
contains x' = x and return x’

ADD(x) add x to the set if x was not

present
REMOVE (x) remove x if x was present

Maps via Ordered Sets
To PUT(k, v), use REMOVE((Kk, -))

¢ Create an ordered set that stores o
pairs (1) (HupW then ADD((k,v)) ——
pdlls \, V)
* Compare (R)v) < (@ V) <= k<k * To GET(k), use
- (k, v) — CONTAINS((k,-)) and return
¢ CONTAINS, REMOVE are same b " &

12/31

Ordered Sets via Arrays

ORDEREDSETSs can be implemented by arrays:
L
* Maintain a sorted array a = [xo, X1, . - .,g'xn] with each x; < x4 1.
* ADD(x) and REMOVE(x) implemented in ©(7n) worst case time

¢ To ADD find index i such that x; < x < xj11
* Shift elements x; with j= i+ 1 to next index

* This uses O(n) time
* Setali+1] —x

[/
Example. How to ADD(42)? UZ 9 0 Y

¢

123456,‘789101112131415
3 10|28 |31 (3439|5163 |70 8287|9195

L[—‘LVM)M) T
—Q-(-V\S 13/31

Ordered Sets via Arrays

ORDEREDSETSs can be implemented by arrays:
* Maintain a sorted array a = [xp, X1, . .., X,] with each x; < x;4;.
* ADD(x) and REMOVE(x) implemented in ©(7n) worst case time

¢ To ADD find index i such that x; < x < xj11
* Shift elements x; with j= i+ 1 to next index

* This uses O(n) time
* Setali+1] —x

Question. How can we implement CONTAINS(x) more quickly?
it

13/31

Efficient Search

Idea. Binary Search:

* Start at the middle index j

* x<aljl = index of x must /
beis<j Wz el

* otherwise i> j o) 1 —

* Apply procedure to remaining | % W 1
interval with half excluded A

° compare x to midpoint of K O /‘
remaining interval Y(\\‘\f"\{' 5 A \\.UL

* eliminate half of the \L J

interval . C alt .

* Repeat

14/31

Efficient Search

SoX o gl

Idea. Binary Search:

l t_\,,\— N \VY \\‘\.\"s\

ot O
proce{ ure BINARYSEARCH(X) _ \/\\'

* Start at the middle index j L
. 2: k«— n-1| &— (\‘1
* x<aljl = index of x must 3 T+ R/2] (& k.
bei<j 4: whilei<jdo
* otherwise i> j 5: if x < a[j] then
* Apply procedure to remaining 6 g k—j
interval with half excluded ; € SG;. E
° compare x to midpoint of 9: end if 3
remaining interval 10: end while «C\ f\é (7' ¢
* eliminate half of the 11: returni
interval 12: end procedure
* Repeat .
O— 1T 2 3 4+—S5——~6)7 9 10 |11 |2—33—T12—15
213171028 34%9—42'51 63 | 70 74|“°40L7 195

b L

s

',(., Z___— ‘L 14/31

Efficiency of Binary Search

PollEverywhere 1: procedure BINARYSEARCH (X)
. . 2 i—0,k—n-1
What is the (worst case) running 5 i LG+ 1072
time of BINARYSEARCH on an array J .
of length n? 4 while i < jdo
’ 5: if x < a[j] then
6 k—j
7 else
8 i—j
9 end if
10: end while
11: return i

pollev.com/comp526 12: end procedure

15/31

Efficiency of Binary Search

1: procedure BINARYSEARCH (X)
2 i—0,k—n-1

3 j—Li+Kk)/2]

4 while i < jdo

5: if x < a[j] then
6
.
8

9

Proposition

The worst-case running time of
BINARYSEARCH is O(logn).

k—j
else
i—j
end if
10: end while
11: return i
12: end procedure

15/31

Efficiency of Binary Search |
G oF achoe owhvel

Proposition 1: procedure BINARYSEARCH (X)
The worst-case running time of 2 ' (L)(’ k+7<)72_J 1
BINARYSEARCH is O(logn). J . l, .
4 while i < jdo
5: if x < a[j] then
: ; 6 k—j
* Consider the value 0@ . else
* After ¢ iterations of the loop, 3 i—j
have k- i</7%((induction) 9 end if
* Termination when k—ig1 10: end while
* 0=Tlognl+1 = £ =<1 11: return i
,]\ \ . end procedure

loy W n
;iwﬁm wp Pows Jor winodes .

15/31

Making All Operations Efficient?

For ORDEREDSETS, we can perform all operations in o(n) time?
e Array implementation only gives CONTAINS in O(logn) time
e Other operations are ©(n)

* This seems harder than efficient PRIORITYQUEUE as elements can
be added and removed from anywhere in the data structure

16/31

Making All Operations Efficient?

A Nagging Question

For ORDEREDSETS, we can perform all operations in o(n) time?
e Array implementation only gives CONTAINS in O(logn) time
e Other operations are ©(n)
* This seems harder than efficient PRIORITYQUEUE as elements can
be added and removed from anywhere in the data structure
Up next: A solution in two parts
1. Binary Search Trees

2. Balancing Binary Trees

16/31

Binary Search
Trees

Binary Search Tree Definition

Definition

Suppose T is a binary tree and every vertex vin T has an associated
value. We say T is a binary search tree((BST) if for every vertex (value)

v: C e cdaldien

1. every left descendant u satisfies u< v,

2. every right descendant w satisfies w= v. —

BST Search

Given a BST T, how can we search for a value x in 72
CONTAINS(19)? I S e ok oY

- O
(4 wast be do cightod {8§ 5?“[\"\'
18 doeyht heve righk g v oot

BST Search

Given a BST T, how can we search for a value x in 77?

1L "pupt b ndicedt
procedure CONTAIN s(xy DN - LS ek nose

v = tree root

1:

2

3 while ix and(v #1\do

4 if x < vthen

5 "0 — LEFTCHILD () Ao leb ¥
6 else i
7 v— RIGHTCHILD(v) 9o \{
8 end if

9 end while

10: —sreturn v

11: end procedure

c(\d

19/31

BST Search

Given a BST T, how can we search for a value x in 7?

1: procedure CONTAINS(X) PollEverywhere
2: U = tree root .

. What is the (worst case)
3 while v # xand v #.1 do . .

. running time of CONTAINS
4 if x < vthen . .

on a tree with n vertices?
5: v<— LEFTCHILD (V)
6 else
7 v+ RIGHTCHILD (v)
8 end if
9 end while
10: return v

11: end procedure pollev.com/comp526

19/31

BST ConTtaINs Efficiency
o

The (worst-case) running time of
CONTAINS onj[,is ©(h) where his

the height of T{

* histhe length of the longest
path fromroot to anyleafin T O \

N

The height of T can be; \QN\\LS‘

* Assmall aslogn oo L oy
* Aslargeasn—1

The Moral

The efficiency of CONTAINS
depends on the structure of T.

W

0o\
J &\ \}00 \

t 20/31

BST Add

How could we ADD(19) to the following BST so it remains a BST?
$ otk Sear M

foc \9

Mmantains BT
propaltied

BST Add

How could we ADD(19) to the following BST so it remains a BST?

Observation. To ADD(x), we should add a new vertex wherever the
CONTAINS(x) execution fails to find x.

21/31

Adding in Pseudocode

;: procedure ADD (%) isSn Example. ADD(8) VRN
U, U — 1QQt JPars

3. while@#do Y

4 if x =7 then

5: return

6: else if x < v then

7 U—7v

8 v<— LEFTCHILD(v)

9 else

10: Uu—"v

11: v <— RIGHTCHILD (v)

12: end if

13: end while

14: if x <gthen

15: set x as s left child

16: else

17: set x as s right child

18: end if

19: end procedure

22/31

Adding in Pseudocode

1:
2
&
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

16:
17:
18:

procedure ADD (x)

U, U — 100t
while v#1 do
if x = v then
return
else if x < v then
U—v
v — LEFTCHILD ()
else
U—v
v <— RIGHTCHILD(v)
end if
end while
if x < v then
set x as v's left child
else
set x as v's right child
end if

19: end procedure

PollEverywhere Question

Describe a sequence of ADD(x) operations
starting from an empty BST such that
every operation takes @ time.

pollev.com/comp526

22/31

Adding in Pseudocode

1: procedure ADD(x)
2 v, U — root
3 while v#1 do
4 if x = v then
5: return
6: else if x < v then
7 U—7v
8 v<— LEFTCHILD(v)
9: else
10: Uu—"v
11: v <— RIGHTCHILD (v)
12: end if

13: end while
14: if x < v then

15: set x as v's left child
16: else

17: set x as v's right child
18: end if

19: end procedure

ABadSequence: [23 - N\

opS* ILU:Q P

2
@

)

Mi«j\&\' BN

Re M eeunple

h = n-=l

= 20w
09S .

\

®

22/31

BST Remove

Question
How could we remove an element from a BST?

23/31

BST Remove

Question

How could we remove an element from a BST?

Case 1: A leaf. Just remove it!

23/31

BST Remove

How could we remove an element from a BST?

Case 2: A vertex v with single child. Splice! Set v’s child to be its
parent’s child.

23/31

BST Remove

Question

How could we remove an element from a BST?

Case 3: A vertex v wi

1. Find next smallestvalueﬂ

2. Copy w's value to v. oot e O o ot
3. Remove w \&— 1 oWt , S S Sy

A

So Far...

...we've implemented
* CONTAINS(X)
* ADD(x)
* REMOVE(x)

for ORDEREDSETS.

But we haven't improved efficiency
* All of these operations can cost as much as ©(n)
¢ efficiency depends on previous operations performed!

Idea. We can restructure BSTs.
* Goal: ensure that the BST has small height.
¢ After each update, check and update tree structure.
* maintain BST property
* updates performed efficiently

24/31

Balanced Binary
Trees

Distinguishing the Good from the Bad

—_—

15

(s00

—_

Height Balanced Trees

Definition (Left and Right Height)
Let vbe a vertex in a tree. We define:
* h(l)=-1
* h() =1+max(h(LEFTCHILD(v)), h(RIGHTCHILD(1))) /-l

o]_zL(v) = h(LEFTCHILD(v))

* h,(v) = h(RIGHTCHILD(v))
fo fechast

27/31

Height Balanced Trees

Let v be a vertex in a tree. We define:
* h(l)=-1
* h(v) =1+ max(h(LEFTCHILD(v)), h(RIGHTCHILD(?)))
* hy(v) = h(LEFTCHILD(v))
* h,(v) = h(RIGHTCHILD(v))

Def. (Height Balanced)

We call a tree height
balanced if for every
vertex v, |hy(v) — hy (V)| < 1.

27/31

Properties of Height Balanced Trees

Proposition
Suppose T is a height balanced tree of height k. Then T has|n > 2"/2
vertices.

28/31

Properties of Height Balanced Trees

Proposition

Suppose T is a height balanced tree of height k. Then T has n > 2"/?
vertices.

Proof.
Let M(h) denote the minimum size of a height balanced tree of height
h.

* Observe that M(0) =1, M(1) = 2.

e Ingeneral M(h) =1+ M(h—-1)+M(h-2)

° one subtree of the root is a height balanced tree of height -1
* other subtree is height balanced with height atleast i —2

* SoM(h)=2M(h-2)

* Inductive argument — M(h) = 2hi2,

28/31

Properties of Height Balanced Trees

Proposition

Suppose T is a height balanced tree of height k. Then T has n > 2"/?
vertices.

Consequences.

If T is a height balanced tree with 7 vertices, then its height h satisfies
—> CONTAINS(x) takes time O(logn)

—> ADD(x) takes time O(logn)

—> REMOVE(x) takes time O(logn)

28/31

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence
of operations performed.

* No one is forcingus to keep the tree structure determined by our
ADD/REMOVE operations

* there are many valid BSTs that store the same collection of
elements!

29/31

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence
of operations performed.

* No one is forcingus to keep the tree structure determined by our

ADD/REMOVE operations
* there are many valid BSTs that store the same collection of
elements!
e Starting from a balanced tree, ADD(x) may introduce imbalance.
e Ifimbalance is introduced try to fix it:

¢ find closest unbalanced vertex to x and correct its balance
* Jook for other imbalance and correct it

29/31

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence
of operations performed.
* No one is forcingus to keep the tree structure determined by our
ADD/REMOVE operations
* there are many valid BSTs that store the same collection of
elements!

e Starting from a balanced tree, ADD(x) may introduce imbalance.

e Ifimbalance is introduced try to fix it:
¢ find closest unbalanced vertex to x and correct its balance
* look for other imbalance and correct it

For next time. Think about how you could implement this strategy.
* Where could imbalance occur? And how much?
* What local operations can fix the imbalance?

* What is the worst-case running time of restoring balance?

29/31

Next Time: Sorting

* Finishing Balanced BSTs
* The Sorting Task
* Efficient Sorting by Divide and Conquer

30/31

Scratch Notes

31/31

