Lecture 6: Data Structures III

COMP526: Efficient Algorithms

Updated: October 22, 2024

Will Rosenbaum University of Liverpool

AC: 787201

Announcements

- 1. Third Quiz, due Friday
 - Similar format to before
 - Covers fundamental data structures (Lectures 4–6)
 - Quiz is **closed resource**
 - · No books, notes, internet, etc.
 - Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment (Draft) Posted Today
 - Due Wednesday, 13 November
- 3. Attendance Code:

787201

Meeting Goals

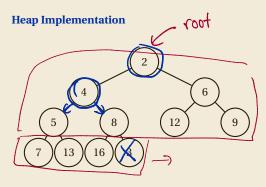
- Finish up heaps
 - Give an efficient array-backed PRIORITYQUEUE
- Introduce two more ADTs:
 - ORDEREDSET
 - Map
- Introduce binary search trees
- Discuss balanced binary search trees

Heaps

Last Time: Priority Queues and Heaps

Priority Queues, Formally

- *S* is the state of the queue, initially *S* = ∅
- $\begin{array}{ccc} & \text{S.Insert}(x,p(x)): S = \\ & x_0x_1\cdots x_ix_{i+1}\cdots x_{n-1} \mapsto \\ & x_0x_1\cdots x_ix_{i+1}\cdots x_{n-1} \end{array}$
 - where $p(x_i) \le p(x) < p(x_{i+1})$
- S.MIN(): returns x_0 where $S = x_0x_1 \cdots x_{n-1}$



- INSERT via BUBBLEUP procedure
- REMOVEMIN via TRICKLEDOWN procedure

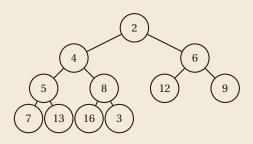
Last Time: Priority Queues and Heaps

Priority Queues, Formally

- *S* is the state of the queue, initially *S* = ∅
- S.INSERT(x, p(x)): $S = x_0x_1 \cdots x_ix_{i+1} \cdots x_{n-1} \mapsto x_0x_1 \cdots x_i x x_{i+1} \cdots x_{n-1}$
 - where $p(x_i) \le p(x) < p(x_{i+1})$
- *S*.MIN(): returns x_0 where $S = x_0x_1 \cdots x_{n-1}$
- S.REMOVEMIN(): $xS \mapsto S$, returns x

Nocle | Nature | Nature | Parent

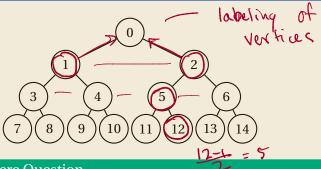
Heap Implementation



- INSERT via BUBBLEUP procedure
- REMOVEMIN via TRICKLEDOWN procedure
- Issue: using Nodes incurs overhead
 - locality of reference
 - storing additional references

Question. How can we represent heaps as arrays?

A Clue: Number the Vertices

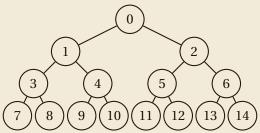


PollEverywhere Question

Suppose a vertex is assigned a label i > 0 in this numbering of the vertices. What is the label of i's parent in the labeling?

pollev.com/comp526

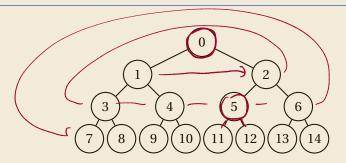
A Clue: Number the Vertices



Relationships:

• If i > 0, then i's parent has index $\lfloor (i-1)/2 \rfloor$

A Clue: Number the Vertices



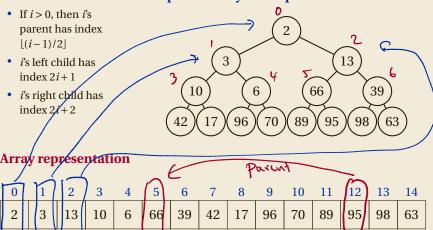
Relationships:

- If i > 0, then i's parent has index $\lfloor (i-1)/2 \rfloor$
- i's left child has index 2i + 1
- i's right child has index 2i + 2

Arrays as Heaps

Associate numbering of tree vertices as array indexes!

Complete binary tree representation



Example: Array BUBBLEUP

We can apply heap procedures directly to the array without reference to the tree itself!

- If i > 0, then i's parent has index $\lfloor (i-1)/2 \rfloor$
- i's left child has index 2i + 1
- i's right child has index 2i+2

```
1: procedure INSERT(p)
 2:
         v \leftarrow new vertex storing p
 3:
         u \leftarrow \text{first vtx with} < 2 \text{ children}
 4:
         add v as u's child
 5:
         PARENT(v) \leftarrow u
 6:
         while value(v) < value(u) and u \neq \perp do
 7:
              SWAP(value(v), value(u))
 8:
              v \leftarrow u
 9:
              u \leftarrow PARENT(v)
         end while
10:
11: end procedure
```

Example: Array BUBBLEUP

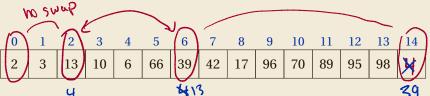
We can apply heap procedures directly to the array without reference to the tree itself!

- If i > 0, then i's parent has index $\lfloor (i-1)/2 \rfloor$
- i's left child has index 2i + 1
- i's right child has index 2i+2

```
1: procedure INSERT(p)
```

- 2: $v \leftarrow \text{new vertex storing } p$
- 3: $u \leftarrow \text{first vtx with} < 2 \text{ children}$
- 4: add v as u's child
- 5: PARENT(v) $\leftarrow u$
- 6: **while** value(v) < value(u) and $u \neq \perp \mathbf{do}$
- 7: SWAP(value(v), value(u))
- 8: *v* ← *u*
- 9: $u \leftarrow PARENT(v)$
- 10: end while
- 11: end procedure

Example. Insert (4)



Array Backed Operations

Using arrays, we can define INSERT and REMOVEMIN much more cleanly!

```
1: procedure INSERT(p)
                                                            1: procedure RemoveMin
 2:
                                                            2:
                                                                   m \leftarrow a[0]
         i \leftarrow n
                                   \triangleright n is heap size
 3: a[i] \leftarrow p
                                                            3:
                                                                   a[0] \leftarrow a[n-1]
 4: n \leftarrow n+1
                                                            4: n \leftarrow n-1
 5: j \leftarrow \lfloor (i-1)/2 \rfloor \Rightarrow j is i's parent
                                                            5: i \leftarrow 0
 6: while i > 0 and a[i] < a[j] do
                                                            6:
                                                                   j \leftarrow \arg\min\{a[2i+1], a[2i+2]\}
 7:
             SWAP(a, i, j)
                                                            7:
                                                                while j < n and a[i] > a[j] do
 8:
            i \leftarrow i
                                                            8:
                                                                        SWAP(a, i, j)
            i \leftarrow \lfloor (i-1)/2 \rfloor
 9:
                                                            9:
                                                                        i \leftarrow i
         end while
                                                                        j \leftarrow \arg\min\{a[2i+1], a[2i+2]\}
10:
                                                           10:
                                                                    end while
11: end procedure
                                                           11:
                                                            12:
                                                                    return m
                                                           13: end procedure
```

Both of these operations still complete after $O(\log n)$ iterations

very little overhead, since only array operations are used!

Ordered Sets and Maps

Adding Order to Elements

Question. What made our operations on heaps efficient?

• Answer: Order! We can order/compare priorities.

Two more ADT with **ordered** elements:

Ordered Sets store a collection (set) of <u>distinct</u> elements from an ordered universe.

- CONTAINS(x) check if the set contains x' = x and return x'
- ADD(x) add x to the set if x was not present
- Remove(x) remove x if x was present

Adding Order to Elements

Question. What made our operations on heaps efficient?

• Answer: Order! We can order/compare priorities.

Two more ADT with **ordered** elements:

Ordered Sets store a collection (set) of *distinct* elements from an ordered universe.

- CONTAINS(x) check if the set contains x' = x and return x'
- ADD(x) add x to the set if x was not present
- REMOVE(x) remove x it x was present

<u>Maps</u>^a store a collection of *values* with associated ordered *keys* with array-like access.

- Put(k, v) set the value associated with key k to v
- GET(k) return the value associated with key k
- Remove(*k*) remove the pair associated with *k*
- CONTAINS(k) check if the map contains a value associated with k

^aAka: associative arrays, dictionaries (Python dict), symbol table

Ordered Sets vs Maps

Ordered Sets

- CONTAINS(x) check if the set contains x' = x and return x'
 - ADD(x) add x to the set if x was not present
- Remove(x) remove x if x was present

Maps

- Put(k, v) set the value associated with key k to v
- GET(k) return the value associated with key k
- REMOVE(k) remove the pair associated with k
- CONTAINS(*k*) check if the map contains a value associated with *k*

PollEverywhere Question

If we are given an ORDEREDSET implementation, how could we use it to implement a MAP?

pollev.com/comp526

Ordered Sets vs Maps

Ordered Sets

- CONTAINS(x) check if the set contains x' = x and return x'
- ADD(x) add x to the set if x was not present
- Remove(x) remove x if x was present

Maps

- Put(k,v) set the value associated with key k to v
- GET(k) return the value associated with key k
- REMOVE(*k*) remove the pair associated with *k*
- CONTAINS(*k*) check if the map contains a value associated with *k*

Maps via Ordered Sets

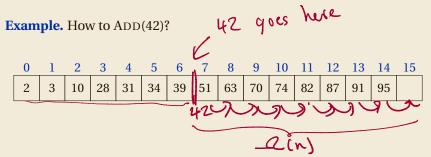
- Create an ordered set that stores pairs (k, v) (+upk)
- Compare $(k)v) \le (k)v'$ $\iff k \le k'$
- CONTAINS, REMOVE are same

- To PUT(k, v), use REMOVE $((k, \cdot))$ then ADD((k, v))
- To GET(k), use $(k, v) \leftarrow CONTAINS((k, \cdot))$ and return v

Ordered Sets via Arrays

ORDEREDSETS can be implemented by arrays:

- Maintain a sorted array $a = [x_0, x_1, ..., x_n]$ with each $x_i \le x_{i+1}$.
- ADD(x) and REMOVE(x) implemented in $\Theta(n)$ worst case time
 - To ADD find index *i* such that $x_i \le x < x_{i+1}$
 - Shift elements x_i with $j \ge i + 1$ to next index
 - This uses $\Theta(n)$ time
 - Set $a[i+1] \leftarrow x$



Ordered Sets via Arrays

ORDEREDSETS can be implemented by arrays:

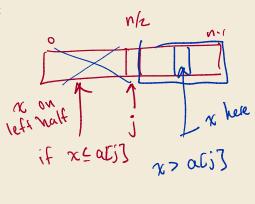
- Maintain a sorted array $a = [x_0, x_1, ..., x_n]$ with each $x_i \le x_{i+1}$.
- ADD(x) and REMOVE(x) implemented in $\Theta(n)$ worst case time
 - To ADD find index *i* such that $x_i \le x < x_{i+1}$
 - Shift elements x_j with $j \ge i + 1$ to next index
 - This uses $\Theta(n)$ time
 - Set $a[i+1] \leftarrow x$

Question. How can we implement CONTAINS(x) more quickly?

Efficient Search

Idea. Binary Search:

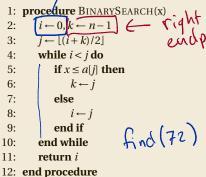
- Start at the middle index j
 - $x \le a[j] \implies \text{index of } x \text{ must}$ be $i \le j$
 - otherwise i > j
- Apply procedure to remaining interval with half excluded
 - compare x to midpoint of remaining interval
 - eliminate half of the interval
- Repeat



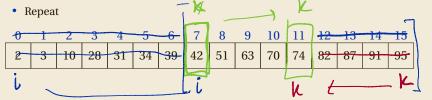
Efficient Search

Idea. Binary Search:

- Start at the middle index j
 - $x \le a[j] \implies \text{index of } x \text{ must}$ be $i \le j$
 - otherwise i > j
- Apply procedure to remaining interval with half excluded
 - compare *x* to midpoint of remaining interval
 - eliminate half of the interval
 - he 11: **return** *i* 12: **end procedu**



left endot interval



Efficiency of Binary Search

PollEverywhere

What is the (worst case) running time of BINARYSEARCH on an array of length n?

pollev.com/comp526

```
1: procedure BINARYSEARCH(x)
         i \leftarrow 0, k \leftarrow n-1
 2:
 3: j \leftarrow \lfloor (i+k)/2 \rfloor
        while i < j do
 4:
             if x \le a[j] then
 5:
                 k \leftarrow i
 6:
             else
 7:
                 i \leftarrow j
 8:
             end if
 9:
         end while
10:
        return i
11:
12: end procedure
```

Efficiency of Binary Search

Proposition

The worst-case running time of BINARYSEARCH is $\Theta(\log n)$.

```
1: procedure BINARYSEARCH(x)
         i \leftarrow 0, k \leftarrow n-1
 2:
 3: j \leftarrow \lfloor (i+k)/2 \rfloor
        while i < j do
 4:
             if x \le a[j] then
 5:
                 k \leftarrow i
 6:
             else
 7:
                 i \leftarrow j
 8:
             end if
 9:
         end while
10:
        return i
11:
12: end procedure
```

Efficiency of Binary Search

Proposition

The worst-case running time of BINARYSEARCH is $\Theta(\log n)$.

Proof.

- Consider the value of k-i.
- After ℓ iterations of the loop, have $k i \le \frac{n}{2^{\ell}}$ (induction)
- Termination when $k i \le 1$

•
$$\ell = \lceil \log n \rceil + 1 \Longrightarrow \frac{n}{2^{\ell}} \le 1$$

rounded UP

size of active interval

```
1: procedure BINARYSEARCH(x)
```

5: **if**
$$x \le a[j]$$
 then

6:
$$k \leftarrow j$$

8:
$$i \leftarrow j$$

process terminates.

Making All Operations Efficient?

A Nagging Question

For Ordered Sets, we can perform all operations in o(n) time?

- Array implementation only gives Contains in $O(\log n)$ time
- Other operations are $\Theta(n)$
- This seems harder than efficient PRIORITYQUEUE as elements can be added *and* removed from anywhere in the data structure

Making All Operations Efficient?

A Nagging Question

For Ordered Sets, we can perform all operations in o(n) time?

- Array implementation only gives Contains in $O(\log n)$ time
- Other operations are $\Theta(n)$
- This seems harder than efficient PRIORITYQUEUE as elements can be added and removed from anywhere in the data structure

Up next: A solution in two parts

- 1. Binary Search Trees
- 2. Balancing Binary Trees

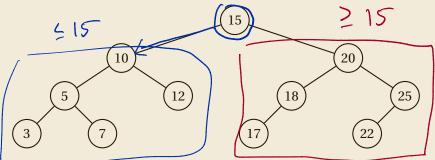
Binary Search Trees

Binary Search Tree Definition

Definition

Suppose T is a binary tree and every vertex v in T has an associated value. We say T is a binary search tree (BST) if for every vertex (value) v:

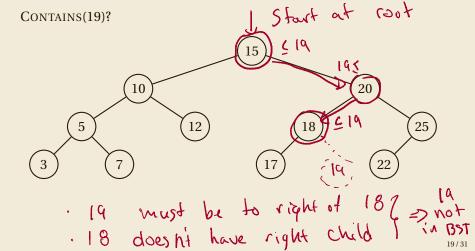
- 1. every *left descendant u* satisfies $u \le v$,
- 2. every right descendant w satisfies $w \ge v$.



BST Search

Question

Given a BST *T*, how can we search for a value *x* in *T*?



BST Search

Question

```
Given a BST T, how can we search for a value x in T?
                                       "perpy to indicate
non-existment node
 1: procedure CONTAINS(x)
       v = \text{tree root}
 2:
       while v \neq x and v \neq \bot do
 3:
          if x < v then
 4:
              v ← LEFTCHILD(v) qo left
 5:
          else
 6:
              v ← RIGHTCHILD(v) 90 (ight
 7:
           end if
 8:
       end while
 9.
10:
     return v
11: end procedure
```

BST Search

Question

Given a BST *T*, how can we search for a value *x* in *T*?

```
1: procedure CONTAINS(x)
 2:
        \nu = tree root
        while v \neq x and v \neq \perp do
 3:
            if x < v then
 4:
                v \leftarrow \text{LEFTCHILD}(v)
 5:
            else
 6:
                v \leftarrow \text{RightChild}(v)
 7:
            end if
 8:
        end while
 9:
10:
        return \nu
11: end procedure
```

PollEverywhere

What is the (worst case) running time of CONTAINS on a tree with *n* vertices?

pollev.com/comp526

BST CONTAINS **Efficiency**

Observation

The (worst-case) running time of CONTAINS on T is $\Theta(h)$ where h is the **height** of T

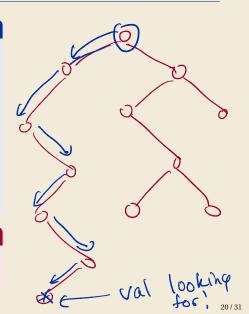
• *h* is the length of the longest path from root to any leaf in *T*

The height of T can be;

- As small as $\log n$
- As large as n − 1

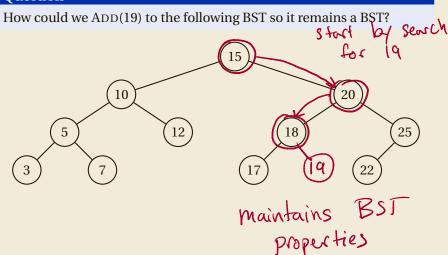
The Moral

The efficiency of Contains depends on the structure of T.



BST Add

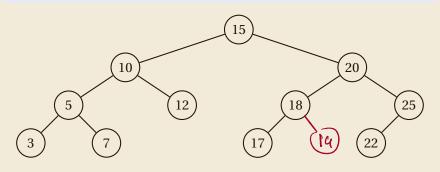
Question



BST Add

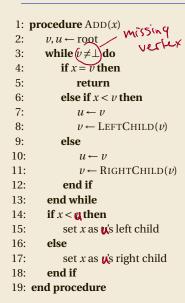
Question

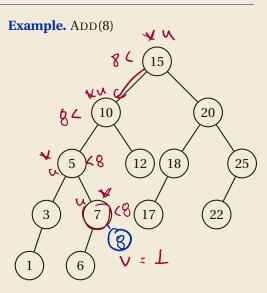
How could we ADD(19) to the following BST so it remains a BST?



Observation. To ADD(x), we should add a new vertex wherever the CONTAINS(x) execution fails to find x.

Adding in Pseudocode





Adding in Pseudocode

```
1: procedure Add(x)
2:
        v. u \leftarrow \text{root}
3:
        while v \neq \perp do
            if x = v then
4:
5:
                return
6:
            else if x < v then
7:
                u \leftarrow v
8:
                 v \leftarrow \text{LeftChild}(v)
9:
            else
10:
                 u \leftarrow v
11:
                 v \leftarrow \text{RIGHTCHILD}(v)
12:
             end if
13:
        end while
14:
        if x < v then
15:
             set x as \nu's left child
16:
        else
17:
             set x as v's right child
18:
         end if
19: end procedure
```

PollEverywhere Question

Describe a sequence of ADD(x) operations starting from an empty BST such that every operation takes $\Omega(n)$ time.

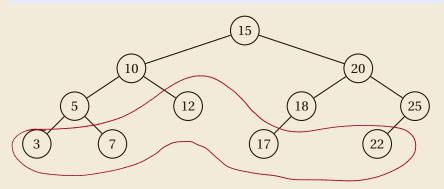
pollev.com/comp526

Adding in Pseudocode

```
1: procedure Add(x)
                                             A Bad Sequence: | 23 -- N
2:
        v, u \leftarrow \text{root}
3:
       while v \neq \perp do
           if x = v then
4:
5:
               return
6:
           else if x < v then
7:
               u \leftarrow v
8:
               v \leftarrow \text{LeftChild}(v)
9:
           else
10:
                u \leftarrow v
11:
                v \leftarrow \text{RIGHTCHILD}(v)
                                                          12(h)
12:
           end if
13:
        end while
14:
        if x < v then
15:
            set x as \nu's left child
16:
        else
17:
            set x as v's right child
        end if
18:
19: end procedure
                                                                                                        22/31
```

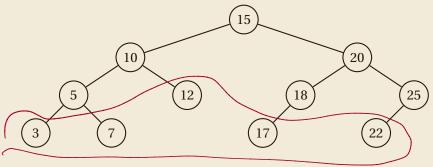
Question

How could we remove an element from a BST?



Question

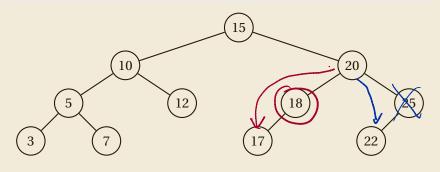
How could we remove an element from a BST?



Case 1: A leaf. Just remove it!

Question

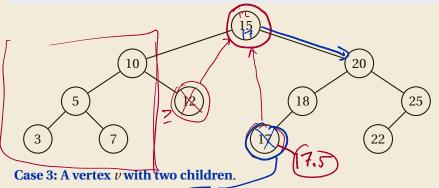
How could we remove an element from a BST?



Case 2: A vertex v with single child. Splice! Set v's child to be its parent's child.

Question

How could we remove an element from a BST?



- 1. Find *next smallest* value w.
- 2. Copy w's value to v.
- 3. Remove w

must have 0 1 children, so

So Far...

...we've implemented

- CONTAINS(x)
- ADD(x)
- REMOVE(x)

for OrderedSets.

But we haven't improved efficiency

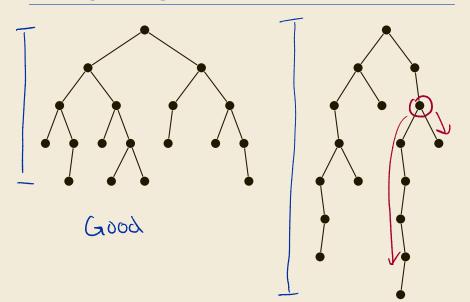
- All of these operations can cost as much as $\Theta(n)$
 - efficiency depends on previous operations performed!

Idea. We can restructure BSTs.

- Goal: ensure that the BST has small height.
- After each update, check and update tree structure.
 - · maintain BST property
 - · updates performed efficiently

Balanced Binary Trees

Distinguishing the Good from the Bad

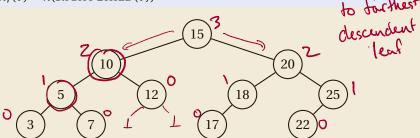


Height Balanced Trees

Definition (Left and Right Height)

Let v be a vertex in a tree. We define:

- $h(\bot) = -1$
- $h(\underline{v}) = 1 + \max(h(\text{LeftChild}(v)), h(\text{RightChild}(v)))$
- $h_{\ell}(v) = h(\text{LEFTCHILD}(v))$
- $h_r(v) = h(RIGHTCHILD(v))$



Height Balanced Trees

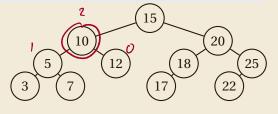
Definition (Left and Right Height)

Let v be a vertex in a tree. We define:

- $h(\bot) = -1$
- $h(v) = 1 + \max(h(\text{LeftCHild}(v)), h(\text{RightCHild}(v)))$
- $h_{\ell}(v) = h(\text{LEFTCHILD}(v))$
- $h_r(v) = h(\text{RIGHTCHILD}(v))$

Def. (Height Balanced)

We call a tree **height balanced** if for every vertex v, $|h_{\ell}(v) - h_{r}(v)| \le 1$.



Properties of Height Balanced Trees

Proposition

Suppose T is a height balanced tree of height h. Then T has $n \ge 2^{h/2}$ vertices.

Properties of Height Balanced Trees

Proposition

Suppose *T* is a height balanced tree of height *h*. Then *T* has $n \ge 2^{h/2}$ vertices.

Proof.

Let M(h) denote the minimum size of a height balanced tree of height h.

- Observe that M(0) = 1, M(1) = 2.
- In general $M(h) \ge 1 + M(h-1) + M(h-2)$
 - one subtree of the root is a height balanced tree of height h-1
 - other subtree is height balanced with height at least h-2
- So $M(h) \ge 2M(h-2)$
- Inductive argument $\implies M(h) \ge 2^{h/2}$.

Properties of Height Balanced Trees

Proposition

Suppose *T* is a height balanced tree of height *h*. Then *T* has $n \ge 2^{h/2}$ vertices.

Consequences.

If *T* is a height balanced tree with *n* vertices, then its height *h* satisfies $h \le 2 \log n$

- \implies Contains(x) takes time $O(\log n)$
- \implies ADD(x) takes time $O(\log n)$
- \implies REMOVE(x) takes time $O(\log n)$

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence of operations performed.

- No one is *forcing* us to keep the tree structure determined by our ADD/REMOVE operations
 - there are many valid BSTs that store the same collection of elements!

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence of operations performed.

- No one is *forcing* us to keep the tree structure determined by our ADD/REMOVE operations
 - there are many valid BSTs that store the same collection of elements!
- Starting from a balanced tree, ADD(x) may introduce imbalance.
- If imbalance is introduced try to fix it:
 - find closest unbalanced vertex to x and correct its balance
 - look for other imbalance and correct it

Maintaining Height Balance

Our Strategy. Maintain a BST that is height balanced for any sequence of operations performed.

- No one is *forcing* us to keep the tree structure determined by our ADD/REMOVE operations
 - there are many valid BSTs that store the same collection of elements!
- Starting from a balanced tree, ADD(x) may introduce imbalance.
- If imbalance is introduced try to fix it:
 - find closest unbalanced vertex to x and correct its balance
 - · look for other imbalance and correct it

For next time. Think about how you could implement this strategy.

- Where could imbalance occur? And how much?
- What *local* operations can fix the imbalance?
- What is the worst-case running time of restoring balance?

Next Time: Sorting

- Finishing Balanced BSTs
- The Sorting Task
- Efficient Sorting by Divide and Conquer

Scratch Notes