11] m 1 m 1]]
00000000000000000F00000000FGCUCEO0O0E000000000060000iI000800000000000000000ggoRoo]
123456 78 310012131 1516 1716192021 2223242526 272829 2% 3132 33 34 35 36 37 38 39 40 41 42 41 44 45 46 47 4 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT BRI ERRRRRY B ERRRRRI [R ERRER AR R RN R RN R RN R RN R R R RS AR R R R RRRERERRERRRT!
2202222222222222222222220222
3333233332333[3
A0444480444440404000444400444400444444404408404444040444444440444444402044444044
555555555555 505555505 5055555 QN5 5M555555555555555556555555555555555555555555555

66666666 66M66%66666666656R6666666

Lecture 4: Data Structures |
COMP526: Efficient Algorithms

Will Rosenbaum
Updated: October 15, 2024 University of Liverpool

1/29

Announcements

1. Second Quiz, due Friday
¢ Similar format to before

* One question, select all correct answers
® 20 minute time limit

* Covers asymptotic (Big-O) notation
* Lectures 03 and 04
°* Relevant reading from CLRS

® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)

2. Programming Assignment 1: Discuss on
Thursday

* Due 13 November

3. Attendance Code:

2/29

Meeting Goals

* Finish discussion of asymptotic notation
* Introduce Abstract Data Types:

¢ Stack
* Queue
* Priority Queue

* Discuss array-backed and linked list-backed implementations of
Stacks and Queues

* Introduce amortized analysis

3/29

Asymptotic
Notation

From Last Time

Suppose f and g are functions from N to
R". Then we say that f = O(g) (read: f is
big O of g) if there exist constants Ny € N
and Ce Rsuch thatforallne N

n= Ny = f(n) < Cg(n).

Equivalently, f = O(g) < limsup % 2

Suppose f, fi, 2, 8 81, &, hare

functions and a is any constant. Then:
1.

. (Vnf(n)<gn) = f=0(9

. [=0(® = a-f=0(g

. f=0(g) and

(Vnf(n)<a) = f=0(1)

g=0(h) = f=0Mh)

. f=0(h) and

g=0(h) = f+g=0(h

. fi =0(g1) and

f2=0(g) = fi-f2=0(g &)

B28)

Variations of O

* f=0(g)if f= O(g) and g = O(f)
* Example: 47° +3n+7 = O(n?)

* f=0(g)ifg= O(f)
° Example: 0.0172—7n=Qn?

* f=o0(g) if for every € > 0, there exists Ny
f(n)
such that n= Ny = g <€
* Equivalently:

f=o0(g) < lim;,_ [g

gn) —
1.999

* Example: n'%% = o(n?)

e f=w(g) if g=o(f)
2.01

* Example: 0.017%%! = w(n?)

6/29

Variations of O

Mnemonic for
* f=0(g) if f=0(g) and g= O(f) Variations

¢ E le: 4% +3n+7 = O(1n?
xample: 4n° +3n+ (n7) Big-O (in)equality

* f=Q(ifg= 0 o g
° Example: 0.0172—7n=Qn? o -
* f=o0(g) if for every € > 0, there exists Ny e =
such that n= Ny = %<£. 0 <
* Equivalently:
_ : [_
f=o0(g) < lim;,_ gTZ) =0
* Example: n'%% = o(n?)
e f=w(g) if g=o(f)
* Example: 0.017%%! = w(n?)

6/29

Variations of O

Mnemonic for
* f=0(g) if f=0(g) and g= O(f) Variations

¢ E le: 4% +3n+7 = O(1n?
xample: 4n° +3n+ (n7) Big-O (in)equality

« f=Q(g)ifg= 0 ‘("2 i
e Example: 0.01n% — 7n = Q(n?) -
p o ~
* f=o0(g) if for every € > 0, there exists Ny e =
such that n= Ny = %<£. 0 <
* Equivalently: More Properties
‘f:: O(g) — lthn_.oo g%%% =0 ° ;} i s¥éﬁf jizj
* Example: n'%% = o(n?) 2=

Ni-fa=o(g1 &)

. * fi=Q(g1) and
* f=w(g)ifg=o(H h=w(g) =
* Example: 0.017%%! = w(n?) A-f=wg &)

6/29

Interpretation

Suppose:
¢ two algorithms A and B for solving the same problem

* running time of Ais f, running time of Bis g

* f=o0(g

Consider running A on a slow machine M) and B on a fast machine M.

Then: regardless of how much slower M; is than M, for sufficiently
large inputs, A will complete faster than B.

7129

Interpretation

Suppose:
¢ two algorithms A and B for solving the same problem
* running time of Ais f, running time of Bis g
* f=0(8
Consider running A on a slow machine M) and B on a fast machine M.

Then: regardless of how much slower M; is than M, for sufficiently
large inputs, A will complete faster than B.

The Moral. Efficient algorithms are better than faster hardware.

¢ little-o notation gives the “right” abstraction to formalize this
relationship

7129

Common Orders of Growth

Named orders of growth:
name asymptotic growth
constant o)
logarithmic O(logn)
polylogarithmic O(log‘ n)
linear O(n)
almost linear O(nlog‘ n)
quadratic on?)
polynomial O(n°)

exponential o

8/29

Common Orders of Growth

Named orders of growth: Relationships

name asymptotic growth
Between classes:

constant o)
logarithmic O(logn) Foall e 520
polylogarithmic O(log® n) * a=o(log"n)
linear Oo(n) * log"n=o(n?)
almost linear O(nlog® n) o 1= o(b"
quadratic on?)
polynomial O(n°)

exponential o(c

8/29

Common Orders of Growth

Named orders of growth: Relationships

name asymptotic growth
Between classes:

constant o)
logarithmic O(logn) Foall e 520
polylogarithmic O(log® n) * a=o(log"n)
linear Oo(n) * log"n=o(n?)
almost linear O(nlog‘ n) o 1= o(b"
quadratic on?)
20 et i) Within classes:
exponential o

Foralla b,a<b
* logn=o(log’ n)
s n%=o(nb
°* a'=o(b"

8/29

Example

Compare the asymptotic growth of the following functions:
1. f(n)=2n*+2"2
2. gn)=log’n+/n
3. h(n) = n+ nlogn+ n®?

9/29

Linear ADTs and
Data Structures

Abstract Data Types and Data Structures

Abstract Data Types (ADTs)
An abstract data type gives a
formal specification of a task to be
performed:
e List of supported operations
(syntax)
* The effects of applying the
operations (semantics)

11/29

Abstract Data Types and Data Structures

Abstract Data Types (ADTs) Data Structures
An abstract data type gives a A data structure specifies
formal specification of a task to be

* how data is represented
ok * how the supported operations

are performed (i.e., what
algorithms are used)

e List of supported operations
(syntax)

* The effects of applying the
operations (semantics)

e what are the costs of the
operations

11/29

Abstract Data Types and Data Structures

Abstract Data Types (ADTs) Data Structures
An abstract data type gives a A data structure specifies
formal specification of a task to be

* how data is represented
ok * how the supported operations

are performed (i.e., what
algorithms are used)

e List of supported operations
(syntax)

* The effects of applying the
operations (semantics)

e what are the costs of the
operations

Question. Why is it useful to separate ADTs from Data Structure?
e Can swap different data structures for same ADT
* applications using the functionality will not be broken
¢ different data structures may be more efficient in some
applications
e Better abstractions
* Generic lower bounds

11/29

The Stack ADT

Stacks, Intuitively
Goal: to store a collection of
elements

* elements arranged as in a
stack of books
* can only access top-most
element:
* put a new book on the stack
* look at the top-most book
° remove the top-most book

12/29

The Stack ADT

Stacks, Intuitively Stacks, Formally
Goal: to store a collection of * Sis the state of the stack,
elements initially S = &
* elements arranged as in a e S.PUSH(x):S— Sx
ST ol beeks e S.ToP() : returns x,_; where
* can only access top-most S=XoXi - X1
element:
* put a new book on the stack * S.POP(): Sx— §, returns x
* look at the top-most book ¢ S.EMPTY() returns

° remove the top-most book TRUE < S=¢

12/29

The Stack ADT

Stacks, Intuitively Stacks, Formally
Goal: to store a collection of * Sis the state of the stack,
elements initially $ = @
* elements arranged as in a e S.PUSH(X):S— Sx
stack of books e S.ToP() : returns x,_; where
* can only access top-most S=XoXi - X1
element: "
* put a new book on the stack * S.POP(): Sx— §, returns x
* look at the top-most book ¢ S.EMPTY() returns
° remove the top-most book TRUE < S=¢
Tons of Applications!

e Executing programs (call stack)
¢ Parsing/evaluating arithmetic expression
¢ Syntax checking (parenthesis)

12/29

Try It Yourself!
PollEverywhere Question

What is the result of calling ToP()
after the following sequence stack
operations:

PusH(1)
PuUsH(2)
PuUsH(3)
Pop()
PusH(4)
PusH(5)
Por()
PUSH(6)
Popr()
Pop()

pollev.com/comp526

13/29

https://pollev.com/comp526

Try It Yourself!

PollEverywhere Question

What is the result of calling ToP()
after the following sequence stack
operations:

PusH(1)
PUSH(2)
PuUsH(3)
Popr()
PusH(4)
PusH(5)
Por()
PUSH(6)
Popr()
Pop()

Stacks, Formally

Sis the state of the stack,
initially S= @

S.PUSH(x) : S— Sx

S.ToP() : returns x,,_; where
S=XpX1 " Xp-1

S.PoP() : Sx— §, returns x

S.EMPTY() returns
TRUE <— S=0

13/29

Try It Yourself!
PollEverywhere Question

What is the result of calling ToP()
after the following sequence stack
operations:

PuUsH(1)
PUSH(2)
PUSH(3)
Pop()
PUsH(4)
PusH(5)
Por()
PUSH(6)
Popr()
Popr()

13/29

Linked List Backed Stack Implementation

Idea ignores empty stack condition
* Store each element in a NODE 1: class LISTSTACK
2: NODE head
* Each NODE stores 3: procedure PUSH (x)
¢ the value of an element in the stack 4: n<—new NODE
* areference to the NODE storing the 5: n.data — x
next element 6: n.next — head
1: class NODE & head —n
2 datavalue 8: end procedure
3 NODE next 9: procedure Pop
4: end class 10: n <+ head
11: head — n.next
12: return n.data
13: end procedure
14: procedure TOP
15: return head.data
16: end procedure
17: end class

14/29

Issues with Linked List Stacks

Issues
e NODES waste Space 1: class LISTSTACK
N 2 NODE head — @
must store reference for each entry
3 procedure PUSH (x)
4 n—new NODE
5% n.data — x
6 n.next — head
7 head — n
* Pollowing chains of reference is g e’::cléfi‘:lcr‘;d}')‘:;
ooy 10: g n—head
° memory access is non-local 11: el = et
° sequential memory access is more 12: return n.data
efficient 13: end procedure
14: procedure TOP
15: return head.data
16: end procedure

17: end class

15/29

Arrays as ADTs

Informally, arrays are indexed lists of elements:

0[{1/23|4|5|6|7|8
lli|lv]ie|r|plojo|l

Array Operations (ADT):
* create an array of size n
e get the element at index i:
® al4] returns r
* set the value at index i to a prescribed value
® al5] —c

Array Operation Costs (Data Structure)
* create an array of size n has cost O(n)
e get and set have cost O(1)

16/29

Array Backed Stack Implementation

Idea:
e Store elements in the stack in an
array

® access array values by index

* neighboring values at adjacent
indices
= sequential access

* Only overhead: store index of head
(top)

1: class ARRAYSTACK

2: a<— new array

3 head — 0

4: procedure PUSH (x)
5 alhead] < x

6: head — head +1
7 end procedure

8 procedure Por

9: head — head -1
10: return alhead]
11: end procedure

12: procedure TOP

13: return alhead — 1]
14: end procedure

15: end class

17/29

Array Backed Stack Implementation

Idea:
 Store elements in the stack in an
array
® access array values by index
* neighboring values at adjacent
indices
= sequential access
* Only overhead: store index of head

(top)

What is the issue here?

1: class ARRAYSTACK

2 a<— new array

3 head — 0

4: procedure PUSH (x)
5 alhead] < x

6: head — head +1
7 end procedure

8 procedure Por

9: head — head -1
10: return alhead]
11: end procedure

12: procedure TOP

13: return alhead — 1]
14: end procedure

15: end class

17/29

Resizing Arrays

The Problem: Arrays are fixed
size!
e What if we don’t know the
(maximum) size of the
stack in advance?

18/29

Resizing Arrays

The Problem: Arrays are fixed Increasing stack capacity
size! 1: class ARRAYSTACK
2: a<— new array

e What if we don’t know the

3:
(maximum) size of the 4: procedure INCREASECAPACITY(K)
stack in advance? 53 n— SIZE(a)
6: b — new array of size n+ k
A Solution: Make a larger array 7: fori=0,1,...,n—1do
when necessary! 5 Sl i
9: end for
* Must copy contents of old 10: head — b
array into new array. .. 11: end procedure

... this is costly! 12: end class

18/29

Resizing Arrays

The Problem: Arrays are fixed
size!
e What if we don’t know the
(maximum) size of the
stack in advance?

A Solution: Make a larger array
when necessary!

* Must copy contents of old
array into new array. ..
...this is costly!

Increasing stack capacity

1: class ARRAYSTACK
2: a<— new array

procedure INCREASECAPACITY (k)
n— SIZE(a)
b — new array of size n+ k
fori=0,1,...,n—1do
bli] — ali]
end for

10: head — b
11: end procedure
12: end class

Question. What is the running time of INCREASECAPACITY?

18/29

Two Strategies

Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy 1. Increase the
capacity by k =1 each time.
* Why increase the size
more than we need to?

19/29

https://pollev.com/comp526

Two Strategies

Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy 1. Increase the
capacity by k =1 each time.

* Why increase the size
more than we need to?

Strategy 2. Increase the
capacity by n each time!

* Maybe we’ll need more
extra space?

19/29

https://pollev.com/comp526

Two Strategies

Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy Llo NGRS the, PollEverywhere Question
capacity by k =1 each time.

Which strategy will lead to better
performance?

* Why increase the size
more than we need to?

Strategy 2. Increase the
capacity by n each time!

* Maybe we’ll need more
extra space?

pollev.com/comp526

19/29

https://pollev.com/comp526

Running Time Comparison

Time to Build Stack (ms)

@ Strategy 1 Time @ Strategy 2 Time

1.25E+8 ...
(J
o®
L]
00
1.00E+8 o9
..
o®
®
7.50E+7 '..
...
....
5.00E+7
-
)
2.50E+7 °
e *oguen® estt®
natansttepee®les®
0
2000 4000 6000 8000 10000
Stack Size

20/29

Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have worst-case running time of ©(n) for
INCREASECAPACITY
e Strategy 1 may incur this on every PUSH operation

® Overall running time O3

21/29

Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have worst-case running time of ©(n) for
INCREASECAPACITY
e Strategy 1 may incur this on every PUSH operation
® Overall running time O3
* For Strategy 2, INCREASECAPACITY only gets called when the stack
size is 1,2,4,8,...,2k,...,n.
* If cost of resizing n' is c- v/, what is total resize cost?

21/29

Amortized Analysis

Goal. To analyze the worst-case running time of a sequence of
operations.
* Amortized cost = largest average cost per operation averaged over
all sequences.

22/29

Amortized Analysis

Goal. To analyze the worst-case running time of a sequence of
operations.

* Amortized cost = largest average cost per operation averaged over
all sequences.

Banker’s View

e Each operation has a (financial) cost
¢ Cost can be paid:

¢ from pocket

¢ from bank account
* For each operation, can

¢ withdraw from account

* deposit to account

22/29

Amortized Analysis

Goal. To analyze the worst-case running time of a sequence of
operations.

* Amortized cost = largest average cost per operation averaged over
all sequences.

Banker’s View
e Each operation has a (financial) cost
¢ Cost can be paid:
¢ from pocket
* from bank account
* For each operation, can
¢ withdraw from account
* deposit to account
A sequence of operations has amortized cost c if for each operation:
1. the operation is paid for (from pocket or bank account)
2. at most c value is paid from pocket and/or deposited during each
operation

22/29

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):
* PUSH(x) has cost ¢; = O(1) if the array is not full,
* PUSH(x) has cost ¢, = O(n) if the array is full.

23/29

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):
* PUSH(x) has cost ¢; = O(1) if the array is not full,
* PUSH(x) has cost ¢, = O(n) if the array is full.

PollEverywhere Question

How much money must we add to our bank
account after each (not full) PUSH to ensure our
balance is at least ¢, before the next resize?

pollev.com/comp526

23/29

https://pollev.com/comp526

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):

* PUSH(x) has cost ¢; = O(1) if the array is not full,
* PUSH(x) has cost ¢, = O(n) if the array is full.
Completing the analysis:
* If current capacity is n, last resize was at capacity n/2

* There were (at least) n/2 non-resizing PUSH
operations before next resize

° Must pay ¢ for next resize

e Itsuffices to put cp/(n/2) = 2¢p/nin bank each
operation

On each non-resizing operation, we pay ¢ out of pocket,

and 2¢p/ninto the bank

= the amortized costis ¢; +2cp/n= O(1) + %O(n) =0(1).
The Moral. A single resize may cost ©(n), but the average cost over
sequences of operations is always O(1) (if we're careful).

23/29

The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements
* elements arranged as in a
queue at Tesco
* new people enter the back of
the queue
* only the person at the front of
the queue can be removed
(serviced)

24/29

The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements

* elements arranged as in a
queue at Tesco

* new people enter the back of
the queue

* only the person at the front of
the queue can be removed
(serviced)

Queues, Formally

Sis the state of the queue,
initially S= @
S.ENQUEUE(x) : S— xS

S.FRONT() : returns x;_; where

S=XpX1"" " Xp-1

S.DEQUEUE() : Sx— §, returns

X

S.EMPTY() returns
TRUE < S=0

24/29

The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements

* elements arranged as in a
queue at Tesco

* new people enter the back of
the queue

* only the person at the front of
the queue can be removed
(serviced)

Tons of Applications!
* Scheduling
* Messaging

Queues, Formally

Sis the state of the queue,
initially S= @
S.ENQUEUE(x) : S— xS

S.FRONT() : returns x;_; where

S=XpX1"" " Xp-1

S.DEQUEUE() : Sx— §, returns

X

S.EMPTY() returns
TRUE < S=0

24/29

List Backed Queues

Idea

¢ Store each element in a NODE : class LISTQUEUE

1
2 NODE head
¢ Store references to NODE: 3 NODE tail
* head at the front of the queue 4 procedure ENQUEUE(x)
* tail at the back of the queue 5: n—new NODE
6 n.data — x
7 tail.next — n
8 tail — n
9 end procedure
10: procedure DEQUEUE
11: n — head
12: head — n.next
13: return n.data
14: end procedure
15: end class

25/29

List Backed Queues

Idea

e Store each element in a NODE
¢ Store references to NODE:

* head at the front of the queue
¢ tail at the back of the queue

Issues:
e Similar to linked list stack
implementation

* Locality of reference
* NODE memory overhead

class LISTQUEUE

NODE head

NODE tail

procedure ENQUEUE(x)
n—new NODE
n.data — x
tail.next — n
tail — n

end procedure

procedure DEQUEUE
n — head
head — n.next
return n.data

end procedure

: end class

25/29

Array Backed Queues

Idea:

e Store elements in the stack in an
array

* Maintain indices of head and tail

Ignores resizing/checking if full

10:
11:
12:

1
2
3
4
5:
6
7
8
9

: class ARRAYQUEUE

a— new array, size n
head, tail — 0
procedure ENQUEUE(x)
altail] — x
tail — tail + 1
end procedure
procedure DEQUQUE
head — head + 1
return alhead — 1]
end procedure
end class

26/29

Array Backed Queues

Idea: Ignores resizing/checking if full
¢ Store elements in the stack in an 1: class ARRAYQUEUE
array 2 a < new array, size n
* Maintain indices of head and tail S head, tail —0
4 procedure ENQUEUE(x)
. 5: altail] — x
What is the problem 6 tail—tail+1
2 7 end procedure
here G 8 procedure DEQUQUE
9 head — head +1
10: return alhead — 1]
11: end procedure

12: end class

26/29

Array Backed Queues

Idea: Ignores resizing/checking if full
¢ Store elements in the stack in an 1: class ARRAYQUEUE
array 2 a < new array, size n
* Maintain indices of head and tail 3 head, tail —0
4 procedure ENQUEUE(x)
5: altail] — x
The fix: 6 tail — tail+ 1 modn
e U reul 7 end procedure
se circular arrays 8 procedure DEQUQUE
e Perform index arithmetic modulo n 9 head — head +1 modn
(array size) 10: return alhead — 1 mod 7]
. 11: end procedure
* All operations are then O(1) 12 end class

* amortized O(1) time if resizing by
doubling size

26/29

The (Min) Priority Queue ADT

Priority Queues, Intuitively
Goal: to store a collection of
elements

* Each element x has an
associated priority, p(x)

* New elements inserted with
prescribed priorities

* (Can access/remove element
with the minimum priority in
the collection

27129

The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially $ = @

* Each element x has an * S.INSERT(x, p(x)) : S— xS

associated priority, p(x) e S.MIN() : returns xp where

* New elements inserted with S=XpX) -+ Xp1
prescribed priorities ¢ S.REMOVEMIN(Q) : xS— S
* Can access/remove element returns x
with the minimum priority in .

i S.DECREASEKEY(x, p/)
the collection S= XoX] *+* Xj—1XXjg] Xyl —

XoX1 ** Xj—1 XXjXi—1Xj+1 " Xp—1
* plx)) = p'(x) < plxj11)

27129

The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially $ = @

* Each element x has an .

associated priority, p(x)

[]
* New elements inserted with
prescribed priorities

* (Can access/remove element
with the minimum priority in .
the collection

For Next Time

S.INSERT(x, p(x)) : S— xS
S.MIN() : returns xy where
S=Xpx1 " Xp-1
S.REMOVEMIN() : xS— S,
returns x

S.DECREASEKEY(x, p')

S=XoX1 " Xj—1XXj41* Xp—1 —

XoX1 ** Xj—1 XXjXi—1Xj+1 " Xp—1
* plx)) = p'(x) < plxj11)

¢ Think about implementing min priority queues with linked lists

and stacks

* Consider the running times of the priority queue operations

27129

Next Time: Trees!

* Heaps
* Binary Search Trees
* Balanced Binary Trees

28/29

Scratch Notes

29/29

	Asymptotic Notation
	Linear ADTs and Data Structures
	Priority Queues

