
Lecture 4: Data Structures I
COMP526: Efficient Algorithms

Updated: October 15, 2024
Will Rosenbaum
University of Liverpool

1 / 29



Announcements
1. Second Quiz, due Friday

• Similar format to before
• One question, select all correct answers
• 20 minute time limit

• Covers asymptotic (Big-O) notation
• Lectures 03 and 04
• Relevant reading from CLRS

• Quiz is closed resource
• No books, notes, internet, etc.
• Do not discuss until after submission deadline (Friday night, after

midnight)

2. Programming Assignment 1: Discuss on
Thursday

• Due 13 November

3. Attendance Code:
2 / 29



Meeting Goals
• Finish discussion of asymptotic notation
• Introduce Abstract Data Types:

• Stack
• Queue
• Priority Queue

• Discuss array-backed and linked list-backed implementations of
Stacks and Queues

• Introduce amortized analysis

3 / 29



Asymptotic
Notation



From Last Time
Definition
Suppose f and g are functions from N to
R+. Then we say that f = O(g) (read: f is
big O of g) if there exist constants N0 ∈ N
and C ∈ R such that for all n ∈ N

n ≥ N0 =⇒ f (n) ≤ Cg(n).

Equivalently, f = O(g) ⇐⇒ limsup f (n)
g(n) <∞

0
0

Proposition
Suppose f , f1, f2, g, g1, g2, h are
functions and a is any constant. Then:

1. (∀nf (n) ≤ a) =⇒ f = O(1)

2. (∀nf (n) ≤ g(n)) =⇒ f = O(g)

3. f = O(g) =⇒ a · f = O(g)

4. f = O(g) and
g = O(h) =⇒ f = O(h)

5. f = O(h) and
g = O(h) =⇒ f +g = O(h)

6. f1 = O(g1) and
f2 = O(g2) =⇒ f1 · f2 = O(g1 ·g2)

5 / 29



Variations of O

• f =Θ(g) if f = O(g) and g = O(f )
• Example: 4n2 +3n+7 =Θ(n2)

• f =Ω(g) if g = O(f )
• Example: 0.01n2 −7n =Ω(n2)

• f = o(g) if for every ε> 0, there exists N0

such that n ≥ N0 =⇒ f (n)
g(n) < ε.

• Equivalently:

f = o(g) ⇐⇒ limn→∞
f (n)
g(n) = 0

• Example: n1.999 = o(n2)

• f =ω(g) if g = o(f )
• Example: 0.01n2.01 =ω(n2)

Mnemonic for
Variations

Big-O (in)equality
ω >
Ω ≥
Θ ≈
O ≤
o <

More Properties
• f1 = O(g1) and

f2 = o(g2) =⇒
f1 · f2 = o(g1 ·g2)

• f1 =Ω(g1) and
f2 =ω(g2) =⇒
f1 · f2 =ω(g1 ·g2)

6 / 29



Variations of O

• f =Θ(g) if f = O(g) and g = O(f )
• Example: 4n2 +3n+7 =Θ(n2)

• f =Ω(g) if g = O(f )
• Example: 0.01n2 −7n =Ω(n2)

• f = o(g) if for every ε> 0, there exists N0

such that n ≥ N0 =⇒ f (n)
g(n) < ε.

• Equivalently:

f = o(g) ⇐⇒ limn→∞
f (n)
g(n) = 0

• Example: n1.999 = o(n2)

• f =ω(g) if g = o(f )
• Example: 0.01n2.01 =ω(n2)

Mnemonic for
Variations

Big-O (in)equality
ω >
Ω ≥
Θ ≈
O ≤
o <

More Properties
• f1 = O(g1) and

f2 = o(g2) =⇒
f1 · f2 = o(g1 ·g2)

• f1 =Ω(g1) and
f2 =ω(g2) =⇒
f1 · f2 =ω(g1 ·g2)

6 / 29



Variations of O

• f =Θ(g) if f = O(g) and g = O(f )
• Example: 4n2 +3n+7 =Θ(n2)

• f =Ω(g) if g = O(f )
• Example: 0.01n2 −7n =Ω(n2)

• f = o(g) if for every ε> 0, there exists N0

such that n ≥ N0 =⇒ f (n)
g(n) < ε.

• Equivalently:

f = o(g) ⇐⇒ limn→∞
f (n)
g(n) = 0

• Example: n1.999 = o(n2)

• f =ω(g) if g = o(f )
• Example: 0.01n2.01 =ω(n2)

Mnemonic for
Variations

Big-O (in)equality
ω >
Ω ≥
Θ ≈
O ≤
o <

More Properties
• f1 = O(g1) and

f2 = o(g2) =⇒
f1 · f2 = o(g1 ·g2)

• f1 =Ω(g1) and
f2 =ω(g2) =⇒
f1 · f2 =ω(g1 ·g2)

6 / 29



Interpretation
Suppose:

• two algorithms A and B for solving the same problem

• running time of A is f , running time of B is g

• f = o(g)

Consider running A on a slow machine M1 and B on a fast machine M2.
Then: regardless of how much slower M1 is than M2, for sufficiently
large inputs, A will complete faster than B.

The Moral. Efficient algorithms are better than faster hardware.

• little-o notation gives the “right” abstraction to formalize this
relationship

7 / 29



Interpretation
Suppose:

• two algorithms A and B for solving the same problem

• running time of A is f , running time of B is g

• f = o(g)

Consider running A on a slow machine M1 and B on a fast machine M2.
Then: regardless of how much slower M1 is than M2, for sufficiently
large inputs, A will complete faster than B.

The Moral. Efficient algorithms are better than faster hardware.

• little-o notation gives the “right” abstraction to formalize this
relationship

7 / 29



Common Orders of Growth
Named orders of growth:

name asymptotic growth
constant O(1)
logarithmic O(logn)
polylogarithmic O(logc n)
linear O(n)
almost linear O(n logc n)
quadratic O(n2)
polynomial O(nc)
exponential O(cn)

Relationships

Between classes:
For all a,b > 0

• a = o(logb n)

• loga n = o(nb)

• na = o(bn)

Within classes:
For all a,b, a < b

• loga n = o(logb n)

• na = o(nb)

• an = o(bn)

8 / 29



Common Orders of Growth
Named orders of growth:

name asymptotic growth
constant O(1)
logarithmic O(logn)
polylogarithmic O(logc n)
linear O(n)
almost linear O(n logc n)
quadratic O(n2)
polynomial O(nc)
exponential O(cn)

Relationships

Between classes:
For all a,b > 0

• a = o(logb n)

• loga n = o(nb)

• na = o(bn)

Within classes:
For all a,b, a < b

• loga n = o(logb n)

• na = o(nb)

• an = o(bn)

8 / 29



Common Orders of Growth
Named orders of growth:

name asymptotic growth
constant O(1)
logarithmic O(logn)
polylogarithmic O(logc n)
linear O(n)
almost linear O(n logc n)
quadratic O(n2)
polynomial O(nc)
exponential O(cn)

Relationships

Between classes:
For all a,b > 0

• a = o(logb n)

• loga n = o(nb)

• na = o(bn)

Within classes:
For all a,b, a < b

• loga n = o(logb n)

• na = o(nb)

• an = o(bn)

8 / 29



Example

Example

Compare the asymptotic growth of the following functions:

1. f (n) = 2n2 +2n/2

2. g(n) = log2 n+p
n

3. h(n) = n+n logn+n3/2

9 / 29



Linear ADTs and
Data Structures



Abstract Data Types and Data Structures
Abstract Data Types (ADTs)
An abstract data type gives a
formal specification of a task to be
performed:

• List of supported operations
(syntax)

• The effects of applying the
operations (semantics)

Data Structures
A data structure specifies

• how data is represented

• how the supported operations
are performed (i.e., what
algorithms are used)

• what are the costs of the
operations

Question. Why is it useful to separate ADTs from Data Structure?
• Can swap different data structures for same ADT

• applications using the functionality will not be broken
• different data structures may be more efficient in some

applications
• Better abstractions
• Generic lower bounds

11 / 29



Abstract Data Types and Data Structures
Abstract Data Types (ADTs)
An abstract data type gives a
formal specification of a task to be
performed:

• List of supported operations
(syntax)

• The effects of applying the
operations (semantics)

Data Structures
A data structure specifies

• how data is represented

• how the supported operations
are performed (i.e., what
algorithms are used)

• what are the costs of the
operations

Question. Why is it useful to separate ADTs from Data Structure?
• Can swap different data structures for same ADT

• applications using the functionality will not be broken
• different data structures may be more efficient in some

applications
• Better abstractions
• Generic lower bounds

11 / 29



Abstract Data Types and Data Structures
Abstract Data Types (ADTs)
An abstract data type gives a
formal specification of a task to be
performed:

• List of supported operations
(syntax)

• The effects of applying the
operations (semantics)

Data Structures
A data structure specifies

• how data is represented

• how the supported operations
are performed (i.e., what
algorithms are used)

• what are the costs of the
operations

Question. Why is it useful to separate ADTs from Data Structure?
• Can swap different data structures for same ADT

• applications using the functionality will not be broken
• different data structures may be more efficient in some

applications
• Better abstractions
• Generic lower bounds

11 / 29



The Stack ADT
Stacks, Intuitively
Goal: to store a collection of
elements

• elements arranged as in a
stack of books

• can only access top-most
element:

• put a new book on the stack
• look at the top-most book
• remove the top-most book

Stacks, Formally

• S is the state of the stack,
initially S =∅

• S.PUSH(x) : S 7→ Sx

• S.TOP() : returns xn−1 where
S = x0x1 · · ·xn−1

• S.POP() : Sx 7→ S, returns x

• S.EMPTY() returns
TRUE ⇐⇒ S =∅

Tons of Applications!
• Executing programs (call stack)
• Parsing/evaluating arithmetic expression
• Syntax checking (parenthesis)
• . . .

12 / 29



The Stack ADT
Stacks, Intuitively
Goal: to store a collection of
elements

• elements arranged as in a
stack of books

• can only access top-most
element:

• put a new book on the stack
• look at the top-most book
• remove the top-most book

Stacks, Formally

• S is the state of the stack,
initially S =∅

• S.PUSH(x) : S 7→ Sx

• S.TOP() : returns xn−1 where
S = x0x1 · · ·xn−1

• S.POP() : Sx 7→ S, returns x

• S.EMPTY() returns
TRUE ⇐⇒ S =∅

Tons of Applications!
• Executing programs (call stack)
• Parsing/evaluating arithmetic expression
• Syntax checking (parenthesis)
• . . .

12 / 29



The Stack ADT
Stacks, Intuitively
Goal: to store a collection of
elements

• elements arranged as in a
stack of books

• can only access top-most
element:

• put a new book on the stack
• look at the top-most book
• remove the top-most book

Stacks, Formally

• S is the state of the stack,
initially S =∅

• S.PUSH(x) : S 7→ Sx

• S.TOP() : returns xn−1 where
S = x0x1 · · ·xn−1

• S.POP() : Sx 7→ S, returns x

• S.EMPTY() returns
TRUE ⇐⇒ S =∅

Tons of Applications!
• Executing programs (call stack)
• Parsing/evaluating arithmetic expression
• Syntax checking (parenthesis)
• . . .

12 / 29



Try It Yourself!
PollEverywhere Question
What is the result of calling TOP()
after the following sequence stack
operations:

PUSH(1)

PUSH(2)

PUSH(3)

POP()

PUSH(4)

PUSH(5)

POP()

PUSH(6)

POP()

POP()

pollev.com/comp526

13 / 29

https://pollev.com/comp526


Try It Yourself!
PollEverywhere Question
What is the result of calling TOP()
after the following sequence stack
operations:

PUSH(1)

PUSH(2)

PUSH(3)

POP()

PUSH(4)

PUSH(5)

POP()

PUSH(6)

POP()

POP()

Stacks, Formally

• S is the state of the stack,
initially S =∅

• S.PUSH(x) : S 7→ Sx

• S.TOP() : returns xn−1 where
S = x0x1 · · ·xn−1

• S.POP() : Sx 7→ S, returns x

• S.EMPTY() returns
TRUE ⇐⇒ S =∅

13 / 29



Try It Yourself!
PollEverywhere Question
What is the result of calling TOP()
after the following sequence stack
operations:

PUSH(1)

PUSH(2)

PUSH(3)

POP()

PUSH(4)

PUSH(5)

POP()

PUSH(6)

POP()

POP()

13 / 29



Linked List Backed Stack Implementation
Idea

• Store each element in a NODE

• Each NODE stores
• the value of an element in the stack
• a reference to the NODE storing the

next element
1: class NODE

2: datavalue
3: NODE next
4: end class

ignores empty stack condition

1: class LISTSTACK

2: NODE head
3: procedure PUSH(x)
4: n ← new NODE

5: n.data ← x
6: n.next ← head
7: head ← n
8: end procedure
9: procedure POP

10: n ← head
11: head ← n.next
12: return n.data
13: end procedure
14: procedure TOP

15: return head.data
16: end procedure
17: end class

14 / 29



Issues with Linked List Stacks
Issues

• NODEs waste space
• must store reference for each entry

• Following chains of reference is
costly

• memory access is non-local
• sequential memory access is more

efficient

1: class LISTSTACK

2: NODE head ←∅
3: procedure PUSH(x)
4: n ← new NODE

5: n.data ← x
6: n.next ← head
7: head ← n
8: end procedure
9: procedure POP

10: n ← head
11: head ← n.next
12: return n.data
13: end procedure
14: procedure TOP

15: return head.data
16: end procedure
17: end class

15 / 29



Arrays as ADTs
Informally, arrays are indexed lists of elements:

a = 0 1 2 3 4 5 6 7 8
l i v e r p o o l

Array Operations (ADT):

• create an array of size n
• get the element at index i:

• a[4] returns r

• set the value at index i to a prescribed value
• a[5] ← c

Array Operation Costs (Data Structure)

• create an array of size n has cost O(n)

• get and set have cost O(1)

16 / 29



Array Backed Stack Implementation
Idea:

• Store elements in the stack in an
array

• access array values by index
• neighboring values at adjacent

indices
=⇒ sequential access

• Only overhead: store index of head
(top)

What is the issue here?

1: class ARRAYSTACK

2: a ← new array
3: head ← 0
4: procedure PUSH(x)
5: a[head] ← x
6: head ← head+1
7: end procedure
8: procedure POP

9: head ← head−1
10: return a[head]
11: end procedure
12: procedure TOP

13: return a[head−1]
14: end procedure
15: end class

17 / 29



Array Backed Stack Implementation
Idea:

• Store elements in the stack in an
array

• access array values by index
• neighboring values at adjacent

indices
=⇒ sequential access

• Only overhead: store index of head
(top)

What is the issue here?

1: class ARRAYSTACK

2: a ← new array
3: head ← 0
4: procedure PUSH(x)
5: a[head] ← x
6: head ← head+1
7: end procedure
8: procedure POP

9: head ← head−1
10: return a[head]
11: end procedure
12: procedure TOP

13: return a[head−1]
14: end procedure
15: end class

17 / 29



Resizing Arrays
The Problem: Arrays are fixed
size!

• What if we don’t know the
(maximum) size of the
stack in advance?

A Solution: Make a larger array
when necessary!

• Must copy contents of old
array into new array. . .

. . . this is costly!

Increasing stack capacity
1: class ARRAYSTACK

2: a ← new array
3: . . .
4: procedure INCREASECAPACITY(k)
5: n ← SIZE(a)
6: b ← new array of size n+k
7: for i = 0,1, . . . ,n−1 do
8: b[i] ← a[i]
9: end for

10: head ← b
11: end procedure
12: end class

Question. What is the running time of INCREASECAPACITY?

18 / 29



Resizing Arrays
The Problem: Arrays are fixed
size!

• What if we don’t know the
(maximum) size of the
stack in advance?

A Solution: Make a larger array
when necessary!

• Must copy contents of old
array into new array. . .

. . . this is costly!

Increasing stack capacity
1: class ARRAYSTACK

2: a ← new array
3: . . .
4: procedure INCREASECAPACITY(k)
5: n ← SIZE(a)
6: b ← new array of size n+k
7: for i = 0,1, . . . ,n−1 do
8: b[i] ← a[i]
9: end for

10: head ← b
11: end procedure
12: end class

Question. What is the running time of INCREASECAPACITY?

18 / 29



Resizing Arrays
The Problem: Arrays are fixed
size!

• What if we don’t know the
(maximum) size of the
stack in advance?

A Solution: Make a larger array
when necessary!

• Must copy contents of old
array into new array. . .

. . . this is costly!

Increasing stack capacity
1: class ARRAYSTACK

2: a ← new array
3: . . .
4: procedure INCREASECAPACITY(k)
5: n ← SIZE(a)
6: b ← new array of size n+k
7: for i = 0,1, . . . ,n−1 do
8: b[i] ← a[i]
9: end for

10: head ← b
11: end procedure
12: end class

Question. What is the running time of INCREASECAPACITY?

18 / 29



Two Strategies
Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy 1. Increase the
capacity by k = 1 each time.

• Why increase the size
more than we need to?

Strategy 2. Increase the
capacity by n each time!

• Maybe we’ll need more
extra space?

PollEverywhere Question

Which strategy will lead to better
performance?

pollev.com/comp526

19 / 29

https://pollev.com/comp526


Two Strategies
Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy 1. Increase the
capacity by k = 1 each time.

• Why increase the size
more than we need to?

Strategy 2. Increase the
capacity by n each time!

• Maybe we’ll need more
extra space?

PollEverywhere Question

Which strategy will lead to better
performance?

pollev.com/comp526

19 / 29

https://pollev.com/comp526


Two Strategies
Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy 1. Increase the
capacity by k = 1 each time.

• Why increase the size
more than we need to?

Strategy 2. Increase the
capacity by n each time!

• Maybe we’ll need more
extra space?

PollEverywhere Question

Which strategy will lead to better
performance?

pollev.com/comp526

19 / 29

https://pollev.com/comp526


Running Time Comparison

20 / 29



Understanding the Discrepancy
Question. Why was the difference in running time so dramatic?

Observation. Both strategies have worst-case running time ofΘ(n) for
INCREASECAPACITY

• Strategy 1 may incur this on every PUSH operation
• Overall running timeΘ(n2)

• For Strategy 2, INCREASECAPACITY only gets called when the stack
size is 1,2,4,8, . . . ,2k, . . . ,n.

• If cost of resizing n′ is c ·n′, what is total resize cost?

21 / 29



Understanding the Discrepancy
Question. Why was the difference in running time so dramatic?

Observation. Both strategies have worst-case running time ofΘ(n) for
INCREASECAPACITY

• Strategy 1 may incur this on every PUSH operation
• Overall running timeΘ(n2)

• For Strategy 2, INCREASECAPACITY only gets called when the stack
size is 1,2,4,8, . . . ,2k, . . . ,n.

• If cost of resizing n′ is c ·n′, what is total resize cost?

21 / 29



Amortized Analysis
Goal. To analyze the worst-case running time of a sequence of
operations.

• Amortized cost = largest average cost per operation averaged over
all sequences.

Banker’s View
• Each operation has a (financial) cost
• Cost can be paid:

• from pocket
• from bank account

• For each operation, can
• withdraw from account
• deposit to account

A sequence of operations has amortized cost c if for each operation:
1. the operation is paid for (from pocket or bank account)
2. at most c value is paid from pocket and/or deposited during each

operation

22 / 29



Amortized Analysis
Goal. To analyze the worst-case running time of a sequence of
operations.

• Amortized cost = largest average cost per operation averaged over
all sequences.

Banker’s View
• Each operation has a (financial) cost
• Cost can be paid:

• from pocket
• from bank account

• For each operation, can
• withdraw from account
• deposit to account

A sequence of operations has amortized cost c if for each operation:
1. the operation is paid for (from pocket or bank account)
2. at most c value is paid from pocket and/or deposited during each

operation

22 / 29



Amortized Analysis
Goal. To analyze the worst-case running time of a sequence of
operations.

• Amortized cost = largest average cost per operation averaged over
all sequences.

Banker’s View
• Each operation has a (financial) cost
• Cost can be paid:

• from pocket
• from bank account

• For each operation, can
• withdraw from account
• deposit to account

A sequence of operations has amortized cost c if for each operation:
1. the operation is paid for (from pocket or bank account)
2. at most c value is paid from pocket and/or deposited during each

operation
22 / 29



Amortized Analysis of Strategy 2
Setup. Suppose we apply Strategy 2 (double the capacity when full):

• PUSH(x) has cost c1 = O(1) if the array is not full,

• PUSH(x) has cost c2 = O(n) if the array is full.

23 / 29



Amortized Analysis of Strategy 2
Setup. Suppose we apply Strategy 2 (double the capacity when full):

• PUSH(x) has cost c1 = O(1) if the array is not full,
• PUSH(x) has cost c2 = O(n) if the array is full.

PollEverywhere Question

How much money must we add to our bank
account after each (not full) PUSH to ensure our
balance is at least c2 before the next resize?

pollev.com/comp526
23 / 29

https://pollev.com/comp526


Amortized Analysis of Strategy 2
Setup. Suppose we apply Strategy 2 (double the capacity when full):

• PUSH(x) has cost c1 = O(1) if the array is not full,

• PUSH(x) has cost c2 = O(n) if the array is full.

Completing the analysis:
• If current capacity is n, last resize was at capacity n/2

• There were (at least) n/2 non-resizing PUSH

operations before next resize

• Must pay c2 for next resize

• It suffices to put c2/(n/2) = 2c2/n in bank each
operation

On each non-resizing operation, we pay c1 out of pocket,
and 2c2/n into the bank
=⇒ the amortized cost is c1+2c2/n = O(1)+ 1

n O(n) = O(1).

The Moral. A single resize may costΘ(n), but the average cost over
sequences of operations is always O(1) (if we’re careful).

23 / 29



The Queue ADT
Queues, Intuitively
Goal: to store a collection of
elements

• elements arranged as in a
queue at Tesco

• new people enter the back of
the queue

• only the person at the front of
the queue can be removed
(serviced)

Queues, Formally

• S is the state of the queue,
initially S =∅

• S.ENQUEUE(x) : S 7→ xS

• S.FRONT() : returns xn−1 where
S = x0x1 · · ·xn−1

• S.DEQUEUE() : Sx 7→ S, returns
x

• S.EMPTY() returns
TRUE ⇐⇒ S =∅

Tons of Applications!

• Scheduling

• Messaging

• . . .

24 / 29



The Queue ADT
Queues, Intuitively
Goal: to store a collection of
elements

• elements arranged as in a
queue at Tesco

• new people enter the back of
the queue

• only the person at the front of
the queue can be removed
(serviced)

Queues, Formally

• S is the state of the queue,
initially S =∅

• S.ENQUEUE(x) : S 7→ xS

• S.FRONT() : returns xn−1 where
S = x0x1 · · ·xn−1

• S.DEQUEUE() : Sx 7→ S, returns
x

• S.EMPTY() returns
TRUE ⇐⇒ S =∅

Tons of Applications!

• Scheduling

• Messaging

• . . .

24 / 29



The Queue ADT
Queues, Intuitively
Goal: to store a collection of
elements

• elements arranged as in a
queue at Tesco

• new people enter the back of
the queue

• only the person at the front of
the queue can be removed
(serviced)

Queues, Formally

• S is the state of the queue,
initially S =∅

• S.ENQUEUE(x) : S 7→ xS

• S.FRONT() : returns xn−1 where
S = x0x1 · · ·xn−1

• S.DEQUEUE() : Sx 7→ S, returns
x

• S.EMPTY() returns
TRUE ⇐⇒ S =∅

Tons of Applications!

• Scheduling

• Messaging

• . . .
24 / 29



List Backed Queues
Idea

• Store each element in a NODE

• Store references to NODE:
• head at the front of the queue
• tail at the back of the queue

Issues:
• Similar to linked list stack

implementation
• Locality of reference
• NODE memory overhead

1: class LISTQUEUE

2: NODE head
3: NODE tail
4: procedure ENQUEUE(x)
5: n ← new NODE

6: n.data ← x
7: tail.next ← n
8: tail ← n
9: end procedure

10: procedure DEQUEUE

11: n ← head
12: head ← n.next
13: return n.data
14: end procedure
15: end class

25 / 29



List Backed Queues
Idea

• Store each element in a NODE

• Store references to NODE:
• head at the front of the queue
• tail at the back of the queue

Issues:
• Similar to linked list stack

implementation
• Locality of reference
• NODE memory overhead

1: class LISTQUEUE

2: NODE head
3: NODE tail
4: procedure ENQUEUE(x)
5: n ← new NODE

6: n.data ← x
7: tail.next ← n
8: tail ← n
9: end procedure

10: procedure DEQUEUE

11: n ← head
12: head ← n.next
13: return n.data
14: end procedure
15: end class

25 / 29



Array Backed Queues
Idea:

• Store elements in the stack in an
array

• Maintain indices of head and tail

Ignores resizing/checking if full

1: class ARRAYQUEUE

2: a ← new array, size n
3: head,tail ← 0
4: procedure ENQUEUE(x)
5: a[tail] ← x
6: tail ← tail+1
7: end procedure
8: procedure DEQUQUE

9: head ← head+1
10: return a[head−1]
11: end procedure
12: end class

26 / 29



Array Backed Queues
Idea:

• Store elements in the stack in an
array

• Maintain indices of head and tail

What is the problem
here?

Ignores resizing/checking if full

1: class ARRAYQUEUE

2: a ← new array, size n
3: head,tail ← 0
4: procedure ENQUEUE(x)
5: a[tail] ← x
6: tail ← tail+1
7: end procedure
8: procedure DEQUQUE

9: head ← head+1
10: return a[head−1]
11: end procedure
12: end class

26 / 29



Array Backed Queues
Idea:

• Store elements in the stack in an
array

• Maintain indices of head and tail

The fix:

• Use circular arrays

• Perform index arithmetic modulo n
(array size)

• All operations are then O(1)
• amortized O(1) time if resizing by

doubling size

Ignores resizing/checking if full

1: class ARRAYQUEUE

2: a ← new array, size n
3: head,tail ← 0
4: procedure ENQUEUE(x)
5: a[tail] ← x
6: tail ← tail+1 mod n
7: end procedure
8: procedure DEQUQUE

9: head ← head+1 mod n
10: return a[head−1 mod n]
11: end procedure
12: end class

26 / 29



The (Min) Priority Queue ADT
Priority Queues, Intuitively
Goal: to store a collection of
elements

• Each element x has an
associated priority, p(x)

• New elements inserted with
prescribed priorities

• Can access/remove element
with the minimum priority in
the collection

Priority Queues, Formally

• S is the state of the queue,
initially S =∅

• S.INSERT(x,p(x)) : S 7→ xS

• S.MIN() : returns x0 where
S = x0x1 · · ·xn−1

• S.REMOVEMIN() : xS 7→ S,
returns x

• S.DECREASEKEY(x,p′)
S = x0x1 · · ·xi−1xxi+1 · · ·xn−1 7→
x0x1 · · ·xj−1xxjxi−1xi+1 · · ·xn−1

• p(xj) ≤ p′(x) < p(xj+1)For Next Time
• Think about implementing min priority queues with linked lists

and stacks
• Consider the running times of the priority queue operations

27 / 29



The (Min) Priority Queue ADT
Priority Queues, Intuitively
Goal: to store a collection of
elements

• Each element x has an
associated priority, p(x)

• New elements inserted with
prescribed priorities

• Can access/remove element
with the minimum priority in
the collection

Priority Queues, Formally

• S is the state of the queue,
initially S =∅

• S.INSERT(x,p(x)) : S 7→ xS

• S.MIN() : returns x0 where
S = x0x1 · · ·xn−1

• S.REMOVEMIN() : xS 7→ S,
returns x

• S.DECREASEKEY(x,p′)
S = x0x1 · · ·xi−1xxi+1 · · ·xn−1 7→
x0x1 · · ·xj−1xxjxi−1xi+1 · · ·xn−1

• p(xj) ≤ p′(x) < p(xj+1)

For Next Time
• Think about implementing min priority queues with linked lists

and stacks
• Consider the running times of the priority queue operations

27 / 29



The (Min) Priority Queue ADT
Priority Queues, Intuitively
Goal: to store a collection of
elements

• Each element x has an
associated priority, p(x)

• New elements inserted with
prescribed priorities

• Can access/remove element
with the minimum priority in
the collection

Priority Queues, Formally

• S is the state of the queue,
initially S =∅

• S.INSERT(x,p(x)) : S 7→ xS

• S.MIN() : returns x0 where
S = x0x1 · · ·xn−1

• S.REMOVEMIN() : xS 7→ S,
returns x

• S.DECREASEKEY(x,p′)
S = x0x1 · · ·xi−1xxi+1 · · ·xn−1 7→
x0x1 · · ·xj−1xxjxi−1xi+1 · · ·xn−1

• p(xj) ≤ p′(x) < p(xj+1)For Next Time
• Think about implementing min priority queues with linked lists

and stacks
• Consider the running times of the priority queue operations

27 / 29



Next Time: Trees!

• Heaps
• Binary Search Trees
• Balanced Binary Trees

28 / 29



Scratch Notes

29 / 29


	Asymptotic Notation
	Linear ADTs and Data Structures
	Priority Queues

