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Announcements

1. Second Quiz, due Friday
¢ Similar format to before

* One question, select all correct answers
® 20 minute time limit

* Covers asymptotic (Big-O) notation P?\ % N \\(\Nhf
* Lectures 03 and 04 T NS \’6

* Relevant reading from CLRS ——
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)

2. Programming Assignment 1: Discuss on
Thursday

¢ Due 13 November
3. Attendance Code: qu | 4q

2/29



Meeting Goals

* Finish discussion of asymptotic notation
* Introduce Abstract Data Types:

¢ Stack
* Queue
* Priority Queue

* Discuss array-backed and linked list-backed implementations of
Stacks and Queues

* Introduce amortized analysis

3/29



Asymptotic
Notation



From Last Time

Suppose f and g are functions from N to
R™. Then we say tha (read: f'is
big O of g) if there exist constants Ny € N
and Ce Rsuch thatforallne N

n= Ny = f(n) < Cg(n).

Equivalently, f = O(g) < limsup % 2

Suppose f, fi, 2, 8 &1, &, hare

functions and a is any constant. Then:
1.
- 2.
- 3.
v 4.

<

(Vnf(n)<a) = f=001)
(Vnf(n) <g(n) = f=0(g)
f=0(@ = a-f=0(g)

f=0(g) and
g=0(h) = f=0(h)

. f=0(h) and

g=0(h) = f+g=0(h

. fi =0(g1) and

f2=0(g) = fi-f2=0(g &)
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Variations of O

¢
. f:@iff:O(g)andg:om /w;,

* Example: 417° +3n+7 = 0(n?) I

. fﬂQ(g)]ifg o) T
* Example: 0.011n° - 7n= Q(n?)

ey v s
* f= 1f for every € > 0, there emsts%
such that n= Ny = QZ) <@\/—§ 2 R

* Equivalently:

f=0(g = lim;_.c o7
1.999

f(n) _ -0
g(n)
* Example: n —o(n
Totmaly Costes
* f= [w(g) Ilf g=o(f) s\%vu( ,@\véc\Y

* Example: 0.01720! = (12) YW
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Variations of O

Mnemonic for
* f=0(g) if f=0(g) and g= O(f) Variations

¢ E le: 47 +3n+7 = O(1n?
xample: 4n° +3n+ (n7) Big-O (in)equality

- f=Q(gifg=0( o g
° Example: 0.0172—7n=Qn? f o -
* f=o0(g) if for every € > 0, there exists Ny @ =
such that n= Ny = %<£. 0 <
* Equivalently:
_ : [ _
f=o0(g) < lim;,_ gTZ) =0
* Example: n'%% = o(n?)
* f=w(g) if g=o(f)
* Example: 0.017%%! = w(n?)
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Variations of O

Mnemonic for
* f=0(g) if f=0(g) and g= O(f) Variations

¢ E le: 47 +3n+7 = O(1n?
xample: 4n° +3n+ (n) Big-O (in)equality

« f=Q(g)ifg=0( ‘("2 i
e Example: 0.011% — 7n = Q(n?) -

p - ~

* f=o0(g) if for every € > 0, there exists Ny e =
such that n= Ny = %«s. 0 <
* Equivalently: More Properties
f=0(g) < lim, o L5 =0 * [fi = 0gy)Jand

* Example: n''9% = o(n?) 2 =0g)]=

T12=081 &)

. and
* Example: 0.017%%! = w(n?) T 2=0E &)
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Interpretation

Suppose:
* two algorithms A and B for solving the same problem
* running time of- runmng time of|Bis g
*/f=0(8) '
Consider running A on a slow machine M) and B on a fast machine M.

Then: regardless of how much slower M; is than M, for sufficiently
large inputs, A will complete faster than B.
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Interpretation

Suppose:
¢ two algorithms A and B for solving the same problem
* running time of Ais f, running time of Bis g
* f=0(8
Consider running A on a slow machine M) and B on a fast machine M.

Then: regardless of how much slower M; is than M, for sufficiently
large inputs, A will complete faster than B.

The Moral. Efficient algorithms are better than faster hardware.

¢ little-o notation gives the “right” abstraction to formalize this
relationship

7129



Common Orders of Growth

Named orders of growth:

name asymptotic growth
V\(

const.ant . o) ‘0 o © Q \0(,\ &025
logarithmic O(logn) — V& (s g<1
polylogarithmic O(log@n) e .
. xnosm.’mvl ~ logy &
linear O(n) 91

. = —
almost linear O(nlog® n) \o%®°* ‘\ioq ? l
quadratic on?) sk v
polynomial O(n) . Covst -
exponential o = (10‘1 y\)

C = Oay  cowsteml voluw
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Common Orders of Growth

Named orders of growth:

Relationships

name asymptotic growth

constant o Between classes: C,O\ASXVN\\’
logarithmic O(logn) For all@ 0
polylogarithmic Ologn) |. .. a=olog"n

linear o(n) et log? n= o(n")

almost linear O(nlog®n) 4:‘;: > « n=o"

quadratic on?) %“\,.k\ e

polynomial o(n°)

exponential o
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Common Orders of Growth

Named orders of growth:
name asymptotic growth
constant o)
logarithmic O(logn)
polylogarithmic O(log® n)
linear O(n)
almost linear O(nlog‘n)
quadratic on?)
polynomial o(n®)
exponential o

18§ = oly) e
¢ :O’U‘D

R MO I CRO N IR

n

Relationships

Between classes:
Foralla,b>0

° a= o(logb n)

e log%n=q(nb
'Z@naz o(b”)i l

Within classes: gﬁw

For all a, b YA
* logn=o(log’ n) ot

° a — b ¢
A
® a =o "y
n-h-1 - %>(:i)
R 8/29



O~ n
Example o | g
O\‘("\Qw\(m\ \40\-\ CE
hle
Compare the agymptotic gr of the /follomng,fu‘yr{ctlons 7 n
1. f(n)— 12 Y22 -~ 9 We , 9™ - ('2 ’) .
7 A =3
2. g(n) =log n:f\/ﬁ W = Y\/1_ = ‘Zf\ 3
3. h(n) = n+plogn\+pn3/?
T b

o "
0yC) i@(ﬂ ) uh?fg) = O()
N ETA 2 nf| RGN

W) = @LV\?/"' logw-~ © ") @ (_Q,“\

b - (6N . = N .C :QJ(,Ok.)
(__O\ ) \{\\OC{W 0( ) % = 0(“) 9/29




Linear ADTs and
Data Structures



Abstract Data Types and Data Structures

Abstract Data Types (ADTs)
An abstract data type gives a
formal specification of a|task to beegcé(\\&g

performed: oy
e List of supported operations
(syntax)

* The effects of applying the
operations (semantics)
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Abstract Data Types and Data Structures

Abstract Data Types (ADTs) Data Structures
An abstract data type gives a A data structure specifies
formal specification of a task to be o

how data is represented
ok ¢ how the supported operations

are performed (i.e., what
algorithms are used)

e List of supported operations
(syntax)

* The effects of applying the ¢ what are the costs of the
operations (semantics) operations

Squhy WHAT  speniby HOW_
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Abstract Data Types and Data Structures

Abstract Data Types (ADTs) Data Structures
An abstract data type gives a A data structure specifies
formal specification of a task to be

* how data is represented
ok ¢ how the supported operations

are performed (i.e., what
algorithms are used)

e List of supported operations
(syntax)

* The effects of applying the
operations (semantics)

e what are the costs of the
operations

Question. Why is it useful to separate ADTs from Data Structure?
* Can swap different data structures for same ADT
* applications using the functionality will not be broken
¢ different data structures may be more efficient in some
applications
* Better abstractions
* Generic lower bounds

11/29



The Stack ADT

Stacks, Intuitively
Goal: to store a collection of
elements

* elements arranged as in a
stack of books
* can only access top-most
element:
* put a new book on the stack
* look at the top-most book
° remove the top-most book
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The Stack ADT

Stacks, Intuitively Stacks, Formally
Goal: to store a collection of o @S the state of the stack, ‘
elements initially S= @ u“@&o«\rﬂ‘ld\f\
* elements arranged as in a e S.PUSH(x):S—|Sx
stack of books -

i e S.ToP() : returns x,_; Wwhere
can only access top-most S:_x_())f_l"@ € [0&5‘ Q/\l,

element: .
* put a new book on the stack * SPOP(:Sx— §, returns x S

* look at the top-most book ¢ S.EMPTY() returns
° remove the top-most book TRUE < S=¢
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The Stack ADT

Stacks, Intuitively Stacks, Formally
Goal: to store a collection of * Sis the state of the stack,
elements initially $ = @
* elements arranged as in a e S.PUSH(X):S— Sx
stack of books e S.ToP() : returns x,_; where
* can only access top-most S=XoXi - X1
element: "
* put a new book on the stack * S.POP(): Sx— §, returns x
* look at the top-most book ¢ S.EMPTY() returns
° remove the top-most book TRUE < S=¢
Tons of Applications!

e Executing programs (call stack)
¢ Parsing/evaluating arithmetic expression
¢ Syntax checking (parenthesis)
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Try It Yourself!
PollEverywhere Question

What is the result of calling ToP()
after the following sequence stack
operations:

PusH(1)
PuUsH(2)
PuUsH(3)
Pop()
PusH(4)
PusH(5)
Por()
PUSH(6)
Popr()
Pop()

pollev.com/comp526
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Try It Yourself!

PollEverywhere Question

What is the result of calling ToP()
after the following sequence stack
operations:

PusH(1)
PUsSH(2)
PuUsH(3)
Popr()
PusH(4)
PusH(5)
Por()
PUSH(6)
Popr()
Pop()

Stacks, Formally

Sis the state of the stack,
initially S= @

S.PUSH(x) : S— Sx

S.ToP() : returns x,_; where
S=XpX1 " Xp-1

S.PoP() : Sx— §, returns x

S.EMPTY() returns
TRUE <— S=0

13/29



Try It Yourself!
Al puke  AwbS

What is the result of calling Top() qs - 1 —> \ 1L 12 3

after the following sequence stack

operations: W l

pusih 24T ¢&— L4 &\
PUSH(2) 3\\5’ ?@\(q
PUSH(3) QX L oW

PoOP()

PUSH(4) 21‘( é

PUSH(5) | L( V%\Z \ JPOP
Pop()

PUSH(6)
Por() ﬁ é”ll"‘
Popr() @

13/29



Linked List Backed Stack Implementation

Idea ignores empty stack condition
* Store each element in a NODE 1: class LISTSTACK
2: NODE
* Each NODE stores 3: procedure PUSH (x)
¢ the value of an element in the stack 4: n<— new NODE
* areference to the NODE storing the 5: n.data — x
next element 6: — n.next — head
1: class NODE 7 head —n
2. dhimmaine < s ‘)(O ‘(\;“6(- 8: end procedure
3: NODE next) 0\' ( \0 Q,\ 0\)‘ U\ 13 Pror‘;ed‘llll:agop
4 end class SX'U\QV’ 11: head — n.next
12: return n.data
13: end procedure
(0)) 2 K@ I\ 14: procedure TOP
Ve g \% T 15: return head.data
16: end procedure

- 2 L{ 17: end class
Skl 5= 1270w
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Issues with Linked List Stacks

Issues
° NODES waste Space 1: class LISTSTACK
2 NODE head — @
° must store reference for each entry
— 3 procedure PUSH (x)
N 4 n—new NODE
\N\O\}N\“ ﬁ() 5 n.data «— x
\00‘& 6 n.next — head
7 head — n
* Pollowing chains of reference is g end pfi"“’d}')“e
2 oP
COStl procedure
Y . 10: n — head
° memory access is non-local 11: el o= et
° sequential memory access is more 12: return n.data
efficient 13: end procedure
14: procedure TOP
15: return head.data
16: end procedure

17: end class
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Arrays as ADTs

Informally, arrays are indexed lists of elements:

ol1]2]3[4)[56e[7[8
a= =
lLlilviefftNwlo|o]|l

Array Operations (ADT):
* create an array of size n
e get the element at index i:
® al4] returns r
* set the value at index i to a prescribed value
® al5] —c
Array Operation Costs (Data Structure)

E create an array of size n has cost O(n)

= |
o getandsethavecosth(l)! — rllooys oNe Cd{u»{’,
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Array Backed Stack Implementation

Idea:
* Store elements in the stack in an 1. class ARRAYSTACK
array 2: a<— new array
. 3: head — 0
® access array values by index .
. . . 4: procedure PUSH (x)
° neighboring values at adjacent 5. afhead] — x
indices 6: head — head + 1
— sequential access 7. endprocedure
* Only overhead: store index of head 8:  procedure Pop
o) 9: head —head -1
op 10: return alhead]
R 2 3 \ 5 11: end procedure

0 12: procedure TOP
i TI— —8—\ % 13: return alhead — 1]
o I l & L\ ] 6 14: end procedure
M 15: end class
Pushlé)

\(\u\é NG
G : |2y P LF) ?V\S\AU s




Array Backed Stack Implementation

Idea:

e Store elements in the stack in an
array

° access array values by index
° neighboring values at adjacent
indices
— sequential access
* Only overhead: store index of head

(top)

What is the issue here?

Nteys Wave fixd

1:
2
3
4
53
6.
7
8

9:
10:
11:
12:
13:
14:
15:

class ARRAYSTACK
a<— new array
head —0
procedure PUSH (x)
alhead] < x
head — head +1
end procedure
procedure Por
head — head -1
return alhead]
end procedure
procedure TOP
return alhead — 1]
end procedure
end class

S
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Resizing Arrays

The Problem: Arrays are fixed
size!
¢ What if we don’t know the
(maximum) size of the
stack in advance?

18/29



Resizing Arrays

The Problem: Arrays are fixed Increasing stack capacity
size! 1: class ARRAYSTACK
. , 2: —
* What if we don’t know the 5 @ hewanay
(maximum) size of the 4:  procedure INCREASECAPACITY(k)3
stack in advance? 5: ~n— SIZE(a)
6: —~ b— new array of size n +|E ?
A Solution: Make a larger array 7: (fori=0,1,...,n—1do .&
when necessary! g: ﬂ’] —ali] o
° end ior TN
* Must copy contents of old 10: head — ) N\ mé“*‘\“
array into new array. .. 11:  end procedure b SYoL

... this is costly! 12: end class

18/29



Resizing Arrays

The Problem: Arrays are fixed
size!
¢ What if we don’t know the
(maximum) size of the
stack in advance?

A Solution: Make a larger array
when necessary!

* Must copy contents of old
array into new array. ..
.. this is costly!

Increasing stack capacity
1: class ARRAYSTACK

2:

10:

11

: end procedurt;\
12: end class @(\\

Question. What is the running time of INCREASECAPACITY?

()

a<— new array

procedure INCREASECAPACITY(& \\

n<— SIZE(q) ——

b — new array of size n+ k e-

Tori=0,1,. ,n 1do
bli] — ali \, V‘
Lnd for ‘ \I\
head b J/

18/29



Two Strategies

Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy 1. Increase the
capacity by k =1 each time.
* Why increase the size
more than we need to?
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Two Strategies

Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy 1. Increase the
capacity by k =1 each time.

* Why increase the size
more than we need to?

Strategy 2. Increase the
capacity by n each time!

* Maybe we’ll need more
extra space?
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Two Strategies

Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy Llo NG the, PollEverywhere Question
capacity by k =1 each time.

Which strategy will lead to better
performance?

* Why increase the size
more than we need to?

Strategy 2. Increase the
capacity by n each time!

* Maybe we’ll need more
extra space?

pollev.com/comp526
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Running Time Comparison

Time to Build Stack (ms)

T

1.25E+8
1.00E+8
7.50E+7
5.00E+7

2.50E+7

2000 4000 6000 8000 10000

Stack Size

20/29



Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have worst-case running time of ©(n) for
INCREASECAPACITY
e Strategy 1 may incur this on every PUSH operation

® Overall running time O3

21/29



Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have worst-case running time of ©(n) for

INCREASECAPACITY
e Strategy 1 may incur this on every PUSH operation

® Overall running time’@(nz)

* For Strategy 2, INCREASECAPACITY only gets called when the stack

size is(DLZlEQS,...,Z

* If cost of resizing n' is c- n/, what is total resize cost?

CA4CLdey +<Bben PR

N, Aean =} U\\
¢l v - CgF —

L LRES . o g
collrate gt = ek 8N



Amortized Analysis

Goal. To analyze the worst-case running time of a sequence of
operations.
* Amortized cost = largest average cost per operation averaged over
all sequences.
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Amortized Analysis

Goal. To analyze the worst-case running time of a sequence of
operations.

* Amortized cost = largest average cost per operation averaged over
all sequences.

Banker’s View

e Each operation has a (financial) cost
* Cost can be paid:

¢ from pocket

¢ from bank account
* For each operation, can

¢ withdraw from account

* deposit to account
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Amortized Analysis

Goal. To analyze the worst-case running time of a sequence of
operations.

* Amortized cost = largest average cost per operation averaged over

all sequences. c,7\0
Banker’s View E X &M\Pu’ 2
e Each operation has a (financial) cost - OFf WS -C(o«‘-'
* Cost can be paid: —_ T
= \0° ENaN
¢ from pocket = Los ov

¢ from bank account _ \{\y;(\/ Qé)O

* For each operation, can (Y
* withdraw from account

* deposit to account - Q%;‘S( Sic; 0 %g«\" D YW \Oj’"\
A sequence of operations has amortized cost c if for each operation:
1. the operation is paid for (from pocket or bank account)
2. at most c value is paid from pocket and/or deposited during each
operation

22/29



Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):
* PUSH(x) has cost ¢; = O(1) if the array is not full,
* PUSH(x) has cost ¢, = O(n) if the array is full.

23/29



Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full)v\
* PUSH(x) has cost[t] = 0(1)3f the array is not full, o ;’:‘L

e PUSH(x) has cg t@z O(n) if the array is full. \o é\g“;aq o?q'
N
PollEverywhere Question ‘. —H——————
How much phoney must we add to our bank l
account affer each (not full) PUSH to ensure our Wk 0\\;)7
alance js at least ¢, before the next resize?
0&?\ o \/.‘\ o (\u(kl
1 2z
O =0 st

Y N
— s
pollev.com/comp526 "
Ak
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Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):
* PUSH(x) has cost ¢; = O(1) if the array is not full,
* PUSH(x) has cost ¢, = O(n) if the array is full.

oSWNL (&O“’Jom

W 5=

Completing the analysis: l()ﬂ
C
* If current capacity is n, last resize was at capacity n/2 —

* There were (at least) n/2 non-resizing PUSH
operations before next resize

° Must pay ¢, for next resize

e Itsuffices to put cp/(n/2) = 2¢p/nin bank each
operation

On each non-resizing operation, we pay c¢; out of pocket,

and 2¢p/ninto the bank

—> the amortized costis ¢; +2cp/n= O(1) + %O(n) =10(1).
The Moral. A single resize may cost ©(n), but the average cost over
sequences of operations is always O(1) (if we're careful).
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The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements
* elements arranged as in a
queue at Tesco
* new people enter the back of
the queue
* only the person at the front of
the queue can be removed
(serviced)
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The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements

* elements arranged as in a
queue at Tesco

* new people enter the back of
the queue

* only the person at the front of
the queue can be removed
(serviced)

Queues, Formally

Sis the state of the queue,
initially S= @
S.ENQUEUE(x) : S— xS

S.FRONT() : returns x;_; where

S=Xpx1"" " Xp-1

S.DEQUEUE() : Sx— §, returns

X

S.EMPTY() returns
TRUE < S=9
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The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements

* elements arranged asin a
queue at Tesco

* new people enter the back of
the queue

* only the person at the front of
the queue can be removed
(serviced)

Tons of Applications!
* Scheduling
* Messaging

Queues, Formally

Sis the state of the queue,
initially S= @
S.ENQUEUE(x) : S— xS

S.FRONT() : returns x;_; where

S=Xpx1"" " Xp-1

S.DEQUEUE() : Sx— §, returns

X

S.EMPTY() returns
TRUE < S=9

24/29



List Backed Queues

Idea

¢ Store each element in a NODE : class LISTQUEUE

1
2 NODE head
¢ Store references to NODE: 3 NODE tail
* head at the front of the queue 4 procedure ENQUEUE(x)
* tail at the back of the queue 5: n—new NODE
6 n.data — x
7 tail.next — n
8 tail — n
9 end procedure
10: procedure DEQUEUE
11: n — head
12: head — n.next
13: return n.data
14: end procedure
15: end class

25/29



List Backed Queues

Idea

e Store each element in a NODE
¢ Store references to NODE:

* head at the front of the queue
¢ tail at the back of the queue

Issues:
e Similar to linked list stack
implementation

* Locality of reference
* NODE memory overhead

class LISTQUEUE

NODE head

NODE tail

procedure ENQUEUE ()
n<—new NODE
n.data — x
tail.next — n
tail — n

end procedure

procedure DEQUEUE
n — head
head — n.next
return n.data

end procedure

: end class

25/29



Array Backed Queues

Idea:

e Store elements in the stack in an
array

* Maintain indices of head and tail

Ignores resizing/checking if full

10:
11:
12:

1
2
3
4
5:
6
7
8
9

: class ARRAYQUEUE

a— new array, size n
head, tail — 0
procedure ENQUEUE(x)
altail] — x
tail — tail + 1
end procedure
procedure DEQUQUE
head — head + 1
return alhead — 1]
end procedure
end class

26/29



Array Backed Queues

Idea: Ignores resizing/checking if full
¢ Store elements in the stack in an 1: class ARRAYQUEUE
array 2 a < new array, size n
* Maintain indices of head and tail S head, tail —0
4 procedure ENQUEUE(x)
. 5: altail] — x
What is the problem 6 tail—tail +1
2 7 end procedure
here G 8 procedure DEQUQUE
9 head — head +1
10: return alhead — 1]
11: end procedure

12: end class

26/29



Array Backed Queues

Idea: Ignores resizing/checking if full
¢ Store elements in the stack in an 1: class ARRAYQUEUE
array 2 a < new array, size n
* Maintain indices of head and tail 3 head, tail — 0
4 procedure ENQUEUE(x)
5: altail] — x
The fix: 6 tail — tail+ 1 modn
e U reul 7 end procedure
se circular arrays 8 procedure DEQUQUE
¢ Perform index arithmetic modulo n 9 head — head +1 modn
(array size) 10: return alhead — 1 mod 7]
. 11: end procedure
 All operations are then O(1) 12 end class

* amortized O(1) time if resizing by
doubling size

26/29



The (Min) Priority Queue ADT

Priority Queues, Intuitively
Goal: to store a collection of
elements

* Each element x has an
associated priority, p(x)

* New elements inserted with
prescribed priorities

* (Can access/remove element
with the minimum priority in
the collection

27129



The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially $ = @

* Each element x has an * S.INSERT(x, p(x)) : S— xS

associated priority, p(x) e S.MIN() : returns xp where

* New elements inserted with S=XpX) -+ Xp1
prescribed priorities ¢ S.REMOVEMIN(Q) : xS— S
* Can access/remove element returns x
with the minimum priority in .

i S.DECREASEKEY(x, p/)
the collection S= XX+ Xjm1XXjg] ** Xp1 —

XoX1 * - Xj—1 XXjXi—1Xj+1 - Xp—1
* plx) = p'(x) < plxjr1)
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The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially $ = @

* Each element x has an .

associated priority, p(x)

[ ]
* New elements inserted with
prescribed priorities

* (Can access/remove element
with the minimum priority in .
the collection

For Next Time

S.INSERT(x, p(x)) : S— xS
S.MIN() : returns xy where
S=Xpx1 " Xp-1
S.REMOVEMIN() : xS— S,
returns x

S.DECREASEKEY(x, p')

S=XoX1 " Xj—1XXj41* Xp—1 —

XoX1 * - Xj—1 XXjXi—1Xj+1 - Xp—1
* plx) = p'(x) < plxjr1)

* Think about implementing min priority queues with linked lists

and stacks

* Consider the running times of the priority queue operations
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Next Time: Trees!

* Heaps
* Binary Search Trees
* Balanced Binary Trees
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Scratch Notes
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