11] m 1 m 1]]
00000000000000000F00000000FGCUCFO0O0E000000000060000iI000800000000000000000Fgogoo]
123456 78 910012131 1516 1716192021 2223242526 27 2829 2% 3132 33 74 35 36 37 38 39 40 41 42 41 44 45 46 47 49 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 57 68 63 70 71 7273 714 7575 77 /8 79 B0
O RRRRRRRRT RRT R ERRRRR! B ERRRRRI [R ERRER AR R R RN R RN R RN R RN R R R RS AR R R R RRRRRERRERRRT!
2202222222222222222222220222
3333233332333[3
A0444480444440404000444400444400444444404448404444404444444404444444042044444044
555555555555 505555505 5055555 QM5 5M555555555555555556555555555555555555555555555

66666666 66M66366666666656R6666666

Lecture 4: Data Structures |
COMP526: Efficient Algorithms

Will Rosenbaum
Updated: October 15, 2024 University of Liverpool

1/29

Announcements

1. Second Quiz, due Friday
¢ Similar format to before

* One question, select all correct answers
® 20 minute time limit

* Covers asymptotic (Big-O) notation P?\ % N \\(\Nhf
* Lectures 03 and 04 T NS \’6

* Relevant reading from CLRS ——
® Quiz is closed resource

* No books, notes, internet, etc.
* Do not discuss until after submission deadline (Friday night, after
midnight)

2. Programming Assignment 1: Discuss on
Thursday

¢ Due 13 November
3. Attendance Code: qu | 4q

2/29

Meeting Goals

* Finish discussion of asymptotic notation
* Introduce Abstract Data Types:

¢ Stack
* Queue
* Priority Queue

* Discuss array-backed and linked list-backed implementations of
Stacks and Queues

* Introduce amortized analysis

3/29

Asymptotic
Notation

From Last Time

Suppose f and g are functions from N to
R™. Then we say tha (read: f'is
big O of g) if there exist constants Ny € N
and Ce Rsuch thatforallne N

n= Ny = f(n) < Cg(n).

Equivalently, f = O(g) < limsup % 2

Suppose f, fi, 2, 8 &1, &, hare

functions and a is any constant. Then:
1.
- 2.
- 3.
v 4.

<

(Vnf(n)<a) = f=001)
(Vnf(n) <g(n) = f=0(g)
f=0(@ = a-f=0(g)

f=0(g) and
g=0(h) = f=0(h)

. f=0(h) and

g=0(h) = f+g=0(h

. fi =0(g1) and

f2=0(g) = fi-f2=0(g &)

51/129]

Variations of O

¢
. f:@iff:O(g)andg:om /w;,

* Example: 417° +3n+7 = 0(n?) I

. fﬂQ(g)]ifg o) T
* Example: 0.011n° - 7n= Q(n?)

ey v s
* f= 1f for every € > 0, there emsts%
such that n= Ny = QZ) <@\/—§ 2 R

* Equivalently:

f=0(g = lim;_.c o7
1.999

f(n) _ -0
g(n)
* Example: n —o(n
Totmaly Costes
* f= [w(g) Ilf g=o(f) s\%vu(,@\véc\Y

* Example: 0.01720! = (12) YW

6/29

Variations of O

Mnemonic for
* f=0(g) if f=0(g) and g= O(f) Variations

¢ E le: 47 +3n+7 = O(1n?
xample: 4n° +3n+ (n7) Big-O (in)equality

- f=Q(gifg=0(o g
° Example: 0.0172—7n=Qn? f o -
* f=o0(g) if for every € > 0, there exists Ny @ =
such that n= Ny = %<£. 0 <
* Equivalently:
_ : [_
f=o0(g) < lim;,_ gTZ) =0
* Example: n'%% = o(n?)
* f=w(g) if g=o(f)
* Example: 0.017%%! = w(n?)

6/29

Variations of O

Mnemonic for
* f=0(g) if f=0(g) and g= O(f) Variations

¢ E le: 47 +3n+7 = O(1n?
xample: 4n° +3n+ (n) Big-O (in)equality

« f=Q(g)ifg=0(‘("2 i
e Example: 0.011% — 7n = Q(n?) -

p - ~

* f=o0(g) if for every € > 0, there exists Ny e =
such that n= Ny = %«s. 0 <
* Equivalently: More Properties
f=0(g) < lim, o L5 =0 * [fi = 0gy)Jand

* Example: n''9% = o(n?) 2 =0g)]=

T12=081 &)

. and
* Example: 0.017%%! = w(n?) T 2=0E &)

6/29

Interpretation

Suppose:
* two algorithms A and B for solving the same problem
* running time of- runmng time of|Bis g
*/f=0(8) '
Consider running A on a slow machine M) and B on a fast machine M.

Then: regardless of how much slower M; is than M, for sufficiently
large inputs, A will complete faster than B.

7129

Interpretation

Suppose:
¢ two algorithms A and B for solving the same problem
* running time of Ais f, running time of Bis g
* f=0(8
Consider running A on a slow machine M) and B on a fast machine M.

Then: regardless of how much slower M; is than M, for sufficiently
large inputs, A will complete faster than B.

The Moral. Efficient algorithms are better than faster hardware.

¢ little-o notation gives the “right” abstraction to formalize this
relationship

7129

Common Orders of Growth

Named orders of growth:

name asymptotic growth
V\(

const.ant . o) ‘0 o © Q \0(,\ &025
logarithmic O(logn) — V& (s g<1
polylogarithmic O(log@n) e .
. xnosm.’mvl ~ logy &
linear O(n) 91

. = —
almost linear O(nlog® n) \o%®°* ‘\ioq ? l
quadratic on?) sk v
polynomial O(n) . Covst -
exponential o = (10‘1 y\)

C = Oay cowsteml voluw

8/29

Common Orders of Growth

Named orders of growth:

Relationships

name asymptotic growth

constant o Between classes: C,O\ASXVN\\’
logarithmic O(logn) For all@ 0
polylogarithmic Ologn) |. .. a=olog"n

linear o(n) et log? n= o(n")

almost linear O(nlog®n) 4:‘;: > « n=o"

quadratic on?) %“\,.k\ e

polynomial o(n°)

exponential o

8/29

Common Orders of Growth

Named orders of growth:
name asymptotic growth
constant o)
logarithmic O(logn)
polylogarithmic O(log® n)
linear O(n)
almost linear O(nlog‘n)
quadratic on?)
polynomial o(n®)
exponential o

18§ = oly) e
¢ :O’U‘D

R MO I CRO N IR

n

Relationships

Between classes:
Foralla,b>0

° a= o(logb n)

e log%n=q(nb
'Z@naz o(b”)i l

Within classes: gﬁw

For all a, b YA
* logn=o(log’ n) ot

° a — b ¢
A
® a =o "y
n-h-1 - %>(:i)
R 8/29

O~ n
Example o | g
O\‘("\Qw\(m\ \40\-\ CE
hle
Compare the agymptotic gr of the /follomng,fu‘yr{ctlons 7 n
1. f(n)— 12 Y22 -~ 9 We , 9™ - ('2 ’) .
7 A =3
2. g(n) =log n:f\/ﬁ W = Y\/1_ = ‘Zf\ 3
3. h(n) = n+plogn\+pn3/?
T b

o "
0yC) i@(ﬂ) uh?fg) = O()
N ETA 2 nf| RGN

W) = @LV\?/"' logw-~ © ") @ (_Q,“\

b - (6N . = N .C :QJ(,Ok.)
(__O\) \{\\OC{W 0() % = 0(“) 9/29

Linear ADTs and
Data Structures

Abstract Data Types and Data Structures

Abstract Data Types (ADTs)
An abstract data type gives a
formal specification of a|task to beegcé(\\&g

performed: oy
e List of supported operations
(syntax)

* The effects of applying the
operations (semantics)

11/29

Abstract Data Types and Data Structures

Abstract Data Types (ADTs) Data Structures
An abstract data type gives a A data structure specifies
formal specification of a task to be o

how data is represented
ok ¢ how the supported operations

are performed (i.e., what
algorithms are used)

e List of supported operations
(syntax)

* The effects of applying the ¢ what are the costs of the
operations (semantics) operations

Squhy WHAT speniby HOW_

11/29

Abstract Data Types and Data Structures

Abstract Data Types (ADTs) Data Structures
An abstract data type gives a A data structure specifies
formal specification of a task to be

* how data is represented
ok ¢ how the supported operations

are performed (i.e., what
algorithms are used)

e List of supported operations
(syntax)

* The effects of applying the
operations (semantics)

e what are the costs of the
operations

Question. Why is it useful to separate ADTs from Data Structure?
* Can swap different data structures for same ADT
* applications using the functionality will not be broken
¢ different data structures may be more efficient in some
applications
* Better abstractions
* Generic lower bounds

11/29

The Stack ADT

Stacks, Intuitively
Goal: to store a collection of
elements

* elements arranged as in a
stack of books
* can only access top-most
element:
* put a new book on the stack
* look at the top-most book
° remove the top-most book

12/29

The Stack ADT

Stacks, Intuitively Stacks, Formally
Goal: to store a collection of o @S the state of the stack, ‘
elements initially S= @ u“@&o«\rﬂ‘ld\f\
* elements arranged as in a e S.PUSH(x):S—|Sx
stack of books -

i e S.ToP() : returns x,_; Wwhere
can only access top-most S:_x_())f_l"@ € [0&5‘ Q/\l,

element: .
* put a new book on the stack * SPOP(:Sx— §, returns x S

* look at the top-most book ¢ S.EMPTY() returns
° remove the top-most book TRUE < S=¢

12/29

The Stack ADT

Stacks, Intuitively Stacks, Formally
Goal: to store a collection of * Sis the state of the stack,
elements initially $ = @
* elements arranged as in a e S.PUSH(X):S— Sx
stack of books e S.ToP() : returns x,_; where
* can only access top-most S=XoXi - X1
element: "
* put a new book on the stack * S.POP(): Sx— §, returns x
* look at the top-most book ¢ S.EMPTY() returns
° remove the top-most book TRUE < S=¢
Tons of Applications!

e Executing programs (call stack)
¢ Parsing/evaluating arithmetic expression
¢ Syntax checking (parenthesis)

12/29

Try It Yourself!
PollEverywhere Question

What is the result of calling ToP()
after the following sequence stack
operations:

PusH(1)
PuUsH(2)
PuUsH(3)
Pop()
PusH(4)
PusH(5)
Por()
PUSH(6)
Popr()
Pop()

pollev.com/comp526

13/29

Try It Yourself!

PollEverywhere Question

What is the result of calling ToP()
after the following sequence stack
operations:

PusH(1)
PUsSH(2)
PuUsH(3)
Popr()
PusH(4)
PusH(5)
Por()
PUSH(6)
Popr()
Pop()

Stacks, Formally

Sis the state of the stack,
initially S= @

S.PUSH(x) : S— Sx

S.ToP() : returns x,_; where
S=XpX1 " Xp-1

S.PoP() : Sx— §, returns x

S.EMPTY() returns
TRUE <— S=0

13/29

Try It Yourself!
Al puke AwbS

What is the result of calling Top() qs - 1 —> \ 1L 12 3

after the following sequence stack

operations: W l

pusih 24T ¢&— L4 &\
PUSH(2) 3\\5’ ?@\(q
PUSH(3) QX L oW

PoOP()

PUSH(4) 21‘(é

PUSH(5) | L(V%\Z \ JPOP
Pop()

PUSH(6)
Por() ﬁ é”ll"‘
Popr() @

13/29

Linked List Backed Stack Implementation

Idea ignores empty stack condition
* Store each element in a NODE 1: class LISTSTACK
2: NODE
* Each NODE stores 3: procedure PUSH (x)
¢ the value of an element in the stack 4: n<— new NODE
* areference to the NODE storing the 5: n.data — x
next element 6: — n.next — head
1: class NODE 7 head —n
2. dhimmaine < s ‘)(O ‘(\;“6(- 8: end procedure
3: NODE next) 0\' (\0 Q,\ 0\)‘ U\ 13 Pror‘;ed‘llll:agop
4 end class SX'U\QV’ 11: head — n.next
12: return n.data
13: end procedure
(0)) 2 K@ I\ 14: procedure TOP
Ve g \% T 15: return head.data
16: end procedure

- 2 L{ 17: end class
Skl 5= 1270w

14/29

Issues with Linked List Stacks

Issues
° NODES waste Space 1: class LISTSTACK
2 NODE head — @
° must store reference for each entry
— 3 procedure PUSH (x)
N 4 n—new NODE
\N\O\}N\“ ﬁ() 5 n.data «— x
\00‘& 6 n.next — head
7 head — n
* Pollowing chains of reference is g end pfi"“’d}')“e
2 oP
COStl procedure
Y . 10: n — head
° memory access is non-local 11: el o= et
° sequential memory access is more 12: return n.data
efficient 13: end procedure
14: procedure TOP
15: return head.data
16: end procedure

17: end class

15/29

Arrays as ADTs

Informally, arrays are indexed lists of elements:

ol1]2]3[4)[56e[7[8
a= =
lLlilviefftNwlo|o]|l

Array Operations (ADT):
* create an array of size n
e get the element at index i:
® al4] returns r
* set the value at index i to a prescribed value
® al5] —c
Array Operation Costs (Data Structure)

E create an array of size n has cost O(n)

= |
o getandsethavecosth(l)! — rllooys oNe Cd{u»{’,

16/29

Array Backed Stack Implementation

Idea:
* Store elements in the stack in an 1. class ARRAYSTACK
array 2: a<— new array
. 3: head — 0
® access array values by index .
. . . 4: procedure PUSH (x)
° neighboring values at adjacent 5. afhead] — x
indices 6: head — head + 1
— sequential access 7. endprocedure
* Only overhead: store index of head 8: procedure Pop
o) 9: head —head -1
op 10: return alhead]
R 2 3 \ 5 11: end procedure

0 12: procedure TOP
i TI— —8—\ % 13: return alhead — 1]
o I l & L\] 6 14: end procedure
M 15: end class
Pushlé)

\(\u\é NG
G : |2y P LF) ?V\S\AU s

Array Backed Stack Implementation

Idea:

e Store elements in the stack in an
array

° access array values by index
° neighboring values at adjacent
indices
— sequential access
* Only overhead: store index of head

(top)

What is the issue here?

Nteys Wave fixd

1:
2
3
4
53
6.
7
8

9:
10:
11:
12:
13:
14:
15:

class ARRAYSTACK
a<— new array
head —0
procedure PUSH (x)
alhead] < x
head — head +1
end procedure
procedure Por
head — head -1
return alhead]
end procedure
procedure TOP
return alhead — 1]
end procedure
end class

S

17/29

Resizing Arrays

The Problem: Arrays are fixed
size!
¢ What if we don’t know the
(maximum) size of the
stack in advance?

18/29

Resizing Arrays

The Problem: Arrays are fixed Increasing stack capacity
size! 1: class ARRAYSTACK
. , 2: —
* What if we don’t know the 5 @ hewanay
(maximum) size of the 4: procedure INCREASECAPACITY(k)3
stack in advance? 5: ~n— SIZE(a)
6: —~ b— new array of size n +|E ?
A Solution: Make a larger array 7: (fori=0,1,...,n—1do .&
when necessary! g: ﬂ’] —ali] o
° end ior TN
* Must copy contents of old 10: head —) N\ mé“*‘\“
array into new array. .. 11: end procedure b SYoL

... this is costly! 12: end class

18/29

Resizing Arrays

The Problem: Arrays are fixed
size!
¢ What if we don’t know the
(maximum) size of the
stack in advance?

A Solution: Make a larger array
when necessary!

* Must copy contents of old
array into new array. ..
.. this is costly!

Increasing stack capacity
1: class ARRAYSTACK

2:

10:

11

: end procedurt;\
12: end class @(\\

Question. What is the running time of INCREASECAPACITY?

()

a<— new array

procedure INCREASECAPACITY(& \\

n<— SIZE(q) ——

b — new array of size n+ k e-

Tori=0,1,. ,n 1do
bli] — ali \, V‘
Lnd for ‘ \I\
head b J/

18/29

Two Strategies

Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy 1. Increase the
capacity by k =1 each time.
* Why increase the size
more than we need to?

19/29

Two Strategies

Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy 1. Increase the
capacity by k =1 each time.

* Why increase the size
more than we need to?

Strategy 2. Increase the
capacity by n each time!

* Maybe we’ll need more
extra space?

19/29

Two Strategies

Design Question. When our array runs out of room, by how much
should we increase the stack capacity?

Strategy Llo NG the, PollEverywhere Question
capacity by k =1 each time.

Which strategy will lead to better
performance?

* Why increase the size
more than we need to?

Strategy 2. Increase the
capacity by n each time!

* Maybe we’ll need more
extra space?

pollev.com/comp526

19/29

Running Time Comparison

Time to Build Stack (ms)

T

1.25E+8
1.00E+8
7.50E+7
5.00E+7

2.50E+7

2000 4000 6000 8000 10000

Stack Size

20/29

Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have worst-case running time of ©(n) for
INCREASECAPACITY
e Strategy 1 may incur this on every PUSH operation

® Overall running time O3

21/29

Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have worst-case running time of ©(n) for

INCREASECAPACITY
e Strategy 1 may incur this on every PUSH operation

® Overall running time’@(nz)

* For Strategy 2, INCREASECAPACITY only gets called when the stack

size is(DLZlEQS,...,Z

* If cost of resizing n' is c- n/, what is total resize cost?

CA4CLdey +<Bben PR

N, Aean =} U\\
¢l v - CgF —

L LRES . o g
collrate gt = ek 8N

Amortized Analysis

Goal. To analyze the worst-case running time of a sequence of
operations.
* Amortized cost = largest average cost per operation averaged over
all sequences.

22/29

Amortized Analysis

Goal. To analyze the worst-case running time of a sequence of
operations.

* Amortized cost = largest average cost per operation averaged over
all sequences.

Banker’s View

e Each operation has a (financial) cost
* Cost can be paid:

¢ from pocket

¢ from bank account
* For each operation, can

¢ withdraw from account

* deposit to account

22/29

Amortized Analysis

Goal. To analyze the worst-case running time of a sequence of
operations.

* Amortized cost = largest average cost per operation averaged over

all sequences. c,7\0
Banker’s View E X &M\Pu’ 2
e Each operation has a (financial) cost - OFf WS -C(o«‘-'
* Cost can be paid: —_ T
= \0° ENaN
¢ from pocket = Los ov

¢ from bank account _ \{\y;(\/ Qé)O

* For each operation, can (Y
* withdraw from account

* deposit to account - Q%;‘S(Sic; 0 %g«\" D YW \Oj’"\
A sequence of operations has amortized cost c if for each operation:
1. the operation is paid for (from pocket or bank account)
2. at most c value is paid from pocket and/or deposited during each
operation

22/29

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):
* PUSH(x) has cost ¢; = O(1) if the array is not full,
* PUSH(x) has cost ¢, = O(n) if the array is full.

23/29

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full)v\
* PUSH(x) has cost[t] = 0(1)3f the array is not full, o ;’:‘L

e PUSH(x) has cg t@z O(n) if the array is full. \o é\g“;aq o?q'
N
PollEverywhere Question ‘. —H——————
How much phoney must we add to our bank l
account affer each (not full) PUSH to ensure our Wk 0\\;)7
alance js at least ¢, before the next resize?
0&?\ o \/.‘\ o (\u(kl
1 2z
O =0 st

Y N
— s
pollev.com/comp526 "
Ak

23/29

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):
* PUSH(x) has cost ¢; = O(1) if the array is not full,
* PUSH(x) has cost ¢, = O(n) if the array is full.

oSWNL (&O“’Jom

W 5=

Completing the analysis: l()ﬂ
C
* If current capacity is n, last resize was at capacity n/2 —

* There were (at least) n/2 non-resizing PUSH
operations before next resize

° Must pay ¢, for next resize

e Itsuffices to put cp/(n/2) = 2¢p/nin bank each
operation

On each non-resizing operation, we pay c¢; out of pocket,

and 2¢p/ninto the bank

—> the amortized costis ¢; +2cp/n= O(1) + %O(n) =10(1).
The Moral. A single resize may cost ©(n), but the average cost over
sequences of operations is always O(1) (if we're careful).

23/29

The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements
* elements arranged as in a
queue at Tesco
* new people enter the back of
the queue
* only the person at the front of
the queue can be removed
(serviced)

24/29

The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements

* elements arranged as in a
queue at Tesco

* new people enter the back of
the queue

* only the person at the front of
the queue can be removed
(serviced)

Queues, Formally

Sis the state of the queue,
initially S= @
S.ENQUEUE(x) : S— xS

S.FRONT() : returns x;_; where

S=Xpx1"" " Xp-1

S.DEQUEUE() : Sx— §, returns

X

S.EMPTY() returns
TRUE < S=9

24/29

The Queue ADT

Queues, Intuitively
Goal: to store a collection of
elements

* elements arranged asin a
queue at Tesco

* new people enter the back of
the queue

* only the person at the front of
the queue can be removed
(serviced)

Tons of Applications!
* Scheduling
* Messaging

Queues, Formally

Sis the state of the queue,
initially S= @
S.ENQUEUE(x) : S— xS

S.FRONT() : returns x;_; where

S=Xpx1"" " Xp-1

S.DEQUEUE() : Sx— §, returns

X

S.EMPTY() returns
TRUE < S=9

24/29

List Backed Queues

Idea

¢ Store each element in a NODE : class LISTQUEUE

1
2 NODE head
¢ Store references to NODE: 3 NODE tail
* head at the front of the queue 4 procedure ENQUEUE(x)
* tail at the back of the queue 5: n—new NODE
6 n.data — x
7 tail.next — n
8 tail — n
9 end procedure
10: procedure DEQUEUE
11: n — head
12: head — n.next
13: return n.data
14: end procedure
15: end class

25/29

List Backed Queues

Idea

e Store each element in a NODE
¢ Store references to NODE:

* head at the front of the queue
¢ tail at the back of the queue

Issues:
e Similar to linked list stack
implementation

* Locality of reference
* NODE memory overhead

class LISTQUEUE

NODE head

NODE tail

procedure ENQUEUE ()
n<—new NODE
n.data — x
tail.next — n
tail — n

end procedure

procedure DEQUEUE
n — head
head — n.next
return n.data

end procedure

: end class

25/29

Array Backed Queues

Idea:

e Store elements in the stack in an
array

* Maintain indices of head and tail

Ignores resizing/checking if full

10:
11:
12:

1
2
3
4
5:
6
7
8
9

: class ARRAYQUEUE

a— new array, size n
head, tail — 0
procedure ENQUEUE(x)
altail] — x
tail — tail + 1
end procedure
procedure DEQUQUE
head — head + 1
return alhead — 1]
end procedure
end class

26/29

Array Backed Queues

Idea: Ignores resizing/checking if full
¢ Store elements in the stack in an 1: class ARRAYQUEUE
array 2 a < new array, size n
* Maintain indices of head and tail S head, tail —0
4 procedure ENQUEUE(x)
. 5: altail] — x
What is the problem 6 tail—tail +1
2 7 end procedure
here G 8 procedure DEQUQUE
9 head — head +1
10: return alhead — 1]
11: end procedure

12: end class

26/29

Array Backed Queues

Idea: Ignores resizing/checking if full
¢ Store elements in the stack in an 1: class ARRAYQUEUE
array 2 a < new array, size n
* Maintain indices of head and tail 3 head, tail — 0
4 procedure ENQUEUE(x)
5: altail] — x
The fix: 6 tail — tail+ 1 modn
e U reul 7 end procedure
se circular arrays 8 procedure DEQUQUE
¢ Perform index arithmetic modulo n 9 head — head +1 modn
(array size) 10: return alhead — 1 mod 7]
. 11: end procedure
 All operations are then O(1) 12 end class

* amortized O(1) time if resizing by
doubling size

26/29

The (Min) Priority Queue ADT

Priority Queues, Intuitively
Goal: to store a collection of
elements

* Each element x has an
associated priority, p(x)

* New elements inserted with
prescribed priorities

* (Can access/remove element
with the minimum priority in
the collection

27129

The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially $ = @

* Each element x has an * S.INSERT(x, p(x)) : S— xS

associated priority, p(x) e S.MIN() : returns xp where

* New elements inserted with S=XpX) -+ Xp1
prescribed priorities ¢ S.REMOVEMIN(Q) : xS— S
* Can access/remove element returns x
with the minimum priority in .

i S.DECREASEKEY(x, p/)
the collection S= XX+ Xjm1XXjg] ** Xp1 —

XoX1 * - Xj—1 XXjXi—1Xj+1 - Xp—1
* plx) = p'(x) < plxjr1)

27129

The (Min) Priority Queue ADT

Priority Queues, Intuitively Priority Queues, Formally
Goal: to store a collection of * Sis the state of the queue,
elements initially $ = @

* Each element x has an .

associated priority, p(x)

[]
* New elements inserted with
prescribed priorities

* (Can access/remove element
with the minimum priority in .
the collection

For Next Time

S.INSERT(x, p(x)) : S— xS
S.MIN() : returns xy where
S=Xpx1 " Xp-1
S.REMOVEMIN() : xS— S,
returns x

S.DECREASEKEY(x, p')

S=XoX1 " Xj—1XXj41* Xp—1 —

XoX1 * - Xj—1 XXjXi—1Xj+1 - Xp—1
* plx) = p'(x) < plxjr1)

* Think about implementing min priority queues with linked lists

and stacks

* Consider the running times of the priority queue operations

27129

Next Time: Trees!

* Heaps
* Binary Search Trees
* Balanced Binary Trees

28/29

Scratch Notes

29/29

