Lecture 4: Data Structures I

COMP526: Efficient Algorithms

Updated: October 15, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. Second Quiz, due Friday
 - Similar format to before
 - One question, select all correct answers
 - 20 minute time limit
 - Covers asymptotic (Big-O) notation

• Relevant reading from CLRS — Into to Algorithms
iz is closed recommendations.

- Quiz is closed resource
 - · No books, notes, internet, etc.
 - Do not discuss until after submission deadline (Friday night, after midnight)
- 2. Programming Assignment 1: Discuss on **Thursday**
 - Due 13 November
- 3. Attendance Code:

Meeting Goals

- Finish discussion of asymptotic notation
- Introduce Abstract Data Types:
 - Stack
 - Queue
 - Priority Queue
- Discuss array-backed and linked list-backed implementations of Stacks and Queues
- Introduce amortized analysis

Asymptotic Notation

From Last Time

Definition

Suppose f and g are functions from \mathbb{N} to \mathbb{R}^+ . Then we say that f = O(g) (read: f is $big \ O$ of g) if there exist constants $N_0 \in \mathbb{N}$ and $C \in \mathbb{R}$ such that for all $n \in \mathbb{N}$

$$n \ge N_0 \implies f(n) \le Cg(n)$$
.

Equivalently, $f = O(g) \iff \limsup \frac{f(n)}{g(n)} < \infty$

Proposition

Suppose f, f_1 , f_2 , g, g_1 , g_2 , h are functions and a is any constant. Then:

- \cdot 1. $(\forall n f(n) \le a) \Longrightarrow f = O(1)$
- 2. $(\forall n f(n) \le g(n)) \Longrightarrow f = O(g)$
- 3. $f = O(g) \implies a \cdot f = O(g)$
- 4. f = O(g) and $g = O(h) \implies f = O(h)$
- 5. f = O(h) and $g = O(h) \implies f + g = O(h)$
- 6. $f_1 = O(g_1)$ and $f_2 = O(g_2) \implies f_1 \cdot f_2 = O(g_1 \cdot g_2)$

Variations of O

- $f = \Theta(g)$ if f = O(g) and g = O(f)• Example: $4n^2 + 3n + 7 = \Theta(n^2)$
- $f = \Omega(g)$ if g = O(f)
 - Example: $0.01 n^2 7n = \Omega(n^2)$

• f = o(g) if for every $\varepsilon > 0$, there exists N_0

• Equivalently:

$$f = o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

• Example: $\underline{n^{1.999}} = o(n^2)$ • $f = \omega(g)$ if g = o(f) significantly fostes
• Example: $0.01n^{2.01} = \omega(n^2)$ from q

Variations of O

- $f = \Theta(g)$ if f = O(g) and g = O(f)
 - Example: $4n^2 + 3n + 7 = \Theta(n^2)$
- $f = \Omega(g)$ if g = O(f)
 - Example: $0.01 n^2 7n = \Omega(n^2)$
- f = o(g) if for every $\varepsilon > 0$, there exists N_0 such that $n \ge N_0 \Longrightarrow \frac{f(n)}{g(n)} < \varepsilon$.
 - Equivalently: $f = o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
 - Example: $n^{1.999} = o(n^2)$
- $f = \omega(g)$ if g = o(f)
 - Example: $0.01n^{2.01} = \omega(n^2)$

Mnemonic for Variations

Big-O	(in)equality
· ω	>
Ω	≥
· Θ	≈
· O	≤
. 0	<

Variations of O

- $f = \Theta(g)$ if f = O(g) and g = O(f)
 - Example: $4n^2 + 3n + 7 = \Theta(n^2)$
- $f = \Omega(g)$ if g = O(f)
 - Example: $0.01n^2 7n = \Omega(n^2)$
- f = o(g) if for every $\varepsilon > 0$, there exists N_0 such that $n \ge N_0 \Longrightarrow \frac{f(n)}{g(n)} < \varepsilon$.
 - Equivalently: $f = o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
 - Example: $n^{1.999} = o(n^2)$
- $f = \omega(g)$ if g = o(f)
 - Example: $0.01n^{2.01} = \omega(n^2)$

Mnemonic for

Variations

Big-O	(in)equali
ω	>
Ω	≥
Θ	≈
O	≤
0	<

More Properties

$$f_1 = O(g_1) \text{ and }
 f_2 = o(g_2) \Longrightarrow
 f_1 \cdot f_2 = o(g_1 \cdot g_2)$$

$$f_1 = \Omega(g_1)$$
 and
 $f_2 = \omega(g_2)$ \Longrightarrow
 $f_1 \cdot f_2 = \omega(g_1 \cdot g_2)$

ty

Interpretation

Suppose:

- two algorithms *A* and *B* for solving the same problem

• running time of A is f, running time of B is g• f = o(g) of grows stickly shower tran g

Consider running A on a slow machine M_1 and B on a fast machine M_2 . Then: regardless of how much slower M_1 is than M_2 , for sufficiently large inputs, A will complete faster than B.

Interpretation

Suppose:

- two algorithms *A* and *B* for solving the same problem
- running time of A is f, running time of B is g
- f = o(g)

Consider running A on a slow machine M_1 and B on a fast machine M_2 . Then: regardless of how much slower M_1 is than M_2 , for *sufficiently large* inputs, A will complete faster than B.

The Moral. Efficient *algorithms* are better than faster hardware.

• little-*o* notation gives the "right" abstraction to formalize this relationship

Common Orders of Growth

Named orders of growth:

name	asymptotic growth
constant	O(1) hase of log doesn's
logarithmic	$O(\log n)$ — Dase (1) big 0
polylogarithmic	O(logon) ~ matter and
linear	$O(n)$ $\bigcap A \cap A $
almost linear	$O(n\log^c n)$
quadratic	$O(n^2)$ Cansi
polynomial	$O(n^c)$
exponential	$O(c^n) = (\log n)^n$
	· 1 /

Common Orders of Growth

Named orders of growth:

name	asymptotic growth				
constant	O(1)	1			
logarithmic	$O(\log n)$				
polylogarithmic	$O(\log^c n)$	l			
linear	O(n)	luci			
almost linear	$O(n\log^c n)$	104			
quadratic	$O(n^2)$	010			
polynomial	$O(n^c)$	2,,			
exponential	$O(c^n)$	y			

Relationships

Between classes: constant For all (a, b) = 0

- $\underline{a} = \underline{o}(\log^b n)$
- $\log^a n = o(n^b)$
- $n^a = o(b^n)$

Common Orders of Growth

Named orders of growth:

name	asymptotic growth
constant	O(1)
logarithmic	$O(\log n)$
polylogarithmic	$O(\log^c n)$
linear	O(n)
almost linear	$O(n\log^c n)$
quadratic	$O(n^2)$
polynomial	$O(n^c)$
exponential	$O(c^n)$
	S 51

Relationships

Between classes:

For all a, b > 0

•
$$a = o(\log^b n)$$

Within classes: For all a, b, a < b

•
$$\log^a n = o(\log^b n)$$

•
$$n^a = o(n^b)$$

•
$$a^n = o(b^n)$$

$$\frac{a^n = o(b^n)}{1 \cdot h \cdot 1 \cdot \dots \cdot n} > \left(\frac{n}{2}\right)$$

Example

potenomial

Example

Compare the asymptotic growth of the following functions:
$$n = (2^{n})^{n}$$

$$-2. g(n) = \log^2 n + \sqrt{n}$$

2.
$$g(n) = \log^2 n + \sqrt{n}$$

3.
$$h(n) = n + n \log n + n$$

3.
$$h(n) = n + (n \log n) + (n^{3/2})$$

$$n(n) = O(n^{3/2})$$
 $\log n = O(n^{1/2})$
 $(ab)^{c} = ab \cdot c$ $\log n = o(n^{3/2})$

Linear ADTs and Data Structures

Abstract Data Types and Data Structures

Abstract Data Types (ADTs)

An abstract data type gives a formal specification of a task to be performed:

- List of supported operations (syntax)
- The effects of applying the operations (semantics)

Abstract Data Types and Data Structures

Abstract Data Types (ADTs)

An **abstract data type** gives a formal specification of a task to be performed:

- List of supported operations (syntax)
- The effects of applying the operations (semantics)

Specity

NHAT

Data Structures

A data structure specifies

- how data is represented
- how the supported operations are performed (i.e., what algorithms are used)
- what are the costs of the operations

Specify

HOM

Abstract Data Types and Data Structures

Abstract Data Types (ADTs)

An **abstract data type** gives a formal specification of a task to be performed:

- List of supported operations (syntax)
- The effects of applying the operations (semantics)

Data Structures

A data structure specifies

- how data is represented
- how the supported operations are performed (i.e., what algorithms are used)
- what are the costs of the operations

Question. Why is it useful to separate ADTs from Data Structure?

- Can swap different data structures for same ADT
 - applications *using* the functionality will not be broken
 - different data structures may be more efficient in some applications
- Better abstractions
- Generic lower bounds

The Stack ADT

Stacks, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a stack of books
- can only access top-most element:
 - put a new book on the stack
 - look at the top-most book
 - remove the top-most book

The Stack ADT

Stacks, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a stack of books
- can only access top-most element:
 - put a new book on the stack
 - look at the top-most book
 - remove the top-most book

Stacks, Formally

- S is the state of the stack, initially $S = \emptyset$ concatenation
- $S.Push(x) : S \mapsto Sx$
- S.TOP(): returns (x_{n-1}) where $S = x_0x_1 \cdots (x_{n-1})$
- $S.Pop(): Sx \mapsto S$, returns x
- S.EMPTY() returns
 TRUE \iff $S = \emptyset$

The Stack ADT

Stacks, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a stack of books
- can only access top-most element:
 - put a new book on the stack
 - look at the top-most book
 - remove the top-most book

Tons of Applications!

- Executing programs (call stack)
- · Parsing/evaluating arithmetic expression
- Syntax checking (parenthesis)
- ...

Stacks, Formally

- S is the state of the stack, initially S = Ø
- $S.Push(x): S \mapsto Sx$
- S.TOP(): returns x_{n-1} where $S = x_0 x_1 \cdots x_{n-1}$
- $S.Pop(): Sx \mapsto S$, returns x
- S.EMPTY() returns
 TRUE \iff $S = \emptyset$

Try It Yourself!

PollEverywhere Question

What is the result of calling TOP() after the following sequence stack operations:

Push(1)

Push(2)

Push(3)

Pop()

Push(4)

Push(5)

Pop()

Push(6)

Pop()

Pop()

pollev.com/comp526

Try It Yourself!

PollEverywhere Question

What is the result of calling TOP() after the following sequence stack operations:

Push(1)

Push(2)

Push(3)

Pop()

Push(4)

Push(5)

Pop()

Push(6)

Pop()

Pop()

Stacks, Formally

- *S* is the state of the stack, initially *S* = ∅
- $S.Push(x): S \mapsto Sx$
- S.TOP(): returns x_{n-1} where $S = x_0 x_1 \cdots x_{n-1}$
- $S.Pop(): Sx \mapsto S$, returns x
- S.EMPTY() returns
 TRUE \iff $S = \emptyset$

Try It Yourself!

PollEverywhere Question

What is the result of calling TOP() after the following sequence stack operations:

Push(1)

Push(2)

Push(3)

Pop()

Push(4)

Push(5)

Pop()

Push(6)

Pop()

Pop()

Linked List Backed Stack Implementation

Idea

- Store each element in a NODE
- Each Node stores
 - the value of an element in the stack
 - a reference to the NODE storing the next element
 - 1: class Node
 - 2: datavalue
 - 3: Node next
 - 4: end class

val 2 Val 2 Val 4 Val 6

State S = 124

ignores empty stack condition

1: class ListStack

2: Node head

3: **procedure** PUSH(x) $n \leftarrow \text{new} \text{ NODE}$

5: $n.\text{data} \leftarrow x$

6: $\rightarrow n.\text{next} \leftarrow \text{head}$

7: head $\leftarrow n$ 8: **end procedure**

9: **procedure** POP

10: $n \leftarrow \text{head}$ 11: $\text{head} \leftarrow n.\text{next}$

12: **return** *n*.data

13: end procedure14: procedure TOP

15: return head.data16: end procedure

16: end procedure

17: end class

Issues with Linked List Stacks

Issues

- Nodes waste space
 - must store reference for each entry

- Following chains of reference is costly
 - memory access is non-local
 - sequential memory access is more efficient

```
1: class ListStack
         Node head \leftarrow \emptyset
 3:
         procedure PUSH(x)
 4:
             n \leftarrow \text{new Node}
 5:
             n.data \leftarrow x
             n.next \leftarrow head
 6:
 7:
             head \leftarrow n
 8:
         end procedure
 9:
         procedure POP
10:
             n \leftarrow \text{head}
11.
             head \leftarrow n.next
12:
             return n.data
         end procedure
13:
14:
         procedure TOP
             return head.data
15:
16:
         end procedure
17: end class
```

Arrays as ADTs

Informally, arrays are indexed lists of elements:

					سند				
a –	0	1	2	3	4	5	6	7	8
<i>u</i> –	l	i	υ	e	(r)	权	0	o	l
					4	2]			

Array Operations (ADT):

- **create** an array of size *n*
- **get** the element at index *i*:
 - *a*[4] returns *r*
- **set** the value at index *i* to a prescribed value
 - *a*[5] ← *c*

Array Operation Costs (Data Structure)

create an array of size n has cost O(n)

• get and set have cost O(1)

are grea

Array Backed Stack Implementation

Idea:

- Store elements in the stack in an array
 - access array values by *index*
 - neighboring values at adjacent indices
 - ⇒ sequential access
- Only overhead: store index of head (top)

```
1 2 4 6 7 8
head
```

```
1: class ArrayStack
        a \leftarrow \text{new array}
        head \leftarrow 0
 3:
 4:
        procedure Push(x)
 5:
            a[\text{head}] \leftarrow x
            head ← head + 1
 6:
 7:
        end procedure
 8:
        procedure POP
            head ← head - 1
 9:
10:
            return a[head]
11:
        end procedure
12:
        procedure TOP
13:
            return a[\text{head} - 1]
14:
        end procedure
15: end class
```

push(6) push(7)

Push(8)

Array Backed Stack Implementation

Idea:

- Store elements in the stack in an array
 - access array values by *index*
 - neighboring values at adjacent indices
 - ⇒ sequential access
- Only overhead: store index of head (top)

```
1: class ArrayStack
        a \leftarrow \text{new array}
        head \leftarrow 0
 3:
 4:
        procedure PUSH(x)
 5:
            a[\text{head}] \leftarrow x
            head \leftarrow head + 1
 6.
 7:
        end procedure
 8:
        procedure POP
            head ← head - 1
 9:
10:
            return a[head]
11:
        end procedure
12:
        procedure TOP
13:
            return a[\text{head} - 1]
14:
        end procedure
15: end class
```

What is the issue here?

Arrays have fixed site.

Resizing Arrays

The Problem: Arrays are *fixed size!*

 What if we don't know the (maximum) size of the stack in advance?

Resizing Arrays

The Problem: Arrays are *fixed size!*

 What if we don't know the (maximum) size of the stack in advance?

A Solution: Make a larger array when necessary!

 Must copy contents of old array into new array...
 ... this is costly!

Increasing stack capacity

```
1: class ArrayStack
        a \leftarrow \text{new array}
 3:
        procedure IncreaseCapacity(k)
 4:
 5:
         n \leftarrow SIZE(a)
        -b ← new array of size n+k
 6:
 7:
          for i = 0, 1, ..., n-1 do
 8:
               b[i] \leftarrow a[i]
                                   additional
 9:
           end for
           head ← 🔏
10:
        end procedure
11:
12: end class
```

Resizing Arrays

The Problem: Arrays are *fixed size!*

 What if we don't know the (maximum) size of the stack in advance?

A Solution: Make a larger array when necessary!

 Must copy contents of old array into new array...
 ... this is costly!

Increasing stack capacity

```
1: class ArrayStack
 2:
         a \leftarrow \text{new array}
 3:
 4:
         procedure IncreaseCapacity(k)
 5:
             n \leftarrow \text{SIZE}(a)
             b \leftarrow new array of size n + k \leftarrow
 6:
 7:
             for i = 0, 1, ..., n-1 do
 8:
                  b[i] \leftarrow a[i]
 9:
             end for
             head \leftarrow h
10:
         end procedure
11:
12: end class
```

Question. What is the running time of INCREASE CAPACITY?

O(ntk)

Two Strategies

Design Question. When our array runs out of room, by how much should we increase the stack capacity?

Strategy 1. Increase the capacity by k = 1 each time.

 Why increase the size more than we need to?

Two Strategies

Design Question. When our array runs out of room, by how much should we increase the stack capacity?

Strategy 1. Increase the capacity by k = 1 each time.

 Why increase the size more than we need to?

Strategy 2. Increase the capacity by *n* each time!

Maybe we'll need more extra space?

Two Strategies

Design Question. When our array runs out of room, by how much should we increase the stack capacity?

Strategy 1. Increase the capacity by k = 1 each time.

 Why increase the size more than we need to?

Strategy 2. Increase the capacity by n each time!

 Maybe we'll need more extra space?

PollEverywhere Question

Which strategy will lead to better performance?

pollev.com/comp526

Running Time Comparison

Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have *worst-case* running time of $\Theta(n)$ for INCREASE CAPACITY

- Strategy 1 may incur this on every PUSH operation
 - Overall running time $\Theta(n^2)$

Understanding the Discrepancy

Question. Why was the difference in running time so dramatic?

Observation. Both strategies have *worst-case* running time of $\Theta(n)$ for INCREASECAPACITY

- Strategy 1 may incur this on every PUSH operation
 - Overall running time $\Theta(n^2)$
- For Strategy 2, INCREASE CAPACITY only gets called when the stack size is $1,2,1,8,...,2^k,...,n$.
 - If cost of resizing n' is $c \cdot n'$, what is total resize cost?

$$c.1 + c.2 + c.4 + c.8 + ... cn$$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1 + c.2 + c.4 + c.8 + ... cn$
 $c.1$

Amortized Analysis

Goal. To analyze the worst-case running time of a *sequence* of operations.

• Amortized cost = largest average cost per operation averaged over all sequences.

Amortized Analysis

Goal. To analyze the worst-case running time of a *sequence* of operations.

 Amortized cost = largest average cost per operation averaged over all sequences.

Banker's View

- Each operation has a (financial) cost
- Cost can be paid:
 - from pocket
 - from bank account
- For each operation, can
 - · withdraw from account
 - · deposit to account

Amortized Analysis

Goal. To analyze the worst-case running time of a *sequence* of operations.

 Amortized cost = largest average cost per operation averaged over all sequences.

Banker's View

• Each operation has a (financial) cost

• Cost can be paid:

• from pocket

· from bank account _ west f

• For each operation, can

withdraw from account

· deposit to account

A sequence of operations has amortized cost c if for each operation:

- 1. the operation is paid for (from pocket or bank account)
- 2. at most *c* value is paid from pocket and/or *deposited* during each operation

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):

- PUSH(x) has cost $c_1 = O(1)$ if the array is not full,
- Push(x) has cost $c_2 = O(n)$ if the array is full.

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full); • PUSH(x) has cost $c_1 = O(1)$ if the array is not full, • PUSH(x) has cost $|c_2| = O(n)$ if the array is full. PollEverywhere Question How much phoney must we add to our bank account after each (not full) PUSH to ensure our balance is at least c_2 before the next resize? pollev.com/comp526 23 / 29

Amortized Analysis of Strategy 2

Setup. Suppose we apply Strategy 2 (double the capacity when full):

- PUSH(x) has cost $c_1 = O(1)$ if the array is not full,
- PUSH(x) has cost $c_2 = O(n)$ if the array is full.

Completing the analysis:

- If current capacity is n, last resize was at capacity n/2 because doubte
 There were (at least) n/2 non-resizing Push
 - operations before next resize
- Must pay c_2 for next resize
- It suffices to put $c_2/(n/2) = 2c_2/n$ in bank each operation

On each non-resizing operation, we pay c_1 out of pocket, and $2c_2/n$ into the bank

the amortized cost is $c_1 + 2c_2/n = O(1) + \frac{1}{n}O(n) = O(1)$.

The Moral. A single resize may cost $\Theta(n)$, but the average cost over sequences of operations is always O(1) (if we're careful).

The Queue ADT

Queues, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a queue at Tesco
- new people enter the back of the queue
- only the person at the **front** of the queue can be removed (serviced)

The Queue ADT

Queues, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a queue at Tesco
- new people enter the **back** of the queue
- only the person at the **front** of the queue can be removed (serviced)

Queues, Formally

- S is the state of the queue, initially S = Ø
- S.ENQUEUE(x): $S \mapsto xS$
- *S.*FRONT() : returns x_{n-1} where $S = x_0 x_1 \cdots x_{n-1}$
- S.DEQUEUE(): $Sx \mapsto S$, returns x
- S.EMPTY() returns TRUE \iff $S = \emptyset$

The Queue ADT

Queues, Intuitively

Goal: to store a *collection* of elements

- elements arranged as in a queue at Tesco
- new people enter the **back** of the queue
- only the person at the **front** of the queue can be removed (serviced)

Tons of Applications!

- Scheduling
- Messaging
- ...

Queues, Formally

- S is the state of the queue, initially S = Ø
- S.ENQUEUE(x): $S \mapsto xS$
- *S.*FRONT() : returns x_{n-1} where $S = x_0 x_1 \cdots x_{n-1}$
- S.DEQUEUE(): $Sx \mapsto S$, returns x
- S.EMPTY() returns
 TRUE \iff $S = \emptyset$

List Backed Queues

Idea

- Store each element in a NODE
- Store references to Node:
 - head at the front of the queue
 - tail at the back of the queue

```
1: class ListQueue
         NODE head
 2:
 3:
         NODE tail
 4:
        procedure ENQUEUE(x)
 5:
             n \leftarrow \text{new NODE}
 6:
             n.data \leftarrow x
 7:
            tail.next \leftarrow n
 8:
            tail \leftarrow n
 9:
        end procedure
10:
        procedure DEQUEUE
11:
             n \leftarrow \text{head}
12:
            head \leftarrow n.next
13:
            return n.data
14:
        end procedure
15: end class
```

List Backed Queues

Idea

- Store each element in a Node
- Store references to Node:
 - head at the front of the queue
 - · tail at the back of the queue

Issues:

- Similar to linked list stack implementation
 - · Locality of reference
 - Node memory overhead

```
1: class ListQueue
         NODE head
 2:
 3:
         NODE tail
 4:
        procedure ENQUEUE(x)
 5:
             n \leftarrow \text{new Node}
             n.data \leftarrow x
 6:
            tail.next \leftarrow n
 8:
            tail \leftarrow n
 9:
        end procedure
        procedure DEQUEUE
10:
11:
             n \leftarrow \text{head}
12:
            head \leftarrow n.next
13:
            return n.data
14:
        end procedure
15: end class
```

Array Backed Queues

Idea:

- Store elements in the stack in an array
- · Maintain indices of head and tail

Ignores resizing/checking if full

```
1: class ArrayQueue
 2:
        a \leftarrow new array, size n
 3:
        head, tail ← 0
 4:
        procedure ENQUEUE(x)
 5:
           a[tail] \leftarrow x
           tail ← tail + 1
 6:
 7:
        end procedure
        procedure DEQUQUE
 8:
           head \leftarrow head + 1
 9:
           return a[\text{head} - 1]
10:
11:
        end procedure
12: end class
```

Array Backed Queues

Idea:

- Store elements in the stack in an array
- Maintain indices of head and tail

What is the problem here?

Ignores resizing/checking if full

```
1: class ArrayQueue
        a \leftarrow new array, size n
 3:
       head, tail ← 0
 4:
       procedure ENQUEUE(x)
 5:
           a[tail] \leftarrow x
           tail ← tail + 1
 6:
 7:
       end procedure
       procedure DEQUQUE
 8:
           head ← head + 1
 9:
           return a[head - 1]
10:
11:
       end procedure
12: end class
```

Array Backed Queues

Idea:

- Store elements in the stack in an array
- · Maintain indices of head and tail

The fix:

- Use circular arrays
- Perform index arithmetic modulo n (array size)
- All operations are then *O*(1)
 - amortized O(1) time if resizing by doubling size

Ignores resizing/checking if full

```
1: class ArrayQueue
        a \leftarrow new array, size n
 3:
        head, tail ← 0
 4:
        procedure ENQUEUE(x)
 5:
            a[tail] \leftarrow x
            tail \leftarrow tail + 1 \mod n
 6:
 7:
        end procedure
        procedure DEQUQUE
 8:
            head \leftarrow head + 1 \mod n
 9:
10:
           return a[\text{head} - 1 \mod n]
        end procedure
11:
12: end class
```

The (Min) Priority Queue ADT

Priority Queues, Intuitively

Goal: to store a *collection* of elements

- Each element x has an associated priority, p(x)
- New elements inserted with prescribed priorities
- Can access/remove element with the *minimum* priority in the collection

The (Min) Priority Queue ADT

Priority Queues, Intuitively

Goal: to store a *collection* of elements

- Each element x has an associated priority, p(x)
- New elements inserted with prescribed priorities
- Can access/remove element with the *minimum* priority in the collection

Priority Queues, Formally

- S is the state of the queue, initially S = Ø
- $S.INSERT(x, p(x)) : S \mapsto xS$
- *S*.MIN() : returns x_0 where $S = x_0 x_1 \cdots x_{n-1}$
- S.REMOVEMIN(): $xS \mapsto S$, returns x
- S.DECREASEKEY(x, p') $S = x_0x_1 \cdots x_{i-1}xx_{i+1} \cdots x_{n-1} \mapsto x_0x_1 \cdots x_{j-1}xx_jx_{i-1}x_{i+1} \cdots x_{n-1}$
 - $p(x_j) \le p'(x) < p(x_{j+1})$

The (Min) Priority Queue ADT

Priority Queues, Intuitively

Goal: to store a *collection* of elements

- Each element x has an associated priority, p(x)
- New elements inserted with prescribed priorities
- Can access/remove element with the *minimum* priority in the collection

For Next Time

- Think about implementing min priority queues with linked lists and stacks
- Consider the running times of the priority queue operations

Priority Queues, Formally

- S is the state of the queue, initially S = Ø
- S.INSERT $(x, p(x)): S \mapsto xS$
- S.MIN(): returns x_0 where $S = x_0x_1 \cdots x_{n-1}$
- S.REMOVEMIN(): $xS \mapsto S$, returns x
- S.DECREASEKEY(x, p') $S = x_0x_1 \cdots x_{i-1}xx_{i+1} \cdots x_{n-1} \mapsto x_0x_1 \cdots x_{j-1}xx_jx_{i-1}x_{i+1} \cdots x_{n-1}$
 - $p(x_j) \le p'(x) < p(x_{j+1})$

Next Time: Trees!

- Heaps
- Binary Search Trees
- Balanced Binary Trees

Scratch Notes