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Lecture 3: Machines and
Models Q15331

COMP526: Efficient Algorithms

Will Rosenbaum
Updated: October 10, 2024 University of Liverpool
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Announcements

1. First quiz live now, due Friday
* Administered through Canvas
* One question, multiple choice
* 20 minutes
* Covers basic logic (Tuesday’s lecture, this week’s tutorial, posted
notes)
° Don’t start until you're ready to take the quiz.
2. Programming Assignment 1 released next
week

* Due 13 November

3. Attendance Code: 8 15 33 ya
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Meeting Goals

* Finish discussion of mathematical induction
* Analyze algorithm correctness with loop invariants
* Formalize the RAM model of computation

* Introduce asymptotic notation
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Mathematical
Induction



Mathematical Induction

=
cvd T o0
S"O*(V {:\( e,ab(/\ W\ - &

The Principle of Mathematical Induction

Let P be a predicate over the natural numbers N ={0,1,2,...}. Suppose
P satisfies

* Base case: P(0) is true.
* Inductive step: For every ie N, P(i) = P(i+1).
Then for every ne N, P(n) is true. In strictly symbolic notation:

(P(O) A (Vi[P(i)) = P(i+1)]) = VnP(n).
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Loop Invariants

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.
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Loop Invariants

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

An Uninteresting
Example

Consider the following

procedure

1: procedure COUNT(n)
2 =D

3: fori=1,...,ndo
4: t—t+1

5: end for

6 return t

7: end procedure
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Loop Invariants

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

A U
Example

After iteration i, ¢ stores the value i.
Consider the following

procedure
1: procedure COUNT(n)
25 t<—0
3 fori=1,...,ndo
4: t—t+1
5: end for
6 return t
7: end procedure
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Loop Invariants

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

A U
Example

After iteration i, ¢ stores the value i.

Consider the following T ‘& Ql.
rocedure

p1: procedure COU @T(m * Base case: tinitialized to 0. (Line 2)

[22 t—0& o= * Inductive step:

§ for tl i e 100 * Suppose after iteration i, ¢ stores
5 lendfor ~ \0‘/ M A \(\\[ P' the va.lue.: i (in.duct.ive hypo@is)
6: ¢ Then in iteration i+ 1 after line 4, ¢

return t C
7: end procedure oo “ G stores the value i+ 1.

\«\—U'O;\’(O"\
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A More Interesting Example

-1

ol M{

: procedure MININDEX((4, i, k))

Find the index of the minimum
value stored in array a between
indices i and k.
(i
forj=1ii+1,...,kdo
if a[jl > a[m] then
m—j
end if
end for
return m

end procedure
Py

-y ]

| R

2

>

PollEverywhere Question

What loop invariant does
the loop in MININDEX
satisfy that will help us
analyze its behavior?

pollev.com/comp526
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A More Interegting Example

L

1: procedure MININDEX((a, i, k)) >
Find the index of the minimum
value stored in array a between
indices i and k.

22 [m— i)

3 forj=ii+1,...,kdo

4 if a[jl < alm] then

5 m—j

6

7

8

9

end if
end for
return m
: end procedure
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A More Interesting Example

procedure MININDEX((4, i, k))
Find the index of the minimum
value stored in array a between
indices i and k.
m<—i
forj=ii+1,...,kdo
if a[jl < alm] then
m«j
end if
end for
return m
end procedure

Loop Invariant

After iteration j, m stores
the index of the minimum
value of a between indices i
and j.
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A More Interesting Example

1: procedure MININDEX((a, i, k))
Find the index of the minimum
value stored in array a between
indices i and k.

f0‘+1,...,kd0

5 Im—i3J

6 end if

(i end for "

8 return m

9: end procedture j \')H
ComgatL :

4( .

Loop Invariant

After iteration j, m stores
the index of the minimum
value of a between indices i
and j.

Proof.

Induct on j

* Base Case'{j= i.’
* Inductive step:
j= j+1
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Further Application

Consider the following algorithm that uses MININDEX as a subroutine:

1: procedure SELECTIONSORT(a, n) > Sort the array a of size n
2: fori=1,2,...,ndo

3: Jj— MININDEX(a, i, n)

4: SWAP(a, i, j)

5: end for
6: end procedure

Exercise (Tutorials)

Show that SELECTIONSORT correctly sorts any array a of length n.
Specifically:
* Find a suitable loop invariant satisfied by SELECTIONSORT

* Prove your loop invariant holds (by induction)

* Argue that your loop invariant implies the final array is sorted
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Induction and Recursion

Induction is essential in reasoning about recursively defined methods.

1: procedure MYSTERY(7) My shes ¥ (z

2: if n=1 then

3: return 1
4: end if

5: return 2n— 1+ MYSTERY(n— 1) .
6: end procedure

PollEverywhereQuestion

What is the output of MYSTERY(5)?

pollev.com/comp526
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Analysis of a Mystery

1: procedure MYSTERY(n)
2 if n=1 then
3: return 1
4 end if
5 return

2n—1+ MYSTERY(n—1)
6: end procedure
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Analysis of a Mystery

1: procedure MYSTERY(n)

5 if 1= 1 then Eor all 5 MYSTERY(n) returns the
3: return 1 value n”.

4 end if

5 return

2n—1+ MYSTERY(n—1)
6: end procedure
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Analysis of a Mystery

1: procedure MYSTERY(n)

5 if 71= 1 then For all I’zl, MYSTERY(n) returns the

3: return 1 value n”.

4:

55 \
nduction on 7. Base Case: n 3

Inductive step: Suppose

6: end procedure 5
MYSTERY(n) = n°. Then

>\/IYSTERY(H+ )=2n+1
MYSTERY(7)

:2n+1+@ \\

=(n+1)>.

st

Wpponss
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Modelling
Computation



What is an Algorithm?
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What is an Algorithm?

Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.

13/34



What is an Algorithm?

Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.
More precisely, an algorithm. ..

1. is mechanically executable

* uses only elementary operations
* each operation is determined by the algorithm description and the
results of previous operations

* executing the algorithm requires no thought
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What is an Algorithm?

Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.
More precisely, an algorithm. ..

1. is mechanically executable

* uses only elementary operations
* each operation is determined by the algorithm description and the
results of previous operations

* executing the algorithm requires no thought
2. has a finite description

3. solves a problem (i.e., a set of instances), not just a single instance

Gas
X&\’\‘:’\\{ ~ 0\"’\(& \'k %{'7
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What is an Algorithm?

Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.
More precisely, an algorithm. ..

1. is mechanically executable

* uses only elementary operations
* each operation is determined by the algorithm description and the
results of previous operations

* executing the algorithm requires no thought
2. has a finite description

3. solves a problem (i.e., a set of instances), not just a single instance

input — processing — output The SELECTIONSORT algorithm
* sorts any array of size n
* elementary operations/logic
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What is a Data Structure?

A data structure is

1. arule for encoding data in computer memory, and
2. algorithms for accessing and manipulating the data according to

the specified encoding.
* See next week for much more detail!

14/34
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What Makes an Algorithm “Good?”

Overarching Goal: find thealgorithm and data structures for a
task

1. Correctness: the algorithm performs the specified task...

* always exactly?
¢ always approximately?
* typically?
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What Makes an Algorithm “Good?”

Overarching Goal: find the “best” algorithm and data structures for a
task
1. Correctness: the algorithm performs the specified task...
* always exactly?
¢ always approximately?
* typically?
2. Efficiency: the algorithm doesn’t over-use resources
* fastrunning time
¢ small memory space
* small energy consumption
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What Makes an Algorithm “Good?”

Overarching Goal: find the “best” algorithm and data structures for a
task
1. Correctness: the algorithm performs the specified task...
* always exactly?
¢ always approximately?
* typically?
2. Efficiency: the algorithm doesn’t over-use resources

* fastrunning time
¢ small memory space
* small energy consumption

Algorithm analysis gives us a way to
* compare different algorithms

* predict their performance (efficiency) in applications
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Limitations of Empirical Analysis

Question. Why not just implement your algorithm and test it on a real
computer with real data?

e This is empirical algorithm analysis
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Limitations of Empirical Analysis

Question. Why not just implement your algorithm and test it on a real
computer with real data?
e This is empirical algorithm analysis

Limitations of empirical analysis:
* examines a single (or few) machines
* examines tested inputs
* tests particular implementation
e value of results are highly context dependent
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Limitations of Empirical Analysis

Question. Why not just implement your algorithm and test it on a real
computer with real data?
e This is empirical algorithm analysis

Limitations of empirical analysis:

* examines a single (or few) machines

* examines tested inputs

* tests particular implementation

e value of results are highly context dependent
Our Focus is formal analysis of algorithms on an abstract computer

e proveresults for our computational model

* results apply to any computer that satisfy our assumptions
Note. Neither formal nor empirical analysis is better—both are
important to computer science!

¢ this module just focuses on formal analysis
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Data Models

To perform formal algorithm analysis, we must specify

1. the computational model
2. therelevant performance parameter — notion of cost
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Data Models

To perform formal algorithm analysis, we must specify

1. the computational model
2. therelevant performance parameter — notion of cost
Types of performance:
* worst-case performance
Over all possible inputs, what is the worst cost of our algorithm’s
execution?
* best-case performance
Over all possible inputs, what is the best cost of our algorithm’s
execution?
* average-case performance
What is the average or expected cost for a of a random input
Typically, we analyze performance as a function of input size, n
— measure performance as a function of n: how does performance
Scale with input size
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Computational Models

A computational model defines

1. syntax: what operations can be performed

2. semantics: what are the effects of those
operations

3. the computational cost of the operations

These features determine what problems can be
solved and with what efficiency
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Computational Models

A computational model defines
1. syntax: what operations can be performed

2. semantics: what are the effects of those
operations

3. the computational cost of the operations
These features determine what problems can be
solved and with what efficiency
Choosing the “right” computational model is a
balance of

* computational power
e simplicity

e realism
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Computational Models

A computational model defines
1. syntax: what operations can be performed

2. semantics: what are the effects of those
operations

3. the computational cost of the operations
These features determine what problems can be
solved and with what efficiency
Choosing the “right” computational model is a
balance of

* computational power
e simplicity
* realism

Successful & general computational models
defined in the 1930’s

Credit: Princeton University
Alonzo Church
(Lambda Calculus)

Credit: Unknown
Alan Turing
(Turing Machines)
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Random Access Machines

The RAM Model consists of:
* Unlimited memory, access by address

° stores program, input, intermediate data
® each address stores fixed sized “word”

* Fixed number of registers
* stores “working” data

Credit: LANL
Jon von Neumann

* Elementary instructions

* load & store: move data between
registers/memory

* arithmetic operations: bit-wise opf,
addition/subtraction (fixed precisipn),...

¢ conditional/unconditional jump

* cost = number of instructions executed

of% \0\63
o
RAM is a standard model for sequential
computation, similar to assembly

CPU
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Pseudocode

The RAM model captures many aspects of real computers. ..
...but it is not intuitive for high level algorithm description.
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Pseudocode

The RAM model captures many aspects of real computers. ..
...but it is not intuitive for high level algorithm description.
Simplifying abstractions:
e Higher level abstract pseudocode:

* named variables, assignment
* control flow: if, for, while, etc.
* assumed memory management

¢ Cost: dominant operations (e.g., memory
access) instead of all RAM instructions
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Pseudocode

The RAM model captures many aspects of real computers. ..
..but it is not intuitive for high level algorithm description.

Simplifying abstractions:
e Higher level abstract pseudocode:

* named variables, assignment procedure EUCLID (g, b)
¢ control flow: if, for, while, etc. _while b#0do
* assumed memory management ’l’;é
¢ Cost: dominant operations (e.g., memory z: ‘:b
access) instead of all RAM instructions end while
return a
Pseudocode can (in principle) be end procedure

implemented in RAM model, just as C++ can Gace g £ CoOMmWmOA

be compiled to assembly )
divis Or Leeaddodo(
b A b
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(Important) Things We Ignore

System & Hardware Level Details
* Memory allocation
* required to implement arrays, dynamic memory usage, etc
* Pointers

¢ correspondence between variable names, values, and memory
addresses

¢ Support for procedures/methods/functions
¢ call stack, call frame, etc.
This are all fundamental problems in computer science, just not
within the purview of COMP526
* See modules on operating systems, compilers, programming
languages, etc.
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Asymptotic
Notation



Measuring (Time) Efficiency

Recall. We measure (time) efficiency in terms of number of elementary
operations performed

¢ assume all operations are unit cost

We want a robust measure of efficiency that is independent of
particular “real world” costs of operations
¢ focus on how the number of operations scales with input size
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Measuring (Time) Efficiency

Recall. We measure (time) efficiency in terms of number of elementary
operations performed

¢ assume all operations are unit cost

We want a robust measure of efficiency that is independent of
particular “real world” costs of operations

¢ focus on how the number of operations scales with input size
This motivates the study of asymptotic analysis.

cost

0 r————'-—§>
input size
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Big-O Notation

Goal of “Big-O” or asymptotic notation: a way of describing the growth
of functions that is:

e coarse enough to be simple enough to analyze
° independent of hardware or implementation constants

* precise enough to be informative
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Big-O Notation

Goal of “Big-O” or asymptotic notation: a way of describing the growth
of functions that is:
e coarse enough to be simple enough to analyze
° independent of hardware or implementation constants

(\0\\«/\( “"\ a 2 S—C’b&'
\

* precise enough to be informative

Definition

Suppose@andare functions from[N)to ﬁ . Then we say that

(read: f is big O of g) if there exist constants Ny € N and C € R such that

forall ne N
S n= NOX:‘f(n) < Cg(n). \

M<

Equivalently, f = O(g) < limsup 0]
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Big-O in Pictures

Definition

Suppose f and g are functions from N to R*. Then we say that f = O(g) (read: f is big O
of g) if there exist constants Ny € N and C € Rsuch thatforall neN,

n=Ny = f(n) < Cg(n). — C. (au\\

§
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Properties of O

Proposition
Suppose f, fi, f2, & &1, &, h are functions and a is any constant. Then:
. (Ynf(n)sa) = f=0Q) f e bosnéad by O

: (anill)_sg(ll)) = f=0(g)

.f:O(g) = a-f=0(g)

1

2

3 ol b
4. f=0(g) and g= O(h) = f=O(h) »\w'M\SiHUL\OL; o &
5

6

. f=0() and g=0O(h) = f+g=0(h)
. fi=0@)and > =0(g) = fi-2=0(g &)

Consequence:

° Ifa< bthen

Exercise. Show that if > b, then n® # O(n?).
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[0®
Example with Functions O )

Ml. Vnfm <a) = f=0(1)

972 2. (Vaf(m=<gm) = f=0(g)
®7=0@ = af=0@
4. f=0(g) and
g=0(h) = f=0(h

5. f= 0 and
€=0h) = f+g=0n

@{’\\ 'S 6. fi = O(g1) and
_,__J 0(“ ) (9(‘) ) f; = O(g;) = fi-2=0(g1 &)
1 N 1 2 nrs )
L o=\
(9'(Y\ 2= wl "
[ ) \F wo T ol
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Example with Pseudocode

Example. Analyze the worst-case running time of the INSERTIONSORT
procedure defined below.
° assumeelementary operations have running time O(1)

saL of Uiy

1: procedure INSERTIONSORT(3)(n)
2. |[for 1—2 3,...ndo L L n
3: j
4: L \_’ \\_()(Q&/\b\l\s
5:
. K — C- L
7 endwiile™ Tw M\f\(

dwinil .

0 U

8: end for QY\&\\/ g‘} Q«p OU\{-‘J lo 0P \ocp
9: end procedure Wee odions > On)

Ovecoed! (UUM\IM{ hea 5 @an) :
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Best Case Running Time

1: procedure INSERTIONSORT(a, n)
2. fori=2,3,...ndo Question

%% j—i What is the best case

4: while j > 1 and/a[j - 1]}@[]] running time for

5: SWAP(a, j— INSERTIONSORT? What

6 j—j-1 arrays incur this

7 end while running time?

8: nd for

9: end procedure

Cansided Solked O
Q0] L alTd cal33%
Not SQHSAJ rik
St (9((\ ’\g 50(-\—2,(33 pollev.com/comp526

29/34




Variations of O

e f=0(g) if f= O(g) and g = O(f)
* Example: 4 +3n+7=0n?)

* f=Q@ifg= 0
* Example: 0.01n° - 7n = Q(n?)

* f=o0(g) if for every € > 0, there exists Ny such

fn)
thatn2N0 — m<£.
[ _

* Equivalently: f = 0(g) <= limy o0 5 =

* Example: n'%% = o(n?)

e f=w(g) if g=o(f)
* Example: 0.017>°! = w(1?)
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Variations of O

Mnemonic for

* f=0(g)iff = 0(g) and g = O(f) Variations

* Example: 4 +3n+7=0n?)
Big-O (in)equality

* f=Q@ifg= 0
* Example: 0.01n° - 7n = Q(n?)

\%

* f=o0(g) if for every € > 0, there exists Ny such

f(n)
that n= Ny = g <€

S Q@D =¢e

A IN LIV

* Equivalently: f = 0(g) <= lim_.oo L2 =0

gn) —
1.999

* Example: n'%% = o(n?)

e f=w(g) if g=o(f)
2.01

* Example: 0.017>°! = w(1?)
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Interpretation

Suppose:
¢ two algorithms A and B for solving the same problem
* running time of Ais f, running time of Bis g
* f=0
Consider running A on a slow machine M; and B on a fast machine M.

Then: regardless of how much slower M; is than M, for sufficiently
large inputs, A will complete faster than B.
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Interpretation

Suppose:
¢ two algorithms A and B for solving the same problem
* running time of Ais f, running time of Bis g
* f=0
Consider running A on a slow machine M; and B on a fast machine M.

Then: regardless of how much slower M; is than M, for sufficiently
large inputs, A will complete faster than B.

The Moral. Efficient algorithms are better than faster hardware.

¢ little-o notation gives the “right” abstraction to formalize this
relationship
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Common Orders of Growth

Named orders of growth:

name asymptotic growth
constant o)
logarithmic O(logn)
polylogarithmic O(log® n)
linear O(n)

almost linear O(nlog® n)
quadratic on?)
polynomial o(n)

exponential o
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Common Orders of Growth

Relationships

Named orders of growth: Between classes:

name asymptotic growth Foralla, b>0

constant o) ° a= o(logb n)

logarithmic O(logn) * log“n=o(n?)

polylogarithmic O(log® n) o nf=o(b"

linear O(n)

almost linear O(nlog® n)

quadratic on?)

polynomial o(n)

exponential o
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Common Orders of Growth

Relationships
Named orders of growth: Between classes:
name asymptotic growth Forall g, b> Ob
constant o) * a=o(log’n)
logarithmic O(logn) * log®n=o(n?)
polylogarithmic O(log® n) o nf=o(b"
linear O(n)
1 C
almost l}near O(nlog n) Within classes:
quadratic Oo(n~)

. c Foralla, b,a<b
polynomial o(n°) ; )
exponential o(c™ * log”n=o(log”n)

e n=o(nh)

e a"=o(b"
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Next Time

* Abstract Data Types
e Fundamental Data Structures
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Scratch Notes

ML?} = 1xS =\ «x
M) e—

e eged s 2herl :@ x4 - M(3)

T‘r/ 253+ + M(2)

/

A




Scratch Notes
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