Lecture 3: Machines and Models

COMP526: Efficient Algorithms

Updated: October 10, 2024

825332

Will Rosenbaum University of Liverpool

Announcements

- 1. First quiz live now, due Friday
 - Administered through Canvas
 - One question, multiple choice
 - · 20 minutes
 - Covers basic logic (Tuesday's lecture, this week's tutorial, posted notes)
 - Don't start until you're ready to take the quiz.
- 2. Programming Assignment 1 released next week
 - Due 13 November
- 3. Attendance Code: **825 33 2**

Meeting Goals

- Finish discussion of mathematical induction
- Analyze algorithm correctness with loop invariants
- Formalize the RAM model of computation
- Introduce asymptotic notation

Mathematical Induction

Mathematical Induction

Statement Tor F for each nat. If

The Principle of Mathematical Induction

Let P be a predicate over the natural numbers $\mathbf{N} = \{0, 1, 2, ...\}$. Suppose P satisfies

- Base case: *P*(0) is true.
- Inductive step: For every $i \in \mathbb{N}$, $P(i) \Longrightarrow P(i+1)$.

Then for every $n \in \mathbb{N}$, P(n) is true. In strictly symbolic notation:

$$(P(0)) \wedge (\forall i [P(i) \Longrightarrow P(i+1)]) \Longrightarrow \forall n P(n).$$

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate P on the iterations of the loop such that for each iteration i, P(i) is satisfied at the end of the i-th iteration of the loop.

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate P on the iterations of the loop such that for each iteration i, P(i) is satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example

```
Consider the following procedure

1: procedure COUNT(n)

2: t \leftarrow 0

3: for i = 1,...,n do

4: t \leftarrow t+1

5: end for

6: return t

7: end procedure
```

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate P on the iterations of the loop such that for each iteration i, P(i) is satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example

Consider the following procedure

```
1: procedure COUNT(n)
2: t \leftarrow 0
```

3: **for**
$$i = 1, ..., n$$
 do 4: $t \leftarrow t + 1$

6: **return** t

7: end procedure

Loop Invariant

After iteration *i*, *t* stores the value *i*.

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate P on the iterations of the loop such that for each iteration i, P(i) is satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example

Consider the following procedure

```
1: procedure COUNT(n)

2: t \leftarrow 0

3: for i = 1,...,n do

4: t \leftarrow |t| + 1

5: lend for by incl. My parameters t \leftarrow i in (1+1)

7: end procedure
```

Loop Invariant

After iteration i, t stores the value i. Induct on \mathbf{x} $\mathbf{\hat{t}}$

- Base case: *t* initialized to 0. (Line 2)
- Inductive step:
 - Suppose after iteration *i*, *t* stores the value *i* (inductive hypothesis)
 - Then in iteration i+1 after line 4, t stores the value i+1.

array

1: **procedure** $\underline{MININDEX}((a, i, k))$ \triangleright Find the index of the minimum value stored in array a between

```
indices i and k.

2: \widehat{m} \leftarrow i

3: \mathbf{for} \ j = i, i+1, ..., k \ \mathbf{do}

4: \mathbf{if} \ a[j] > a[m] \ \mathbf{then}

5: m \leftarrow j

6: \mathbf{end} \ \mathbf{if}

7: \mathbf{end} \ \mathbf{for}

8: \mathbf{return} \ \mathbf{m}

9: \mathbf{end} \ \mathbf{procedure}
```

PollEverywhere Question

What loop invariant does the loop in MININDEX satisfy that will help us analyze its behavior?

pollev.com/comp526

1: **procedure** MININDEX((a, i, k)) Find the index of the minimum value stored in array a between indices i and k.

```
    2: [m ← i]
    3: for j = i, i+1,..., k do
    4: if a[j] < a[m] then</li>
    5: m ← j
    6: end if
    7: end for
    8: return m
    9: end procedure
```

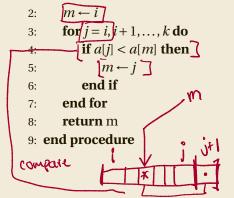
1: **procedure** MININDEX((*a*, *i*, *k*)) Find the index of the minimum value stored in array *a* between indices *i* and *k*.

```
    m ← i
    for j = i, i+1,..., k do
    if a[j] < a[m] then</li>
    m ← j
    end if
    end for
    return m
    end procedure
```

Loop Invariant

After iteration *j*, *m* stores the index of the minimum value of *a* between indices *i* and *j*.

1: **procedure** MININDEX((*a*, *i*, *k*)) Find the index of the minimum value stored in array *a* between indices *i* and *k*.



Loop Invariant

After iteration *j*, *m* stores the index of the minimum value of *a* between indices *i* and *j*.

Proof.

Induct on *j*

- Base case: j = i.
- Inductive step: $i \implies j+1$

Further Application

Consider the following algorithm that uses MININDEX as a subroutine:

```
1: procedure SELECTIONSORT(a, n) \triangleright Sort the array a of size n
2: for i = 1, 2, ..., n do
3: j \leftarrow \text{MININDEX}(a, i, n)
4: SWAP(a, i, j)
5: end for
6: end procedure
```

Exercise (Tutorials)

Show that Selection Sort correctly sorts any array a of length n. Specifically:

- Find a suitable loop invariant satisfied by SELECTIONSORT
- Prove your loop invariant holds (by induction)
- Argue that your loop invariant implies the final array is sorted

Induction and Recursion

Induction is essential in reasoning about *recursively defined* methods.

A Recursive Method

```
1: procedure Mystery(n)

2: | if n = 1 then

3: | return 1 | 2n - 1 + Mystery (1)

4: | end if

5: | return 2n - 1 + Mystery(n - 1) | = 2 \cdot 2 - 1 + 1 = 14

6: end procedure
```

PollEverywhereQuestion

What is the output of MYSTERY(5)?

pollev.com/comp526

Analysis of a Mystery

```
    procedure MYSTERY(n)
    if n = 1 then
    return 1
    end if
    return

            2n-1+MYSTERY(n-1)

    end procedure
```

Analysis of a Mystery

```
    procedure MYSTERY(n)
    if n = 1 then
    return 1
    end if
    return
    2n-1+MYSTERY(n-1)
    end procedure
```

Claim

For all n, MYSTERY(n) returns the value n^2 .

Analysis of a Mystery

```
Claim
1: procedure Mystery(n)
                                   For all n, Mystery(n) returns the
    if n = 1 then
                                   value n^2.
3:
         return 1
4:
     end if
                                   Proof.
     return
                                   Induction on n. Base Case: n = 1.
  2n-1+Mystery(n-1)
                                   Inductive step: Suppose
6: end procedure
                                   Mystery(n) = n^2. Then
                                   MYSTERY(n+1) \stackrel{\checkmark}{=} 2n+1
                                                        +MYSTERY(n)
                                                    =2n+1+n
                                                    =(n+1)^2
```

Modelling Computation

Informally, an algorithm is a sequence of instructions carried out to perform a prescribed task.

Informally, an algorithm is a sequence of instructions carried out to perform a prescribed task.

More precisely, an algorithm...

- 1. is mechanically executable
 - · uses only elementary operations
 - each operation is determined by the algorithm description and the results of previous operations
 - executing the algorithm requires no thought

Informally, an algorithm is a sequence of instructions carried out to perform a prescribed task.

More precisely, an algorithm...

- 1. is mechanically executable
 - uses only elementary operations
 - each operation is determined by the algorithm description and the results of previous operations
 - executing the algorithm requires no thought
- 2. has a finite description

Informally, an algorithm is a sequence of instructions carried out to perform a prescribed task.

More precisely, an algorithm...

- 1. is mechanically executable
 - uses only elementary operations
 - each operation is determined by the algorithm description and the results of previous operations
 - executing the algorithm requires no thought
- 2. has a finite description
- 3. solves a problem (i.e., a set of instances), not just a single instance

compute xty for and y

Informally, an algorithm is a sequence of instructions carried out to perform a prescribed task.

More precisely, an algorithm...

- 1. is mechanically executable
 - · uses only elementary operations
 - each operation is determined by the algorithm description and the results of previous operations
 - executing the algorithm requires no thought
- 2. has a finite description
- 3. solves a *problem* (i.e., a set of instances), not just a single instance

input \rightarrow processing \rightarrow output

Example

The SelectionSort algorithm

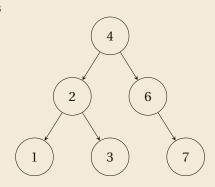
- sorts *any* array of size *n*
- elementary operations/logic

What is a Data Structure?

A data structure is

- 1. a rule for *encoding data* in computer memory, and
- 2. algorithms for accessing and manipulating the data according to the specified encoding.
 - See next week for much more detail!

Typical example: binary search trees



What Makes an Algorithm "Good?"

Overarching Goal: find the "best" algorithm and data structures for a task

- 1. Correctness: the algorithm performs the specified task...
 - · always exactly?
 - always approximately?
 - typically?

What Makes an Algorithm "Good?"

Overarching Goal: find the "best" algorithm and data structures for a task

- 1. Correctness: the algorithm performs the specified task...
 - always exactly?
 - always approximately?
 - typically?
- 2. **Efficiency**: the algorithm doesn't over-use resources
 - · fast running time
 - small memory space
 - small energy consumption
 - ...

What Makes an Algorithm "Good?"

Overarching Goal: find the "best" algorithm and data structures for a task

- 1. Correctness: the algorithm performs the specified task...
 - · always exactly?
 - always approximately?
 - typically?
- 2. Efficiency: the algorithm doesn't over-use resources
 - · fast running time
 - small memory space
 - small energy consumption
 - ...

Algorithm analysis gives us a way to

- compare different algorithms
- predict their performance (efficiency) in applications

Limitations of Empirical Analysis

Question. Why not just implement your algorithm and test it on a real computer with real data?

• This is *empirical* algorithm analysis

Limitations of Empirical Analysis

Question. Why not just implement your algorithm and test it on a real computer with real data?

• This is *empirical* algorithm analysis

Limitations of empirical analysis:

- examines a single (or few) machines
- examines tested inputs
- tests particular implementation
- value of results are highly context dependent

Limitations of Empirical Analysis

Question. Why not just implement your algorithm and test it on a real computer with real data?

• This is *empirical* algorithm analysis

Limitations of empirical analysis:

- · examines a single (or few) machines
- examines tested inputs
- tests particular implementation
- value of results are highly context dependent

Our Focus is formal analysis of algorithms on an abstract computer

- prove results for our computational model
- results apply to any computer that satisfy our assumptions

Note. Neither formal nor empirical analysis is *better*—both are important to computer science!

this module just focuses on formal analysis

Data Models

To perform formal algorithm analysis, we must specify

- 1. the computational model
- 2. the relevant performance parameter \implies notion of **cost**

Data Models

To perform formal algorithm analysis, we must specify

- 1. the computational model
- 2. the relevant performance parameter \implies notion of **cost**

Types of performance:

- worst-case performance
 - Over all possible inputs, what is the *worst* cost of our algorithm's execution?
- best-case performance

Over all possible inputs, what is the *best* cost of our algorithm's execution?

average-case performance

What is the *average* or *expected* cost for a of a *random* input

Typically, we analyze performance as a function of **input size**, n

 \implies measure performance as a function of n: how does performance \underline{scale} with input size

Computational Models

A computational model defines

- 1. *syntax:* what operations can be performed
- 2. *semantics:* what are the effects of those operations
- 3. the computational cost of the operations

These features determine what problems can be solved and with what efficiency

Computational Models

A computational model defines

- 1. *syntax:* what operations can be performed
- 2. *semantics:* what are the effects of those operations
- 3. the computational cost of the operations

These features determine what problems can be solved and with what efficiency

Choosing the "right" computational model is a balance of

- computational power
- simplicity
- realism

Computational Models

A computational model defines

- 1. syntax: what operations can be performed
- 2. *semantics*: what are the effects of those operations
- 3. the computational cost of the operations

These features determine what problems can be solved and with what efficiency

Choosing the "right" computational model is a balance of

- computational power
- simplicity
- realism

Successful & general computational models defined in the 1930's

Credit: Princeton University
Alonzo Church
(Lambda Calculus)

Alan Turing (Turing Machines)

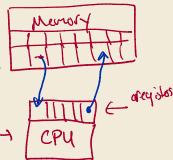
Random Access Machines

The RAM Model consists of:

- Unlimited memory, access by address
 - · stores program, input, intermediate data
 - · each address stores fixed sized "word"
- Fixed number of **registers**
 - stores "working" data
- Elementary instructions
 - load & store: move data between registers/memory
 - arithmetic operations: bit-wise ops, addition/subtraction (fixed precision),...
 - conditional/unconditional jump
- cost = number of instructions executed

RAM is a standard model for *sequential* computation, similar to assembly

Jon von Neumann



Pseudocode

The RAM model captures many aspects of real computers...
... but it is not intuitive for **high level** algorithm description.

Pseudocode

The RAM model captures many aspects of real computers...

... but it is not intuitive for **high level** algorithm description.

Simplifying abstractions:

- Higher level abstract **pseudocode**:
 - · named variables, assignment
 - · control flow: if, for, while, etc.
 - assumed memory management
- Cost: dominant operations (e.g., memory access) instead of all RAM instructions

Pseudocode

The RAM model captures many aspects of real computers...

... but it is not intuitive for **high level** algorithm description.

Simplifying abstractions:

- Higher level abstract **pseudocode**:
 - · named variables, assignment
 - · control flow: if, for, while, etc.
 - assumed memory management
- Cost: dominant operations (e.g., memory access) instead of all RAM instructions

Pseudocode can (in principle) be implemented in RAM model, just as C++ can be compiled to assembly

divis Or

while $b \neq 0$ do $t \leftarrow b$ $b \leftarrow a \pmod{b}$ $a \leftarrow t$ end while
return aend procedure

Greatest Common

procedure EUCLID(a, b)

(Important) Things We Ignore

System & Hardware Level Details

- Memory allocation
 - required to implement arrays, dynamic memory usage, etc
- Pointers
 - correspondence between variable names, values, and memory addresses
- Support for procedures/methods/functions
 - call stack, call frame, etc.

This are all fundamental problems in computer science, just not within the purview of COMP526

 See modules on operating systems, compilers, programming languages, etc.

Asymptotic Notation

Measuring (Time) Efficiency

Recall. We measure *(time) efficiency* in terms of number of elementary operations performed

· assume all operations are unit cost

We want a robust measure of efficiency that is *independent* of particular "real world" costs of operations

• focus on how the number of operations **scales** with input size

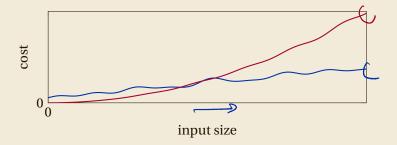
Measuring (Time) Efficiency

Recall. We measure *(time) efficiency* in terms of number of elementary operations performed

• assume all operations are unit cost

We want a robust measure of efficiency that is *independent* of particular "real world" costs of operations

• focus on how the number of operations **Scales** with input size This motivates the study of **asymptotic analysis**.



Big-O Notation

Goal of "Big-O" or asymptotic notation: a way of describing the *growth* of functions that is:

- coarse enough to be simple enough to analyze
 - · independent of hardware or implementation constants
- precise enough to be informative

Big-O Notation

Goal of "Big-O" or asymptotic notation: a way of describing the *growth* of functions that is:

- coarse enough to be simple enough to analyze
 - independent of hardware or implementation constants
- precise enough to be informative

natural HS site

Definition

Suppose f and g are functions from N to R^+ . Then we say that f = O(g) (read: f is big O of g) if there exist constants $N_0 \in \mathbb{N}$ and $C \in \mathbb{R}$ such that for all $n \in \mathbb{N}$

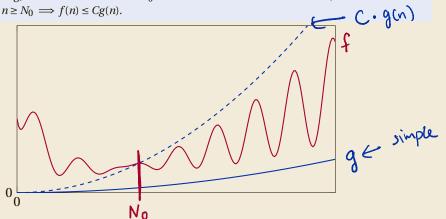
$$n \ge N_0 \Longrightarrow f(n) \le Cg(n).$$

Equivalently, $f = O(g) \iff \limsup \frac{f(n)}{g(n)} < \infty$

Big-O in Pictures

Definition

Suppose f and g are functions from \mathbf{N} to \mathbf{R}^+ . Then we say that f = O(g) (read: f is big O of g) if there exist constants $N_0 \in \mathbf{N}$ and $C \in \mathbf{R}$ such that for all $n \in \mathbf{N}$, $n \ge N_0 \implies f(n) \le Cg(n)$.



Properties of O

Proposition

Suppose f, f_1 , f_2 , g, g_1 , g_2 , h are functions and a is any constant. Then:

1.
$$(\forall n f(n) \leq a) \Longrightarrow f = O(1)$$
 is bounded by a

2.
$$(\forall n f(n) \le g(n)) \implies f = O(g)$$

3.
$$f = O(g) \implies a \cdot f = O(g)$$

3.
$$f = O(g) \implies a \cdot f = O(g)$$

4. $f = O(g)$ and $g = O(h) \implies f = O(h)$ transitive by $g = g = g$

$$\Rightarrow$$
 5. $f = O(h)$ and $g = O(h) \implies f + g = O(h)$

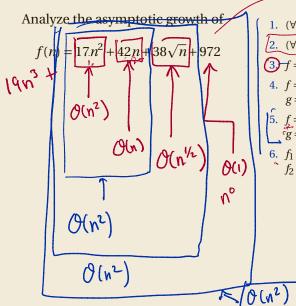
6.
$$f_1 = O(g_1)$$
 and $f_2 = O(g_2) \implies f_1 \cdot f_2 = O(g_1 \cdot g_2)$

Consequence:

• If
$$a \le b$$
 then $n^a = O(n^b)$

Exercise. Show that if a > b, then $n^a \neq O(n^b)$.

Example with Functions



1.
$$(\forall n f(n) \le a) \implies f = O(1)$$

2. $(\forall n f(n) \le g(n)) \implies f = O(g)$
(3) $f = O(g) \implies a \cdot f = O(g)$

4.
$$f = O(g)$$
 and $g = O(h) \implies f = O(h)$

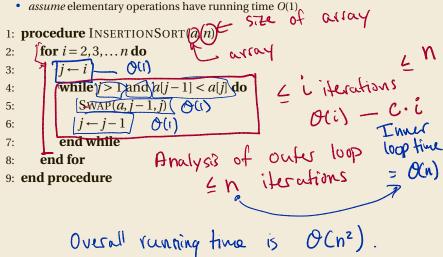
5.
$$f = O(h)$$
 and $g = O(h) \implies f + g = O(h)$

6.
$$f_1 = O(g_1)$$
 and $f_2 = O(g_2) \implies f_1 \cdot f_2 = O(g_1 \cdot g_2)$

$$2 \Rightarrow n^2 = O(n^2)$$

Example with Pseudocode

Example. Analyze the *worst-case* running time of the INSERTIONSORT procedure defined below.



Best Case Running Time

```
1: procedure INSERTIONSORT(a, n)
      for i = 2, 3, ... n do
2:
3:
          i \leftarrow i
         while j > 1 and a[j-1] > a[j]
4:
             SWAP(a, j-1, i)
5:
            j \leftarrow j - 1
6:
          end while
7:
      end for
8:
9: end procedure
Consider sorted a
acite acete acets
                           not satisfied
                           if sorted
        50 ()(1)
```

PollEverywhere Question

What is the **best case** running time for INSERTIONSORT? What arrays incur this running time?

pollev.com/comp526

Variations of O

- $f = \Theta(g)$ if f = O(g) and g = O(f)
 - Example: $4n^2 + 3n + 7 = \Theta(n^2)$
- $f = \Omega(g)$ if g = O(f)
 - Example: $0.01n^2 7n = \Omega(n^2)$
- f = o(g) if for every $\varepsilon > 0$, there exists N_0 such that $n \ge N_0 \Longrightarrow \frac{f(n)}{g(n)} < \varepsilon$.
 - Equivalently: $f = o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
 - Example: $n^{1.999} = o(n^2)$
- $f = \omega(g)$ if g = o(f)
 - Example: $0.01n^{2.01} = \omega(n^2)$

Variations of O

•
$$f = \Theta(g)$$
 if $f = O(g)$ and $g = O(f)$

• Example: $4n^2 + 3n + 7 = \Theta(n^2)$

•
$$f = \Omega(g)$$
 if $g = O(f)$

• Example: $0.01n^2 - 7n = \Omega(n^2)$

Mnemonic for Variations

	Big-O	(in)equality
	ω	>
	Ω	≥
	Θ	≈
1	O	≤
	0	<

- f = o(g) if for every $\varepsilon > 0$, there exists N_0 such that $n \ge N_0 \Longrightarrow \frac{f(n)}{g(n)} < \varepsilon$.
 - Equivalently: $f = o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
 - Example: $n^{1.999} = o(n^2)$
- $f = \omega(g)$ if g = o(f)
 - Example: $0.01n^{2.01} = \omega(n^2)$

Interpretation

Suppose:

- two algorithms *A* and *B* for solving the same problem
- running time of *A* is *f* , running time of *B* is *g*
- f = o(g)

Consider running A on a slow machine M_1 and B on a fast machine M_2 . Then: regardless of how much slower M_1 is than M_2 , for *sufficiently large* inputs, A will complete faster than B.

Interpretation

Suppose:

- two algorithms *A* and *B* for solving the same problem
- running time of *A* is *f* , running time of *B* is *g*
- f = o(g)

Consider running A on a slow machine M_1 and B on a fast machine M_2 . Then: regardless of how much slower M_1 is than M_2 , for *sufficiently large* inputs, A will complete faster than B.

The Moral. Efficient *algorithms* are better than faster hardware.

• little-*o* notation gives the "right" abstraction to formalize this relationship

Common Orders of Growth

Named orders of growth:

name	asymptotic growth
constant	O(1)
logarithmic	$O(\log n)$
polylogarithmic	$O(\log^c n)$
linear	O(n)
almost linear	$O(n\log^c n)$
quadratic	$O(n^2)$
polynomial	$O(n^c)$
exponential	$O(c^n)$

Common Orders of Growth

Named orders of growth:

name	asymptotic growth
constant	O(1)
logarithmic	$O(\log n)$
polylogarithmic	$O(\log^c n)$
linear	O(n)
almost linear	$O(n\log^c n)$
quadratic	$O(n^2)$
polynomial	$O(n^c)$
exponential	$O(c^n)$

Relationships

Between classes:

- For all a, b > 0
 - $a = o(\log^b n)$ • $\log^a n = o(n^b)$
 - $\log n = o(n^{\epsilon})$
 - $n^a = o(b^n)$

Common Orders of Growth

Named orders of growth:

name	asymptotic growth
constant	O(1)
logarithmic	$O(\log n)$
polylogarithmic	$O(\log^c n)$
linear	O(n)
almost linear	$O(n\log^c n)$
quadratic	$O(n^2)$
polynomial	$O(n^c)$
exponential	$O(c^n)$

Relationships

Between classes:

For all a, b > 0

- $a = o(\log^b n)$
- $\log^a n = o(n^b)$
- $n^a = o(b^n)$

Within classes:

For all a, b, a < b

- $\log^a n = o(\log^b n)$
- $n^a = o(n^b)$
- $a^n = o(b^n)$

Next Time

- Abstract Data Types
- Fundamental Data Structures

Scratch Notes

$$M(5) = 2 \times 5 - 1 +$$
 $M(4) \leftarrow$
 $1 + 3 + 5 + 7 \dots + 2k - 1 = (k^2)$
 $2 \times 4 - 1 + M(3)$
 $2 \times 3 - 1 + M(2)$

Scratch Notes