
Lecture 3: Machines and
Models
COMP526: Efficient Algorithms

Updated: October 10, 2024
Will Rosenbaum
University of Liverpool

1 / 34

attendance
code

↓
025332/

Announcements

1. First quiz live now, due Friday
• Administered through Canvas
• One question, multiple choice
• 20 minutes
• Covers basic logic (Tuesday’s lecture, this week’s tutorial, posted

notes)
• Don’t start until you’re ready to take the quiz.

2. Programming Assignment 1 released next
week

• Due 13 November

3. Attendance Code:

2 / 34

825332

Meeting Goals

• Finish discussion of mathematical induction

• Analyze algorithm correctness with loop invariants

• Formalize the RAM model of computation

• Introduce asymptotic notation

3 / 34

Mathematical
Induction

Mathematical Induction

The Principle of Mathematical Induction
Let P be a predicate over the natural numbers N = {0,1,2, . . .}. Suppose
P satisfies

• Base case: P(0) is true.

• Inductive step: For every i 2 N, P(i) =) P(i+1).

Then for every n 2 N, P(n) is true. In strictly symbolic notation:

(P(0))^ (8i[P(i) =) P(i+1)]) =) 8nP(n).

5 / 34

statementTorthat .

#

-
-

Loop Invariants

Loop Invariants
Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

An Uninteresting
Example
Consider the following
procedure

1: procedure COUNT(n)
2: t √ 0
3: for i = 1, . . . ,n do
4: t √ t +1
5: end for
6: return t
7: end procedure

Loop Invariant
After iteration i, t stores the value i.
Induct on t.

• Base case: t initialized to 0. (Line 2)
• Inductive step:

• Suppose after iteration i, t stores
the value i (inductive hypothesis)

• Then in iteration i+1 after line 4, t

stores the value i+1.

6 / 34

Loop Invariants

Loop Invariants
Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

An Uninteresting
Example
Consider the following
procedure

1: procedure COUNT(n)
2: t √ 0
3: for i = 1, . . . ,n do
4: t √ t +1
5: end for
6: return t
7: end procedure

Loop Invariant
After iteration i, t stores the value i.
Induct on t.

• Base case: t initialized to 0. (Line 2)
• Inductive step:

• Suppose after iteration i, t stores
the value i (inductive hypothesis)

• Then in iteration i+1 after line 4, t

stores the value i+1.

6 / 34

--

Loop Invariants

Loop Invariants
Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

An Uninteresting
Example
Consider the following
procedure

1: procedure COUNT(n)
2: t √ 0
3: for i = 1, . . . ,n do
4: t √ t +1
5: end for
6: return t
7: end procedure

Loop Invariant
After iteration i, t stores the value i.

Induct on t.

• Base case: t initialized to 0. (Line 2)
• Inductive step:

• Suppose after iteration i, t stores
the value i (inductive hypothesis)

• Then in iteration i+1 after line 4, t

stores the value i+1.

6 / 34

Loop Invariants

Loop Invariants
Given an algorithm A containing a loop, a loop invariant is a predicate
P on the iterations of the loop such that for each iteration i, P(i) is
satisfied at the end of the i-th iteration of the loop.

An Uninteresting
Example
Consider the following
procedure

1: procedure COUNT(n)
2: t √ 0
3: for i = 1, . . . ,n do
4: t √ t +1
5: end for
6: return t
7: end procedure

Loop Invariant
After iteration i, t stores the value i.
Induct on t.

• Base case: t initialized to 0. (Line 2)
• Inductive step:

• Suppose after iteration i, t stores
the value i (inductive hypothesis)

• Then in iteration i+1 after line 4, t

stores the value i+1.

6 / 34

↳

- Base cuse -

E1"

by ind , hyp -

- t = i in (i+1)
itration

A More Interesting Example

1: procedure MININDEX((a, i,k)) .

Find the index of the minimum
value stored in array a between
indices i and k.

2: m √ i

3: for j = i, i+1, . . . ,k do
4: if a[j] > a[m] then
5: m √ j

6: end if
7: end for
8: return m
9: end procedure

PollEverywhere Question

What loop invariant does
the loop in MININDEX

satisfy that will help us
analyze its behavior?

pollev.com/comp526

7 / 34

array
C

-

↳

Ki I

[.2::

A More Interesting Example

1: procedure MININDEX((a, i,k)) .

Find the index of the minimum
value stored in array a between
indices i and k.

2: m √ i

3: for j = i, i+1, . . . ,k do
4: if a[j] < a[m] then
5: m √ j

6: end if
7: end for
8: return m
9: end procedure

Loop Invariant
After iteration j, m stores
the index of the minimum
value of a between indices i

and j.

Proof.
Induct on j

• Base case: j = i.

• Inductive step:
j =) j+1

8 / 34

i

[jk
T. -Jo -I

[2

A More Interesting Example

1: procedure MININDEX((a, i,k)) .

Find the index of the minimum
value stored in array a between
indices i and k.

2: m √ i

3: for j = i, i+1, . . . ,k do
4: if a[j] < a[m] then
5: m √ j

6: end if
7: end for
8: return m
9: end procedure

Loop Invariant
After iteration j, m stores
the index of the minimum
value of a between indices i

and j.

Proof.
Induct on j

• Base case: j = i.

• Inductive step:
j =) j+1

8 / 34

A More Interesting Example

1: procedure MININDEX((a, i,k)) .

Find the index of the minimum
value stored in array a between
indices i and k.

2: m √ i

3: for j = i, i+1, . . . ,k do
4: if a[j] < a[m] then
5: m √ j

6: end if
7: end for
8: return m
9: end procedure

Loop Invariant
After iteration j, m stores
the index of the minimum
value of a between indices i

and j.

Proof.
Induct on j

• Base case: j = i.

• Inductive step:
j =) j+1

8 / 34

*
↳

55 33

[compare

Further Application
Consider the following algorithm that uses MININDEX as a subroutine:

1: procedure SELECTIONSORT(a,n) . Sort the array a of size n

2: for i = 1,2, . . . ,n do
3: j √ MININDEX(a, i,n)
4: SWAP(a, i, j)
5: end for
6: end procedure

Exercise (Tutorials)
Show that SELECTIONSORT correctly sorts any array a of length n.
Specifically:

• Find a suitable loop invariant satisfied by SELECTIONSORT

• Prove your loop invariant holds (by induction)

• Argue that your loop invariant implies the final array is sorted

9 / 34

Induction and Recursion
Induction is essential in reasoning about recursively defined methods.

A Recursive Method
1: procedure MYSTERY(n)
2: if n = 1 then
3: return 1
4: end if
5: return 2n°1+MYSTERY(n°1)
6: end procedure

PollEverywhereQuestion

What is the output of MYSTERY(5)?

pollev.com/comp526
10 / 34

Mystery (2)

1-Y + Mystery (2)

=> 2 . 2 - 1 + 1 = 4

Analysis of a Mystery

1: procedure MYSTERY(n)
2: if n = 1 then
3: return 1
4: end if
5: return

2n°1+MYSTERY(n°1)
6: end procedure

Claim
For all n, MYSTERY(n) returns the
value n

2.

Proof.
Induction on n. Base Case: n = 1.
Inductive step: Suppose
MYSTERY(n) = n

2. Then

MYSTERY(n+1) = 2n+1

+MYSTERY(n)

= 2n+1+n
2

= (n+1)2.

11 / 34

Analysis of a Mystery

1: procedure MYSTERY(n)
2: if n = 1 then
3: return 1
4: end if
5: return

2n°1+MYSTERY(n°1)
6: end procedure

Claim
For all n, MYSTERY(n) returns the
value n

2.

Proof.
Induction on n. Base Case: n = 1.
Inductive step: Suppose
MYSTERY(n) = n

2. Then

MYSTERY(n+1) = 2n+1

+MYSTERY(n)

= 2n+1+n
2

= (n+1)2.

11 / 34

-

Analysis of a Mystery

1: procedure MYSTERY(n)
2: if n = 1 then
3: return 1
4: end if
5: return

2n°1+MYSTERY(n°1)
6: end procedure

Claim
For all n, MYSTERY(n) returns the
value n

2.

Proof.
Induction on n. Base Case: n = 1.
Inductive step: Suppose
MYSTERY(n) = n

2. Then

MYSTERY(n+1) = 2n+1

+MYSTERY(n)

= 2n+1+n
2

= (n+1)2.

11 / 34

-2
↳ -line

↳
-
*ductive

hypothesis

Modelling
Computation

What is an Algorithm?

Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.
More precisely, an algorithm. . .

1. is mechanically executable
• uses only elementary operations
• each operation is determined by the algorithm description and the

results of previous operations
• executing the algorithm requires no thought

2. has a finite description

3. solves a problem (i.e., a set of instances), not just a single instance

input ! processing ! output

Example
The SELECTIONSORT algorithm

• sorts any array of size n

• elementary operations/logic

13 / 34

What is an Algorithm?
Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.

More precisely, an algorithm. . .
1. is mechanically executable

• uses only elementary operations
• each operation is determined by the algorithm description and the

results of previous operations
• executing the algorithm requires no thought

2. has a finite description

3. solves a problem (i.e., a set of instances), not just a single instance

input ! processing ! output

Example
The SELECTIONSORT algorithm

• sorts any array of size n

• elementary operations/logic

13 / 34

What is an Algorithm?
Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.
More precisely, an algorithm. . .

1. is mechanically executable
• uses only elementary operations
• each operation is determined by the algorithm description and the

results of previous operations
• executing the algorithm requires no thought

2. has a finite description

3. solves a problem (i.e., a set of instances), not just a single instance

input ! processing ! output

Example
The SELECTIONSORT algorithm

• sorts any array of size n

• elementary operations/logic

13 / 34

What is an Algorithm?
Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.
More precisely, an algorithm. . .

1. is mechanically executable
• uses only elementary operations
• each operation is determined by the algorithm description and the

results of previous operations
• executing the algorithm requires no thought

2. has a finite description

3. solves a problem (i.e., a set of instances), not just a single instance

input ! processing ! output

Example
The SELECTIONSORT algorithm

• sorts any array of size n

• elementary operations/logic

13 / 34

What is an Algorithm?
Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.
More precisely, an algorithm. . .

1. is mechanically executable
• uses only elementary operations
• each operation is determined by the algorithm description and the

results of previous operations
• executing the algorithm requires no thought

2. has a finite description

3. solves a problem (i.e., a set of instances), not just a single instance

input ! processing ! output

Example
The SELECTIONSORT algorithm

• sorts any array of size n

• elementary operations/logic

13 / 34

-

computecomputer

-y Fo and y 3 + 7

What is an Algorithm?
Informally, an algorithm is a sequence of instructions carried out to
perform a prescribed task.
More precisely, an algorithm. . .

1. is mechanically executable
• uses only elementary operations
• each operation is determined by the algorithm description and the

results of previous operations
• executing the algorithm requires no thought

2. has a finite description

3. solves a problem (i.e., a set of instances), not just a single instance

input ! processing ! output

Example
The SELECTIONSORT algorithm

• sorts any array of size n

• elementary operations/logic

13 / 34

What is a Data Structure?
A data structure is

1. a rule for encoding data in computer memory, and
2. algorithms for accessing and manipulating the data according to

the specified encoding.
• See next week for much more detail!

Typical example: binary search trees

4

2

1 3

6

7

14 / 34

What Makes an Algorithm “Good?”
Overarching Goal: find the “best” algorithm and data structures for a
task

1. Correctness: the algorithm performs the specified task...
• always exactly?
• always approximately?
• typically?

2. Efficiency: the algorithm doesn’t over-use resources
• fast running time

• small memory space

• small energy consumption

• . . .

Algorithm analysis gives us a way to

• compare different algorithms

• predict their performance (efficiency) in applications

15 / 34

E

What Makes an Algorithm “Good?”
Overarching Goal: find the “best” algorithm and data structures for a
task

1. Correctness: the algorithm performs the specified task...
• always exactly?
• always approximately?
• typically?

2. Efficiency: the algorithm doesn’t over-use resources
• fast running time

• small memory space

• small energy consumption

• . . .

Algorithm analysis gives us a way to

• compare different algorithms

• predict their performance (efficiency) in applications

15 / 34

What Makes an Algorithm “Good?”
Overarching Goal: find the “best” algorithm and data structures for a
task

1. Correctness: the algorithm performs the specified task...
• always exactly?
• always approximately?
• typically?

2. Efficiency: the algorithm doesn’t over-use resources
• fast running time

• small memory space

• small energy consumption

• . . .

Algorithm analysis gives us a way to

• compare different algorithms

• predict their performance (efficiency) in applications

15 / 34

Limitations of Empirical Analysis
Question. Why not just implement your algorithm and test it on a real
computer with real data?

• This is empirical algorithm analysis

Limitations of empirical analysis:
• examines a single (or few) machines
• examines tested inputs
• tests particular implementation
• value of results are highly context dependent

Our Focus is formal analysis of algorithms on an abstract computer
• prove results for our computational model
• results apply to any computer that satisfy our assumptions

Note. Neither formal nor empirical analysis is better—both are
important to computer science!

• this module just focuses on formal analysis

16 / 34

Limitations of Empirical Analysis
Question. Why not just implement your algorithm and test it on a real
computer with real data?

• This is empirical algorithm analysis

Limitations of empirical analysis:
• examines a single (or few) machines
• examines tested inputs
• tests particular implementation
• value of results are highly context dependent

Our Focus is formal analysis of algorithms on an abstract computer
• prove results for our computational model
• results apply to any computer that satisfy our assumptions

Note. Neither formal nor empirical analysis is better—both are
important to computer science!

• this module just focuses on formal analysis

16 / 34

Limitations of Empirical Analysis
Question. Why not just implement your algorithm and test it on a real
computer with real data?

• This is empirical algorithm analysis

Limitations of empirical analysis:
• examines a single (or few) machines
• examines tested inputs
• tests particular implementation
• value of results are highly context dependent

Our Focus is formal analysis of algorithms on an abstract computer
• prove results for our computational model
• results apply to any computer that satisfy our assumptions

Note. Neither formal nor empirical analysis is better—both are
important to computer science!

• this module just focuses on formal analysis
16 / 34

Data Models
To perform formal algorithm analysis, we must specify

1. the computational model

2. the relevant performance parameter =) notion of cost

Types of performance:
• worst-case performance

Over all possible inputs, what is the worst cost of our algorithm’s
execution?

• best-case performance
Over all possible inputs, what is the best cost of our algorithm’s
execution?

• average-case performance
What is the average or expected cost for a of a random input

Typically, we analyze performance as a function of input size, n

=) measure performance as a function of n: how does performance
scale with input size

17 / 34

Data Models
To perform formal algorithm analysis, we must specify

1. the computational model

2. the relevant performance parameter =) notion of cost

Types of performance:
• worst-case performance

Over all possible inputs, what is the worst cost of our algorithm’s
execution?

• best-case performance
Over all possible inputs, what is the best cost of our algorithm’s
execution?

• average-case performance
What is the average or expected cost for a of a random input

Typically, we analyze performance as a function of input size, n

=) measure performance as a function of n: how does performance
scale with input size

17 / 34
T

Computational Models
A computational model defines

1. syntax: what operations can be performed

2. semantics: what are the effects of those
operations

3. the computational cost of the operations

These features determine what problems can be
solved and with what efficiency

Choosing the “right” computational model is a
balance of

• computational power

• simplicity

• realism

Successful & general computational models
defined in the 1930’s

Credit: Princeton University

Alonzo Church
(Lambda Calculus)

Credit: Unknown

Alan Turing
(Turing Machines)

18 / 34

Computational Models
A computational model defines

1. syntax: what operations can be performed

2. semantics: what are the effects of those
operations

3. the computational cost of the operations

These features determine what problems can be
solved and with what efficiency

Choosing the “right” computational model is a
balance of

• computational power

• simplicity

• realism

Successful & general computational models
defined in the 1930’s

Credit: Princeton University

Alonzo Church
(Lambda Calculus)

Credit: Unknown

Alan Turing
(Turing Machines)

18 / 34

Computational Models
A computational model defines

1. syntax: what operations can be performed

2. semantics: what are the effects of those
operations

3. the computational cost of the operations

These features determine what problems can be
solved and with what efficiency

Choosing the “right” computational model is a
balance of

• computational power

• simplicity

• realism

Successful & general computational models
defined in the 1930’s

Credit: Princeton University

Alonzo Church
(Lambda Calculus)

Credit: Unknown

Alan Turing
(Turing Machines)

18 / 34

Random Access Machines
The RAM Model consists of:

• Unlimited memory, access by address
• stores program, input, intermediate data
• each address stores fixed sized “word”

• Fixed number of registers
• stores “working” data

• Elementary instructions
• load & store: move data between

registers/memory
• arithmetic operations: bit-wise ops,

addition/subtraction (fixed precision),. . .
• conditional/unconditional jump

• cost = number of instructions executed

RAM is a standard model for sequential

computation, similar to assembly

Credit: LANL

Jon von Neumann

19 / 34

-aremist

Pseudocode

The RAM model captures many aspects of real computers. . .
. . . but it is not intuitive for high level algorithm description.

Simplifying abstractions:
• Higher level abstract pseudocode:

• named variables, assignment
• control flow: if, for, while, etc.
• assumed memory management

• Cost: dominant operations (e.g., memory
access) instead of all RAM instructions

Pseudocode can (in principle) be
implemented in RAM model, just as C++ can
be compiled to assembly

procedure EUCLID(a,b)
while b 6= 0 do

t √ b

b √ a mod b

a √ t

end while
return a

end procedure

20 / 34

Pseudocode

The RAM model captures many aspects of real computers. . .
. . . but it is not intuitive for high level algorithm description.

Simplifying abstractions:
• Higher level abstract pseudocode:

• named variables, assignment
• control flow: if, for, while, etc.
• assumed memory management

• Cost: dominant operations (e.g., memory
access) instead of all RAM instructions

Pseudocode can (in principle) be
implemented in RAM model, just as C++ can
be compiled to assembly

procedure EUCLID(a,b)
while b 6= 0 do

t √ b

b √ a mod b

a √ t

end while
return a

end procedure

20 / 34

Pseudocode

The RAM model captures many aspects of real computers. . .
. . . but it is not intuitive for high level algorithm description.

Simplifying abstractions:
• Higher level abstract pseudocode:

• named variables, assignment
• control flow: if, for, while, etc.
• assumed memory management

• Cost: dominant operations (e.g., memory
access) instead of all RAM instructions

Pseudocode can (in principle) be
implemented in RAM model, just as C++ can
be compiled to assembly

procedure EUCLID(a,b)
while b 6= 0 do

t √ b

b √ a mod b

a √ t

end while
return a

end procedure

20 / 34

Fo
Greatest common

divisor monitator
of a b

(Important) Things We Ignore

System & Hardware Level Details
• Memory allocation

• required to implement arrays, dynamic memory usage, etc
• Pointers

• correspondence between variable names, values, and memory
addresses

• Support for procedures/methods/functions
• call stack, call frame, etc.

This are all fundamental problems in computer science, just not
within the purview of COMP526

• See modules on operating systems, compilers, programming
languages, etc.

21 / 34

Asymptotic
Notation

Measuring (Time) Efficiency
Recall. We measure (time) efficiency in terms of number of elementary
operations performed

• assume all operations are unit cost

We want a robust measure of efficiency that is independent of
particular “real world” costs of operations

• focus on how the number of operations scales with input size

This motivates the study of asymptotic analysis.

0
0

input size

co
st

23 / 34

Measuring (Time) Efficiency
Recall. We measure (time) efficiency in terms of number of elementary
operations performed

• assume all operations are unit cost

We want a robust measure of efficiency that is independent of
particular “real world” costs of operations

• focus on how the number of operations scales with input size

This motivates the study of asymptotic analysis.

0
0

input size

co
st

23 / 34

2

C

-

Big-O Notation

Goal of “Big-O” or asymptotic notation: a way of describing the growth

of functions that is:
• coarse enough to be simple enough to analyze

• independent of hardware or implementation constants

• precise enough to be informative

Definition
Suppose f and g are functions from N to R+. Then we say that f = O(g)
(read: f is big O of g) if there exist constants N0 2 N and C 2 R such that
for all n 2 N

n ∏ N0 =) f (n) ∑ Cg(n).

Equivalently, f = O(g) () limsup f (n)
g(n) <1

24 / 34

Big-O Notation

Goal of “Big-O” or asymptotic notation: a way of describing the growth

of functions that is:
• coarse enough to be simple enough to analyze

• independent of hardware or implementation constants

• precise enough to be informative

Definition
Suppose f and g are functions from N to R+. Then we say that f = O(g)
(read: f is big O of g) if there exist constants N0 2 N and C 2 R such that
for all n 2 N

n ∏ N0 =) f (n) ∑ Cg(n).

Equivalently, f = O(g) () limsup f (n)
g(n) <1

24 / 34

naturalse
i

08 5 -
-

--

Big-O in Pictures

Definition
Suppose f and g are functions from N to R+. Then we say that f = O(g) (read: f is big O

of g) if there exist constants N0 2 N and C 2 R such that for all n 2 N,
n ∏ N0 =) f (n) ∑ Cg(n).

0
0

25 / 34

-Cogni

simple

I gt

No

Properties of O

Proposition
Suppose f , f1, f2, g, g1, g2, h are functions and a is any constant. Then:

1. (8nf (n) ∑ a) =) f = O(1)

2. (8nf (n) ∑ g(n)) =) f = O(g)

3. f = O(g) =) a · f = O(g)

4. f = O(g) and g = O(h) =) f = O(h)

5. f = O(h) and g = O(h) =) f +g = O(h)

6. f1 = O(g1) and f2 = O(g2) =) f1 · f2 = O(g1 ·g2)

Consequence:

• If a ∑ b then n
a = O(n

b)

Exercise. Show that if a > b, then n
a 6= O(n

b).

26 / 34

f is bounded by a

- -

- albE - transitiveba-

E

Example with Functions
Analyze the asymptotic growth of

f (n) = 17n
2 +42n+38

p
n+972

1. (8nf (n) ∑ a) =) f = O(1)

2. (8nf (n) ∑ g(n)) =) f = O(g)

3. f = O(g) =) a · f = O(g)

4. f = O(g) and
g = O(h) =) f = O(h)

5. f = O(h) and
g = O(h) =) f +g = O(h)

6. f1 = O(g1) and
f2 = O(g2) =) f1 · f2 = O(g1 ·g2)

27 / 34

&(4100)
- ↑

-
...

-I
↑

2 = n2 = O(n')

Onz) 3 => wa= 17

17n = 0(n2)

O(n2)
anz):

Example with Pseudocode
Example. Analyze the worst-case running time of the INSERTIONSORT

procedure defined below.
• assume elementary operations have running time O(1)

1: procedure INSERTIONSORT(a,n)
2: for i = 2,3, . . .n do
3: j √ i

4: while j > 1 and a[j°1] < a[j] do
5: SWAP(a, j°1, j)
6: j √ j°1
7: end while
8: end for
9: end procedure

28 / 34

sit
of avya

Literations
N

((i)-C . :

Inner

Analysis of outer loop
loop time

iterations = O(n)

I
Overall running time is OCn2).

Best Case Running Time

1: procedure INSERTIONSORT(a,n)
2: for i = 2,3, . . .n do
3: j √ i

4: while j > 1 and a[j°1] < a[j] do
5: SWAP(a, j°1, j)
6: j √ j°1
7: end while
8: end for
9: end procedure

PollEverywhere
Question
What is the best case
running time for
INSERTIONSORT? What
arrays incur this
running time?

pollev.com/comp526

29 / 34

TConsider sorted a

not satisfied
so 011) if sorted

Variations of O

• f =£(g) if f = O(g) and g = O(f)
• Example: 4n

2 +3n+7 =£(n
2)

• f =≠(g) if g = O(f)
• Example: 0.01n

2 °7n =≠(n
2)

• f = o(g) if for every "> 0, there exists N0 such
that n ∏ N0 =) f (n)

g(n) < ".

• Equivalently: f = o(g) () limn!1
f (n)
g(n) = 0

• Example: n
1.999 = o(n

2)

• f =!(g) if g = o(f)
• Example: 0.01n

2.01 =!(n
2)

Mnemonic for
Variations

Big-O (in)equality
! >
≠ ∏
£ º
O ∑
o <

30 / 34

Variations of O

• f =£(g) if f = O(g) and g = O(f)
• Example: 4n

2 +3n+7 =£(n
2)

• f =≠(g) if g = O(f)
• Example: 0.01n

2 °7n =≠(n
2)

• f = o(g) if for every "> 0, there exists N0 such
that n ∏ N0 =) f (n)

g(n) < ".

• Equivalently: f = o(g) () limn!1
f (n)
g(n) = 0

• Example: n
1.999 = o(n

2)

• f =!(g) if g = o(f)
• Example: 0.01n

2.01 =!(n
2)

Mnemonic for
Variations

Big-O (in)equality
! >
≠ ∏
£ º
O ∑
o <

30 / 34

Interpretation

Suppose:

• two algorithms A and B for solving the same problem

• running time of A is f , running time of B is g

• f = o(g)

Consider running A on a slow machine M1 and B on a fast machine M2.
Then: regardless of how much slower M1 is than M2, for sufficiently

large inputs, A will complete faster than B.

The Moral. Efficient algorithms are better than faster hardware.

• little-o notation gives the “right” abstraction to formalize this
relationship

31 / 34

Interpretation

Suppose:

• two algorithms A and B for solving the same problem

• running time of A is f , running time of B is g

• f = o(g)

Consider running A on a slow machine M1 and B on a fast machine M2.
Then: regardless of how much slower M1 is than M2, for sufficiently

large inputs, A will complete faster than B.

The Moral. Efficient algorithms are better than faster hardware.

• little-o notation gives the “right” abstraction to formalize this
relationship

31 / 34

Common Orders of Growth

Named orders of growth:

name asymptotic growth
constant O(1)
logarithmic O(logn)
polylogarithmic O(logc

n)
linear O(n)
almost linear O(n logc

n)
quadratic O(n

2)
polynomial O(n

c)
exponential O(c

n)

Relationships

Between classes:
For all a,b > 0

• a = o(logb
n)

• loga
n = o(n

b)

• n
a = o(b

n)

Within classes:
For all a,b, a < b

• loga
n = o(logb

n)

• n
a = o(n

b)

• a
n = o(b

n)

32 / 34

Common Orders of Growth

Named orders of growth:

name asymptotic growth
constant O(1)
logarithmic O(logn)
polylogarithmic O(logc

n)
linear O(n)
almost linear O(n logc

n)
quadratic O(n

2)
polynomial O(n

c)
exponential O(c

n)

Relationships

Between classes:
For all a,b > 0

• a = o(logb
n)

• loga
n = o(n

b)

• n
a = o(b

n)

Within classes:
For all a,b, a < b

• loga
n = o(logb

n)

• n
a = o(n

b)

• a
n = o(b

n)

32 / 34

Common Orders of Growth

Named orders of growth:

name asymptotic growth
constant O(1)
logarithmic O(logn)
polylogarithmic O(logc

n)
linear O(n)
almost linear O(n logc

n)
quadratic O(n

2)
polynomial O(n

c)
exponential O(c

n)

Relationships

Between classes:
For all a,b > 0

• a = o(logb
n)

• loga
n = o(n

b)

• n
a = o(b

n)

Within classes:
For all a,b, a < b

• loga
n = o(logb

n)

• n
a = o(n

b)

• a
n = o(b

n)

32 / 34

Next Time

• Abstract Data Types
• Fundamental Data Structures

33 / 34

Scratch Notes

34 / 34

M(5) = 2x 5 - 1 +

S

1 + 3 + 517...2x4 -1 + M()

Ho /
2x3 - 1 +M(z)

↳ ·

Scratch Notes

34 / 34

