COMP526: Efficient Algorithms

Your Instructor:

Will Rosenbaum

George Holt 2.16B

w.rosenbaum@liverpool.ac.uk

Module Website:

willrosenbaum.com/teaching/2024f-comp-526

- The authoritative source for module information about COMP526.
- Poll Everywhere: pollev.com/comp526
 - Used for in-class participation and attendance
 - Use U of L credentials to log in

- CampusWire: https://campuswire.com/p/GBB00CD7A
 - Invite code: 4796
 - Used for announcements and asynchronous discussion (outside of lecture)

Lecture 2: Logic, Proof Techniques & Induction

COMP526: Efficient Algorithms

Updated: October 8, 2024

Will Rosenbaum University of Liverpool

Announcements

- 1. First quiz released tomorrow, due Friday
 - · Administered through Canvas
 - One question, multiple choice
 - · 20 minutes logic
 - Covers basic (today's lecture, this week's tutorial, posted notes)
- 2. Programming Assignment 1 released next week
 - Due 13 November
- 3. Participation Confirmation: Pending

Meeting Goals

- Motivate the need for proofs in CS
- Introduce the mechanics of propositional and predicate logic
- Describe proof techniques and applications
- Introduce mathematical induction
- Analyze algorithm correctness with loop invariants

A Scenario

The Setup:

- You are contracted by a (virtual) casino to audit their code
- The casino spent millions of £££ developing an AI to play their card games
- They believe their AI is *unbeatable*
 - on average the casino will win
 - this ensures their business is profitable
- The gaming AI company even provided a mathematical proof that their strategies will win on average

Photo Credit: OpenAI DALL-E

A Scenario

The Setup:

- You are contracted by a (virtual) casino to audit their code
- The casino spent millions of £££ developing an AI to play their card games
- They believe their AI is *unbeatable*
 - on average the casino will win
 - this ensures their business is profitable
- The gaming AI company even provided a mathematical proof that their strategies will win on average

Photo Credit: OpenAI DALL \cdot E

Unfortunately the casino found a group of users that were consistently beating the AI and winning a significant amount of money. Hence, they called in the experts: you!

Shuffling Cards

```
You find that the casino was using the following procedure to shuffle a
                                      size of deck of
(virtual) deck of cards:
 1: procedure Shuffle(A, n)
                                                \triangleright shuffle a deck A of n cards
       for i = 1, ..., n do

    iterate over indices

          j \leftarrow \text{RANDOM}(1, n)
                                                        ▶ pick random index
 3:
                                   SPORINA
                                                      \triangleright swap values at i and j
           SWAP(A, i, j)
 4:
       end for
 5:
 6: end procedure
```

Shuffling Cards

You find that the casino was using the following procedure to shuffle a (virtual) deck of cards:

```
1: procedure Shuffle(A, n)
                                                  \triangleright shuffle a deck A of n cards
                                     index
      for i = 1, \dots, n do
                                                          > iterate over indices
          j \leftarrow \text{RANDOM}(1, n) \subset
                                                           ▶ pick random index
3:
                                                        \triangleright swap values at i and j
          SWAP(A, i, j)
4:
      end for
5:
                            [1,2,3,4,5, ...
6: end procedure
```

PollEverywhere Question

I think SHUFFLE is fine.

- Shuffle is maybe reasonable?
- Shuffle is definitely problematic.
- I do not understand Shuffle.

pollev.com/comp526

What Gives?

What is the problem here?

Maybe can exploit more frequent shufflings of cards to get an advantage playing.

Two Challenges

Challenge 1

Give a *simple* argument that Shuffle could not possibly generate all permutations of cards with equal probability.

Challenge 2

Argue that the modified shuffle algorithm on the right does generate a uniformly random shuffling of the elements of *A*.

```
1: procedure
FYKSHUFFLE(A, n)
2: for i = 1, ..., n do
3: j \leftarrow \text{RANDOM}(1, i)
4: SWAP(A, i, j)
5: end for
6: end procedure
```

Who is to Blame?

A Question

Having found a problem in the Shuffle subroutine, who is at fault? The casino? The AI consultant?

Everyone to blame:

- Problem/task not completely specified.
- under what conditions does AI win?
- An those conditions satisfied by system.

Who is to Blame?

A Question

Having found a problem in the Shuffle subroutine, who is at fault? The casino? The AI consultant?

The Moral

In order to make trustworthy conclusions about algorithms we must:

- 1. Assert our assumptions about the system
- 2. State our (desired) conclusions precisely
- 3. Argue that our conclusions follow logically from our assumptions

Goal: any system that fulfills our assumptions will also satisfy our conclusions.

Roadmap

- 1. Formal Reasoning through Logic (today)
 - Basic language of logic: propositions and predicates
 - Proof techniques
 - · Mathematical induction
- 2. Our Computational Model (Thursday)
- 3. Algorithms (Rest of the Semester)

Propositions, Connectives, and Formulae

- A (logical) proposition is a declarative sentence that can take the value true(T) or false(F)
 - P = "it is raining"
 - Q = "I am wearing a jacket"
 - R = "I am soaked"

Propositions, Connectives, and Formulae

- A (logical) proposition is a declarative sentence that can take the value true(T) or false(F)
 - P = "it is raining"
 - Q = "I am wearing a jacket"
 - R = "I am soaked"
- logical connectives allow us to combine propositions into more complex statements
 - \wedge = "and"
 - v = "or"
 - ¬ = "not"

- \Longrightarrow = "implies" or "if...then"
- \iff = "if and only if"

Propositions, Connectives, and Formulae

• A (logical) **proposition** is a declarative sentence that can take the value true(*T*) or false(*F*)

```
P = "it is raining"
Q = "I am wearing a jacket"
R = "I am soaked"
```

 logical connectives allow us to combine propositions into more complex statements

- ∧ = "and"
 ∨ = "or"
 ¬ = "not"
 ⇒ = "implies" or "if... then"
 ⇔ = "if and only if"
- A (Boolean) formula is a statement composed of propositions and logical quantifiers:

Truth Tables

A truth table expresses the values of a formula φ for all possible input propositional values

We can think of the truth table as *defining* the logical connectives.

A formula is...

... satisfiable if there is an assignment of truth values to its constituent propositions such that φ evaluates to T.

A formula is...

- ... satisfiable if there is an assignment of truth values to its constituent propositions such that φ evaluates to T.
- ... a contradiction if *no* assignment of truth values makes φ evaluate to T.

A formula is...

- ... satisfiable if there is an assignment of truth values to its constituent propositions such that φ evaluates to T.
- ... a contradiction if *no* assignment of truth values makes φ evaluate to T.
- ... a tautology if *every* assignment of truth values makes φ evaluate to T.

PV-P

A formula is...

- ... satisfiable if there is an assignment of truth values to its constituent propositions such that φ evaluates to T.
- ... a contradiction if *no* assignment of truth values makes φ evaluate to T.
- ... a tautology if *every* assignment of truth values makes φ evaluate to T.

PollEverywhere Question

Which of the following expressions is satisfiable, a contradiction, and a tautology?

- 1. $P \Rightarrow P \lor Q$ \longrightarrow $P \lor Q$ is true
- 2. (PAQ) \ (P => -Q) Contradiction
- 3. $(P \land \neg Q) \lor (\neg P \land Q)$ Satisfiable

pollev.com/comp526

Logical Equivalence

We say that logical formulae φ and ψ are logically equivalent and write

$$\psi \equiv \psi$$
 if $\varphi \iff \psi$ is a tautology. If use if und only if other

Logically Equivalent to Implication

The following expressions are logically equivalent

- 1. $P \Longrightarrow O$
- Check: truth table

Logical Equivalence

We say that logical formulae φ and ψ are logically equivalent and write $\varphi \equiv \psi$ if $\varphi \iff \psi$ is a tautology.

Logically Equivalent to Implication

The following expressions are logically equivalent

- 1. $P \Longrightarrow O$
- 2. $\neg (P \land \neg O)$
- 3. $\neg P \lor O$

More Logical Equivalence

The following expressions are also logically equivalent

- 1. $P \iff Q$
- 2. $(P \Longrightarrow O) \land (Q \Longrightarrow P)$

Check touth table

Logical Equivalence

We say that logical formulae φ and ψ are logically equivalent and write $\varphi \equiv \psi$ if $\varphi \iff \psi$ is a tautology.

Logically Equivalent to Implication

The following expressions are logically equivalent

- 1. $P \Longrightarrow Q$
- 2. $\neg (P \land \neg Q)$
- 3. $\neg P \lor Q$

More Logical Equivalence

The following expressions are also logically equivalent

- 1. $P \iff Q$
- 2. $(P \Longrightarrow Q) \land (Q \Longrightarrow P)$

Note. Two formulae are logically equivalent precisely when they have the same truth table.

The two formulas agree on all inputs

Some Important Equivalences

Double Negation

$$P \equiv \neg \neg P$$

C/CD

DeMorgan's Laws

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\neg (P \lor Q) \equiv \neg P \lor \neg Q$$

Some Important Equivalences

Double Negation

$$P \equiv \neg \neg P$$

DeMorgan's Laws

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

Exercise

Write a simpler expression equivalent to $\neg (P \Longrightarrow Q)$.

Predicates and Quantifiers

A logical predicate P is a function from a domain U to the values $\{T, F\}$:

• For each $x \in U$, P(x) is a proposition

Examples of Predicates

- 1. $U = \mathbf{N} = \{0, 1, 2, ...\}, P(x) = "x \text{ is an even number"}$
- 2. U = days of the year, P = ``it rained in Liverpool on the day''
- 3. U = set of inputs for an algorithm, P = algorithm outputs satisfying some property

Predicates and Quantifiers

A logical predicate P is a function from a domain U to the values $\{T, F\}$:

• For each $x \in U$, P(x) is a proposition

Examples of Predicates

- 1. $U = \mathbf{N} = \{0, 1, 2, ...\}, P(x) = "x \text{ is an even number"}$
- 2. U = days of the year, P = ``it rained in Liverpool on the day''
- 3. U = set of inputs for an algorithm, P = algorithm outputs satisfying some property

Predicates can be quantified to yield new propositions:

- universal quantifier $(\forall x P(x))$ "for all x, P(x)"
- existential quantifier $\exists x P(x)$; "there exists x such that P(x)"

Negating Quantified Expressions

Quantifiers can be negated as follows:

- $\neg(\forall x \varphi(x)) \iff \exists x \neg \varphi(x)$
- $\neg(\exists x \varphi(x)) \iff \forall x \neg \varphi(x)$

Negating Quantified Expressions

Quantifiers can be negated as follows:

- $\neg(\forall x \varphi(x)) \iff \exists x \neg \varphi(x)$
- $\neg (\exists x \varphi(x)) \iff \forall x \neg \varphi(x)$

U 15 unbounded

Unbounded Sets of Numbers

Suppose *U* is a set of numbers. Consider the formula $\varphi = \forall x \exists y [y > x]$.

- How do you interpret φ ?
- What about its negation $\neg \varphi$?

sound to

Recall: our main goal is to show that

$$\{assumptions\} \implies \{conclusions\}$$

Proof techniques are *logical strategies* for deriving logical inferences.

Recall: our main goal is to show that

$$\{assumptions\} \implies \{conclusions\}$$

Proof techniques are logical strategies for deriving logical inferences.

Techniques for proving $P \Longrightarrow Q$

Direct Proof assume P and derive Q

Recall: our main goal is to show that

$$\{assumptions\} \implies \{conclusions\}$$

Proof techniques are *logical strategies* for deriving logical inferences.

Techniques for proving $P \Rightarrow Q$ want to establish Direct Proof assume P and derive Q Check togical Proof by Contraposition $P \Rightarrow Q \equiv (\neg Q \Rightarrow \neg P)$ equivalence

Recall: our main goal is to show that

$$\{assumptions\} \implies \{conclusions\}$$

Proof techniques are *logical strategies* for deriving logical inferences.

Techniques for proving
$$P \Rightarrow Q$$

Direct Proof assume P and derive Q
Proof by Contraposition $(P \Rightarrow Q) \equiv (\neg Q \Rightarrow \neg P)$
Proof by Contradiction $(P \Rightarrow Q) \equiv (P \land \neg Q) \Rightarrow \text{false}$

Recall: our main goal is to show that

$$\{assumptions\} \implies \{conclusions\}$$

Proof techniques are *logical strategies* for deriving logical inferences.

Techniques for proving $P \Longrightarrow Q$

Direct Proof assume P and derive Q

Proof by Contraposition
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

Proof by Contradiction
$$(P \Longrightarrow Q) \equiv ((P \land \neg Q) \Longrightarrow \text{false})$$

Proof by Exhaustion
$$(P \Longrightarrow Q) \equiv (P \land A \Longrightarrow Q) \land (P \land \neg A \Longrightarrow Q)$$
 (A is any predicate)

Recall: our main goal is to show that

$$\{assumptions\} \implies \{conclusions\}$$

Proof techniques are *logical strategies* for deriving logical inferences.

Techniques for proving $P \Longrightarrow Q$

Direct Proof assume P and derive Q

Proof by Contraposition $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Proof by Contradiction $(P \Longrightarrow Q) \equiv ((P \land \neg Q) \Longrightarrow \text{false})$

Proof by Exhaustion $(P \Longrightarrow Q) \equiv (P \land A \Longrightarrow Q) \land (P \land \neg A \Longrightarrow Q)$ (A is any predicate)

Exercise

Show that all of the above are logical equivalences.

Example: Direct Proof

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Direct proof.

• Suppose n^2 is divisible by $\frac{4}{3}$: $n^2 = 4N$ for some natural number N.

Example: Direct Proof

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Direct proof.

- Suppose n^2 is divisible by 4: $n^2 = 4N$ for some natural number N.
- Since n^2 is divisible by 4, it is also divisible by 2. In particular $n^2 = 2N'$ with N' = 2N.
- Since 2 is a prime number and $N = n \cdot n$ is divisible by n is divisible by 2.
 - Fact about prime numbers: if a prime number p divides a product $a \cdot b$, then p divides a or p divides b.
- Since n is divisible by 2, n is an even number.

Example: Proof by Contraposition

P= nº divir.

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2. $P \Rightarrow Q = \neg Q \Rightarrow \neg P$ Q = N is

Proof by Contraposition.

• Suppose *n* is not even, i.e., *n* is odd.

Example: Proof by Contraposition

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Contraposition.

- Suppose *n* is not even, i.e., *n* is odd.
- Write n = 2k + 1 for some k.
- Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$.
- Therefore, n^2 is not divisible by 4.

Example: Proof by Contradiction

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

[Page 4] = false

Proof by Contradiction.

• Suppose the statement is false–i.e., that n^2 is divisible by 4 and n is not even.

Example: Proof by Contradiction

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Contradiction.

- Suppose the statement is false–i.e., that n^2 is divisible by 4 and n is not even.
- Since *n* is not even, we can write n = 2k + 1.
- Therefore, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$.
- However $(4k^2 + 4k + 1) = (n^2)$ is not divisible by 4, which contradicts the hypothesis that n^2 was divisible by 4.

Example: Proof by Exhaustion

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2. $P = Q = \left((P \land C) \Rightarrow Q \right) \land \left((P \land \neg C) = Q \right)$

Proof by Exhaustion.

Use the case C = "n is even."

Example: Proof by Exhaustion

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Exhaustion.

Use the case C = "n is even."

Case 1 Suppose *n* is even, i.e., n = 2k.

- Then $n^2 = (2k)^2 = 4k^2$.
- Therefore n^2 is divisible by 4
- Since n^2 is divisible by 4 and n is even, the conclusion holds.

Example: Proof by Exhaustion

Proposition

Suppose n is a natural number. If n^2 is divisible by 4, then n is divisible by 2.

Proof by Exhaustion.

Use the case C = "n is even."

Case 1 Suppose *n* is even, i.e., n = 2k.

- Then $n^2 = (2k)^2 = 4k^2$.
- Therefore n^2 is divisible by 4
- Since n^2 is divisible by 4 and n is even, the conclusion holds.

Case 2 Suppose *n* is not even, i.e.,
$$n = 2k + 1$$
.

Then $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$.

• Therefore n^2 is not divisible by 4.

Since n^2 is not divisible by 4, the conclusion holds.

almors

Evaluating the Proofs

PollEverywhere Question

Which proof seemed simplest/most natural to you?

- · Direct Proof
- Proof by Contraposition
- Proof by Contradiction
- Proof by Exhaustion

pollev.com/comp526

Proving the Infinite

So Far

- · Generic techniques/strategies for proofs
- Not specific to any particular application domain

Proofs for Algorithms

- Correctness: "For every input x, the output of an algorithm A on input x satisfies {some specification}."
- Running time: "For every input x, A performs at most {some number} operations on input x"

Proving the Infinite

So Far

- · Generic techniques/strategies for proofs
- Not specific to any particular application domain

Proofs for Algorithms

- Correctness: "For every input x, the output of an algorithm A on input x satisfies {some specification}."
- Running time: "For every input x, A performs at most {some number} operations on input x"

Two Features

- 1. We must reason about infinite sets of events (i.e., all possible inputs).
- 2. We must infer globally correct behavior by analyzing individual local steps of an algorithm.

Mathematical Induction

The Principle of Mathematical Induction

Let *P* be a predicate over the <u>natural numbers</u> $\mathbf{N} = \{0, 1, 2, ...\}$. Suppose *P* satisfies

- Base case: *P*(0) is true.
- Inductive step: For every $i \in \mathbb{N}$, $P(i) \Longrightarrow P(i+1)$.

Then for every $n \in \mathbb{N}$, P(n) is true. In strictly symbolic notation:

$$(P(0)) \land (\forall i [P(i) \Longrightarrow P(i+1)]) \Longrightarrow \forall n P(n).$$

Mathematical Induction

The Principle of Mathematical Induction

Let *P* be a predicate over the natural numbers $\mathbf{N} = \{0, 1, 2, ...\}$. Suppose *P* satisfies

- Base case: P(0) is true.
- Inductive step: For every $i \in \mathbb{N}$, $P(i) \Longrightarrow P(i+1)$.

Then for every $n \in \mathbb{N}$, P(n) is true. In strictly symbolic notation:

$$(P(0)) \wedge (\forall i [P(i)) \Longrightarrow P(i+1)]) \Longrightarrow \forall n P(n).$$

Moral Justification:

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate P on the iterations of the loop such that for each iteration i, P(i) is satisfied at the end of the i-th iteration of the loop.

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate P on the iterations of the loop such that for each iteration i, P(i) is satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example

```
Consider the following procedure

1: procedure COUNT(n) \triangleright count to n

2: t \leftarrow 0

3: for i = 1, ..., n do \triangleright iterate over indices

4: t \leftarrow t+1

5: end for

6: return t

7: end procedure
```

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate P on the iterations of the loop such that for each iteration i, P(i) is satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example

Consider the following procedure

1: **procedure** COUNT(n) \Rightarrow count to n

2: $t \leftarrow 0$

3: **for** i = 1,..., n **do** \triangleright iterate over indices

4: $t \leftarrow t + 1$

5: **end for**

6: **return** t

7: end procedure

Loop Invariant:

After iteration *i*, *t* stores the value *i*.

Loop Invariants

Given an algorithm A containing a loop, a loop invariant is a predicate P on the iterations of the loop such that for each iteration i, P(i) is satisfied at the end of the i-th iteration of the loop.

An Uninteresting Example

Consider the following procedure

1: **procedure** COUNT(n) \triangleright count to n2: $t \leftarrow 0$

3: **for** i = 1,..., n **do** \triangleright iterate over indices

4: $t \leftarrow t+1$ 5: **end for**

6: **return** t

7: end procedure

Loop Invariant:

After iteration *i*, *t* stores the value *i*.

Proof.

Induct on t. Base case: t initialized to 0. Inductive step: clear.

Consider the following subroutine:

1: **procedure** MININDEX((*a*, *i*, *k*)) Find the index of the minimum value stored in array *a* between indices *i* and *k*.

```
    m ← i
    for j = i, i + 1,..., k do
    if a[j] > a[m] then
    m ← j
    end if
    end for
    return m
    end procedure
```

PollEverywhere Question

What loop invariant does the loop in MININDEX satisfy that will help us analyze its behavior?

pollev.com/comp526

```
1: procedure MININDEX((a, i, k))
   Find the index of the minimum
  value stored in array a between
   indices i and k.
      m \leftarrow i
2:
      for j = i, i + 1, ..., k do
3:
4:
          if a[j] < a[m] then
             m \leftarrow j
5:
          end if
6:
      end for
7:
8:
      return m
9: end procedure
```

1: **procedure** MININDEX((*a*, *i*, *k*))
Find the index of the minimum value stored in array *a* between indices *i* and *k*.

```
    m ← i
    for j = i, i+1,..., k do
    if a[j] < a[m] then</li>
    m ← j
    end if
    end for
    return m
    end procedure
```

Loop Invariant

After iteration *j*, *m* stores the index of the minimum value of *a* between indices *i* and *j*.

1: **procedure** MININDEX((*a*, *i*, *k*)) Find the index of the minimum value stored in array *a* between indices *i* and *k*.

```
    2:  m ← i
    3:  for j = i, i+1,..., k do
    4:  if a[j] < a[m] then</li>
    5:  m ← j
    6:  end if
    7:  end for
    8:  return m
    9:  end procedure
```

Loop Invariant

After iteration *j*, *m* stores the index of the minimum value of *a* between indices *i* and *j*.

Proof.

Induct on j

- Base case: j = i.
- Inductive step:

$$j \Longrightarrow j+1$$

Further Application

Consider the following algorithm that uses MININDEX as a subroutine:

```
1: procedure SELECTIONSORT(a, n) \triangleright Sort the array a of size n
2: for i = 1, 2, ..., n do
3: j \leftarrow \text{MININDEX}(a, i, n)
4: SWAP(a, i, j)
5: end for
6: end procedure
```

Exercise (Tutorials)

Show that Selection Sort correctly sorts any array a of length n. Specifically:

- Find a suitable loop invariant satisfied by SELECTIONSORT
- Prove your loop invariant holds (by induction)
- Argue that your loop invariant implies the final array is sorted

Induction and Recursion

Induction is essential in reasoning about *recursively defined* methods.

A Recursive Method

```
    procedure MYSTERY(n)
    if n = 1 then
    return 1
    end if
    return 2n-1 + MYSTERY(n-1)
    end procedure
```

PollEverywhereQuestion

What is the output of MYSTERY(5)?

Analysis of a Mystery

```
    procedure MYSTERY(n)
    if n = 1 then
    return 1
    end if
    return

            2n-1+MYSTERY(n-1)

    end procedure
```

Analysis of a Mystery

```
    procedure MYSTERY(n)
    if n = 1 then
    return 1
    end if
    return
    n = 1 then
```

6: end procedure

Claim

For all n, MYSTERY(n) returns the value n^2 .

Analysis of a Mystery

```
    procedure MYSTERY(n)
    if n = 1 then
    return 1
    end if
    return
    2n-1+MYSTERY(n-1)
```

6: end procedure

Claim

For all n, MYSTERY(n) returns the value n^2 .

Proof.

Induction on n. Base Case: n = 1. Inductive step: Suppose Mystery(n) = n^2 . Then

Mystery(n+1) =
$$2n+1$$

+ Mystery(n)
= $2n+1+n^2$
= $(n+1)^2$.

Next Time

- Machines and Models
 - What can computers do?
 - And how efficiently?
- Asymptotic Notation

Scratch Notes