Module Outline and Exam Revision
COMP526: Efficient Algorithms
January 6, 2025

This note gives an exhaustive list of the topics that may appear in the final
exam for COMP526: Efficient Algorithms.

Contents

Logic, Proof Techniques, and Asymptotic Notation 1
Machines and Models 2

Fundamental Data Structures 2

Efficient Sorting 3

String Matching 3

Compression 4

Error-Correcting Codes 4

Parallel Algorithms 5

© © N OO O KR W DM ~

Text indexing 5

~

Logic, Proof Techniques, and Asymptotic Notation

Definitions and operations to know

¢ Logical proposition

* Logical connectives A, vV, 7, =, <

e Truth tables

e Satisfiability, Contradiction, Tautology

* Logical equivalence

* Logical predicate

¢ Existential and universal quantifiers 3 and V

* Negation of quantified expressions

Concepts/Techniques Proofs will not be tested explicitly on the exam,
but you should be familiar with the following techniques employed
throughout the module:

¢ Direct proof: P = Q
 Proof by contraposition: (P = Q) = (7Q = —P)
¢ Proof by contradiction: (P = Q) = ((P A Q) = false)

¢ Proof by exhaustion: (P = Q)= ((PAA = Q)A(PA—A = Q))



¢ Mathematical induction
* Loop invariants

* Amortized analysis

2 Machines and Models

Computational Models

e The RAM model, supported operations and their running times

¢ The PRAM (Parallel RAM) model

Asymptotic Notation

¢ Definitions of O, Q, O, w, and o

MODULE OUTLINE AND EXAM REVISION 2

¢ Comparison of classes of asymptotic growth: constant, poly-logarithmic,

polynomial, exponential
* How asymptotics interact with arithmetic

¢ Identifying dominant term(s) in an expression

3 Fundamental Data Structures

Abstract Data Types

¢ Array ADT

e Stack

* Queue

e Priority Queue

* Map/Associative Array/Dictionary

e Set

Data Structures & Implementations
* Array data structure

e Linked List

¢ Binary Trees

— Complete Binary Tree
- Binary search trees

- Balanced Binary Tree (AVL Tree)
e Heap
e Trie

* Amortized analysis of a sequence of operations



4 Efficient Sorting

Elementary Sorting Algorithms
¢ SelectionSort
¢ InsertionSort

¢ BubbleSort

Sorting by Divide & Conquer
¢ MergeSort
¢ QuickSort

¢ RadixSort

Other Sorting Methods and Concepts
¢ HeapSort
* CountingSort

¢ Lower bound for comparison based sorting algorithms

Divide & Conquer Beyond Sorting
* Binary search of sorted arrays
* k-selection problem

¢ Majority problem

¢ Closest points in the plane

5 String Matching

MODULE OUTLINE AND EXAM REVISION 3

¢ String matching problem definition and variations (first occurrence,

all occurrences)
¢ Brute force algorithm for string matching
e DFA algorithm for string matching
— DFA lookup table construction
¢ Knuth-Morris-Pratt (KMP) algorithm of string matching

— Failure link automaton

— Failure link array definition and computation

* Boyer-Moore algorithm



MODULE OUTLINE AND EXAM REVISION 4

6 Compression

¢ Data compression task definition

* Source text, coded text, encoding, decoding
¢ Compression ratio

* Lossless vs lossy compression

¢ Character encoding

¢ Prefix codes (and their connection to trees)
* Fixed length vs variable length codes

¢ Huffman codes

— Optimality of Huffman codes as character codes
— Huffman tree construction
— How to apply tie-breaking rules for tree construction

- Encoding and decoding with the Huffman tree
* Intuitive interpretation of entropy (not formal definition)
¢ Limitations of general compression

— Kolmogorov complexity
— Definition of Kolmogorov complexity

— Non-computability of Kolmogorov complexity
* Run-length encoding (RLE)/Elias encoding
- encode/decode text using RLE
e Lempel-Ziv-Welch (LZW) Encoding
— encode/decode using LZW encoding
¢ Move-to-Front (MTF) Transform
- encode/decode using MTF transform
¢ Burrows-Wheeler Transform

— apply Burrows-Wheeler transform to a text

— apply inverse Burrows-Wheeler transform to a text

7 Error-Correcting Codes

¢ Definition of error correction and detection tasks
¢ Definition of block codes, Hamming distance, code distance
* Decoding block codes

* Lower bounds (requirements) for detecting and correcting using block
codes



MODULE OUTLINE AND EXAM REVISION 5

Parity bits
(7,4) Hamming codes

- how to encode a message
— detecting errors in encoded messages

— correcting errors in encoded message

How Hamming codes are generalized to larger block lengths

Parallel Algorithms

Understand the PRAM model and processing elements (PEs) concep-
tually; pseudocode for parallel algorithms (“in parallel” keyword)

Definitions of span/time/depth and work, and how these quantities
can be computed

Definition of work-efficient algorithm
Understand Brent’s theorem
Parallel Searching

- brute-force parallel string matching (span and work)

— parallel Knuth-Morris-Pratt algorithm (span and work)
Comparator networks and sorting networks

- interpretation of a comparator network and execution of compara-
tor networks on an input

- definition of sorting network
— definitions of size and depth of a comparator network

— relationship between simple sorting algorithms and sorting net-
works (e.g., insertion sort)

Parallel MergeSort algorithm

— Parallel merge operation

— Span and work of Parallel MergeSort

Text indexing

Building and searching a trie data structure for a given pattern
Compact tries
Suffix tree definition and computation

— computation with the “naive” algorithm
— using suffix trees for string matching

— using suffix trees for finding repeated substrings
Suffix array definition and computation
Longest common prefix array definition and computation

Inverse suffix array and computation



	Logic, Proof Techniques, and Asymptotic Notation
	Machines and Models
	Fundamental Data Structures
	Efficient Sorting
	String Matching
	Compression
	Error-Correcting Codes
	Parallel Algorithms
	Text indexing

