Module Outline and Exam Revision
COMP526: Efficient Algorithms
January 6, 2025

This note gives an exhaustive list of the topics that may appear in the final
exam for COMP526: Efficient Algorithms.
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Logic, Proof Techniques, and Asymptotic Notation

Definitions and operations to know

¢ Logical proposition

* Logical connectives A, vV, 7, =, <

e Truth tables

e Satisfiability, Contradiction, Tautology

* Logical equivalence

* Logical predicate

¢ Existential and universal quantifiers 3 and V

* Negation of quantified expressions

Concepts/Techniques Proofs will not be tested explicitly on the exam,
but you should be familiar with the following techniques employed
throughout the module:

¢ Direct proof: P = Q
 Proof by contraposition: (P = Q) = (7Q = —P)
¢ Proof by contradiction: (P = Q) = ((P A Q) = false)

¢ Proof by exhaustion: (P = Q)= ((PAA = Q)A(PA—A = Q))



¢ Mathematical induction
* Loop invariants

* Amortized analysis

2 Machines and Models

Computational Models

e The RAM model, supported operations and their running times

¢ The PRAM (Parallel RAM) model

Asymptotic Notation

¢ Definitions of O, Q, O, w, and o
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¢ Comparison of classes of asymptotic growth: constant, poly-logarithmic,

polynomial, exponential
* How asymptotics interact with arithmetic

¢ Identifying dominant term(s) in an expression

3 Fundamental Data Structures

Abstract Data Types

¢ Array ADT

e Stack

* Queue

e Priority Queue

* Map/Associative Array/Dictionary

e Set

Data Structures & Implementations
* Array data structure

e Linked List

¢ Binary Trees

— Complete Binary Tree
- Binary search trees

- Balanced Binary Tree (AVL Tree)
e Heap
e Trie

* Amortized analysis of a sequence of operations



4 Efficient Sorting

Elementary Sorting Algorithms
¢ SelectionSort
¢ InsertionSort

¢ BubbleSort

Sorting by Divide & Conquer
¢ MergeSort
¢ QuickSort

¢ RadixSort

Other Sorting Methods and Concepts
¢ HeapSort
* CountingSort

¢ Lower bound for comparison based sorting algorithms

Divide & Conquer Beyond Sorting
* Binary search of sorted arrays
* k-selection problem

¢ Majority problem

¢ Closest points in the plane

5 String Matching
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¢ String matching problem definition and variations (first occurrence,

all occurrences)
¢ Brute force algorithm for string matching
e DFA algorithm for string matching
— DFA lookup table construction
¢ Knuth-Morris-Pratt (KMP) algorithm of string matching

— Failure link automaton

— Failure link array definition and computation

* Boyer-Moore algorithm
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6 Compression

¢ Data compression task definition

* Source text, coded text, encoding, decoding
¢ Compression ratio

* Lossless vs lossy compression

¢ Character encoding

¢ Prefix codes (and their connection to trees)
* Fixed length vs variable length codes

¢ Huffman codes

— Optimality of Huffman codes as character codes
— Huffman tree construction
— How to apply tie-breaking rules for tree construction

- Encoding and decoding with the Huffman tree
* Intuitive interpretation of entropy (not formal definition)
¢ Limitations of general compression

— Kolmogorov complexity
— Definition of Kolmogorov complexity

— Non-computability of Kolmogorov complexity
* Run-length encoding (RLE)/Elias encoding
- encode/decode text using RLE
e Lempel-Ziv-Welch (LZW) Encoding
— encode/decode using LZW encoding
¢ Move-to-Front (MTF) Transform
- encode/decode using MTF transform
¢ Burrows-Wheeler Transform

— apply Burrows-Wheeler transform to a text

— apply inverse Burrows-Wheeler transform to a text

7 Error-Correcting Codes

¢ Definition of error correction and detection tasks
¢ Definition of block codes, Hamming distance, code distance
* Decoding block codes

* Lower bounds (requirements) for detecting and correcting using block
codes
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Parity bits
(7,4) Hamming codes

- how to encode a message
— detecting errors in encoded messages

— correcting errors in encoded message

How Hamming codes are generalized to larger block lengths

Parallel Algorithms

Understand the PRAM model and processing elements (PEs) concep-
tually; pseudocode for parallel algorithms (“in parallel” keyword)

Definitions of span/time/depth and work, and how these quantities
can be computed

Definition of work-efficient algorithm
Understand Brent’s theorem
Parallel Searching

- brute-force parallel string matching (span and work)

— parallel Knuth-Morris-Pratt algorithm (span and work)
Comparator networks and sorting networks

- interpretation of a comparator network and execution of compara-
tor networks on an input

- definition of sorting network
— definitions of size and depth of a comparator network

— relationship between simple sorting algorithms and sorting net-
works (e.g., insertion sort)

Parallel MergeSort algorithm

— Parallel merge operation

— Span and work of Parallel MergeSort

Text indexing

Building and searching a trie data structure for a given pattern
Compact tries
Suffix tree definition and computation

— computation with the “naive” algorithm
— using suffix trees for string matching

— using suffix trees for finding repeated substrings
Suffix array definition and computation
Longest common prefix array definition and computation

Inverse suffix array and computation
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