
Lecture 31: Optimistic
Linked Lists

COSC 273: Parallel and Distributed
Computing

Spring 2023

Annoucements
1. Leaderboard submission results tomorrow
2. Next leaderboard submission is Friday? Monday?
3. Take-home quiz: released Wednesday (Gradescope), due

Friday
concurrent linked lists

-

Today
Concurrent Linked Lists, Three Ways:

1. Coarse locking
2. Fine-grained locking
3. Optimistic locking -

A Generic Task
Store, access, & modify collection of distinct elements:

The Set ADT:

add an element
no e!ect if element already there

remove an element
no e!ect if not present

check if set contains an element

↑E -no duplicate
- elts

-

-

Java SimpleSet Interface
public interface SimpleSet<T> {
// Add an element to the SimpleSet. Returns true if the element
// was not already in the set.
boolean add(T x);

// Remove an element from the SimpleSet. Returns true if the
// element was previously in the set.
boolean remove(T x);

// Test if a given element is contained in the set.
boolean contains(T x);
}

-

&

-

Linked List SimpleSets
Each Node stores:

reference to the stored object
reference to the next Node
a numerical key associated with the object

The list stores
reference to head node
a tail node
head and tail have min and max key values
nodes have strictly increasing keys

en

head largest
↓

+ witiW ↳
smallest
nex

Why Keys?
Question. Why is it helpful to store keys in increasing
order? ↓ ↓

--...
looking for elt. W/ key s

- can stop search before

end oflist

gives unique
locations for

modification.

Our Goals
1. Correctness, safety, liveness

deadlock-freedom
starvation-freedom?
nonblocking??
linearizability???

2. Performance
parallelism?

Synchronization Philosophies
1. Coarse-Grained (CoarseList.java)

lock whole data structure for every operation
2. Fine-Grained (FineList.java)

only lock what is needed to avoid disaster
3. Optimistic (OptimisticList.java)

don’t lock anything to read, only lock to modify
4. Lazy (LazyList.java)

use “logical” removal, only lock occasionally
5. Nonblocking (NonblockingList.java)

use atomics, not locks!

Coarse-grained Locking
One lock for whole data structure

For any operation:

1. Lock entire list
2. Perform operation
3. Unlock list

See CoarseList.java -

Coarse-grained Insertion
I b

Step 1: Acquire Lock

Step 2: Iterate to Find Location

- E

-I E

Step 2: Iterate to Find Location

Step 2: Iterate to Find Location

- -

-

Step 3: Insert Item

Step 4: Unlock List

Coarse-grained Appraisal
Advantages:

Easy to reason about
Easy to implement

Disadvantages:

No parallelism
All operations are blocking

Fine-grained Locking
One lock per node

For any operation:

1. Lock head and its next
2. Hand-over-hand locking while searching

always hold at least one lock
3. Perform operation
4. Release locks

See FineList.java-

⑰ *--W-+ -

↑ -

A Fine-grained Insertion

Step 1: Lock Initial Nodes

Step 2: Hand-over-hand Locking

Step 2: Hand-over-hand Locking

Step 2: Hand-over-hand Locking

Step 3: Perform Insertion

Step 4: Unlock Nodes

An Advantage: Parallel Access

An Advantage: Parallel Access

↓

An Advantage: Parallel Access

An Advantage: Parallel Access

An Advantage: Parallel Access

An Advantage: Parallel Access

An Advantage: Parallel Access

An Advantage: Parallel Access

An Advantage: Parallel Access

X

An Advantage: Parallel Access

An Advantage: Parallel Access

An Advantage: Parallel Access

Fine-grained Appraisal
Advantages:

Parallel access
Reasonably simple implementation

Disadvantages:

More locking overhead
can be much slower than coarse-grained

All operations are blocking

-

-

-

Optimistic Synchronization
Fine-grained wastes resources locking

Nodes are locked when traversed
Locked even if not modi"ed!

A better procedure?

1. Traverse without locking
2. Lock relevant nodes
3. Perform operation
4. Unlock nodes

-

~

~

-

A Better Way?

A Better Way?

A Better Way?

A Better Way?

A Better Way?

A Better Way?

What Could Go Wrong?

5-

*
S

An Issue!
Between traversing and locking

Another thread modi"es the list
Now locked nodes aren’t the right nodes!

An Issue, Illustrated

An Issue, Illustrated

-

An Issue, Illustrated

Y

An Issue, Illustrated

An Issue, Illustrated

An Issue, Illustrated

How can we Address this Issue?

-
--*

-N

Optimistic Synchronization, Validated
1. Traverse without locking
2. Lock relevant nodes
3. Validate list

if validation fails, go back to Step 1
4. Perform operation
5. Unlock nodes

Seet OptimisticList.javaA

How do we Validate?
A!er locking, ensure that:

1. pred is reachable from head
2. curr is pred’s successor

If these conditions aren’t met:

Start over!

Optimistic Insertion

Step 1: Traverse the List

Step 1: Traverse the List

Step 1: Traverse the List

Step 2: Acquire Locks

Step 3: Validate List - Traverse

Step 3: Validate List - pred Reachable?

Step 3: Validate List - Is curr next?

Step 4: Perform Insertion

Step 5: Release Locks

Implementing Validation
 private boolean validate (Node pred, Node curr) {

Node node = head;
while (node.key <= pred.key) {
 if (node == pred) {

return pred.next == curr;
 }
 node = node.next;
}
return false;

 }

Optimistic Appraisal
Advantages:

Less locking than "ne-grained
More opportunities for parallelism than coarse-grained

Disadvantages:

Validation could fail
Not starvation-free

even if locks are starvation-free

Performance Tests
On HPC Cluster:

Compare running times of performing 1M operations
add/remove/contains sequence chosen at random
elements chosen from 1 to N at random

N is universe size
Parameters

universe size set size
number of threads

See SetTester.java

≈

-

Performance Predictions?
Under what conditions do you expect
coarse/"ne/optimistic strategies to be performant?

Number of threads (1 to 128 on HPC)
Set universe size (8 to 8,192)

↳B

Performance v. Size, 1 Thread

-44
↑

Performance v. Size, 128 Threads

↳W ⑧
R

I Iw
8

Time v. Threads, 8 Elements

Time v. Threads, 8,192 Elements

Coarse Time v. Threads

Fine Time v. Threads

Optimistic Time v. Threads

Next Time
Another Way: Lazy Synchronization

don’t modify the list unless you really have to

