
Lecture 29: Fork-Join Pools
COSC 273: Parallel and Distributed

Computing

Spring 2023

Last Time
Sorting by Divide-and-Conquer

To sort an array
partition into two (or more) sub-arrays
sort the parts
combine the sorted parts

Naturally recursive structure

-
W A
-
I ↓
Sort sort

-

Today
Divide-and-Conquer in Parallel:

Fork-Join Pools

Divide and Conquer
Many computation problems can be solved e!ciently by:

1. Breaking an instance into two or more smaller instances
2. Solving the smaller instances (maybe recursively)
3. Combining the smaller solutions to solve the original

instance opportunt
⑭ I for
↓ parallelism
⑭... ??

W ↓

Brgrisare

Example 1: Searching Unsorted Array
Given int[] arr of size N
Does arr contain 1?
Idea:
1. divide arr in half
2. search le" half for 1
3. serach right half for 1
4. return true if step 1 or 2 succeeds

salesresiget
12ft

success
it

either thread

findValuer

Example 2: MergeSort
Given int[] arr of size N
Sort arr in increasing order
Idea:
1. divide arr in half
2. sort le" half
3. sort right half
4. merge sorted halves

IE
↓Fort

sort

AN

Large
N11II

Observation
Divide-and-conquer o"en lends itself well to parallelism:

1. Divide instance into smaller instances
2. Solve smaller instances in parallel
3. Combine solutions I
F need sub-tasks

of
to to be indep

harcher another
our

employ ?parallelism

Fork-Join Pools
Idea:

A thread pool with e!cient support for forking:
divide a task into two or more sub-tasks
complete sub-tasks
combine solutions (if necessary)

Naturally lends itself to recursion

↳
->task (

=>task

i task 3

i

Fork op:a single task spawns
new sub-tasks

Fork/Merge Diagram: Merge Sort
⑰

I OSaturntheSe,merge M

↓ ↑I ↳ ↓)
+↳⑬ ⑩
Issue:dependencies between tasks

Creating a Fork-Join Pool
Creating a Fork-Join Pool is easy!

tasks are invoked in FJP

import java.util.concurrent.ForkJoinPool;
...
ForkJoinPool pool = new ForkJoinPool(POOL_SIZE);
...
pool.invoke(new SomeTask(...));

t #threadsI
E in pool
E

E ↳ execute a task

↓
new tasks

may spawn

tobe executed by
pool

Recursive Actions
Tasks without return values = recursive action

extend RecursiveAction class
override compute() method

I builtin
-

I
defines whattask

should do

MergeSort as RecursiveAction

Invoke with pool.invoke(new MTask(data, 0,
data.length))

import java.util.concurrent.RecursiveAction;
class MSTask extends RecursiveAction {
 public MSTask (double[] data, int min, int max) {...}
 @Override
 protected void compute () {
 if (max - min <= 1) {...}
 int mid = min + (max - min) / 2
 MTask left = new MTask(data, min, mid);
 MTask right = new MTask(data, mid, max);
 left.fork(); right.fork(); // or can use right.compute()
 left.join(); right.join(); // leave out if right.compute()
 merge(data, min, mid, max);}}

E
S

A -indices-
-

-

- base case
index

->
E mickle

-

↳ new sorting

L 3 tasks

Ane complete
sorting bySirFrais forthose tasks merge.

to complete

fork versus compute
The di#erence:

fork() creates new task to be scheduled by the pool
must join

compute() performs computation as part of this task
no join necessary

Question. Why use one or the other?

-- less overhead

Li
main mainW -fork tagten

fr

comput / foot
e e

I d
W W
W

What ForkJoinPool Does
FJP is a thread pool with a $xed number of threads
FJP handles scheduling of tasks
Employs “work-stealing” strategy to minimize time
spent waiting for tasks to complete

Accounts for dependencies between tasks
AMP Chapter 16

We
--

Tash1waiting,·

ash⑫

E!ciency
O"en Fork-Join pools are not always as e!cient you’d like
them to be

To deal with this:

Use large “base case”
don’t waste multithreading breaking up small tasks

Only use on large instances

Still FJPs can lead to elegant solutions, readable code

Can have better performance if task sizes are irregular

-

-

Recursive Task
What if we want tasks to return a value?

Use RecursiveTask<T>!
task returns a value of type T
similar to RecursiveAction except compute() returns
a T

pool.invoke(someRecursiveTask<T>) now also returns
a T
join() method also returns a T

-

L-
-

A Simple Example
Finding the maximum value in an unsorted array

What is a task?
How to combine results?

#IIleft right
lett Max right Max

return Max (leftMax, rightMap

An Activity
Compare the run-times of the two methods!

Download fork-join-pools.zip

1. What values of PARALLEL_LIMIT give better
performance?

2. Is there a performance di#erence for fork/compute
compared to fork/fork?

Disclaimer:

everything about Java is optimized to execute code like
findMax e!ciently
fork-join pools are better suited for more complex
tasks…

-

-

-

-

What Happened?

Next Time
Sorting networks!

