
Lecture 27: Prime Time
COSC 273: Parallel and Distributed

Computing

Spring 2023

This Week
Homework 03 Due Friday
Final Project group & topic selection, also due Friday

Option 1: computing prime numbers
Option 2: sorting
Option 3: choose your own adventure

- I today
- 2- Friday

Computing Prime Numbers

Recall
The natural numbers

Given natural numbers , :

 divides if for some natural number

 is the quotient of and

 is a multiple of

 is a proper divisor of if it is a divisor and

In Java
(n % d == 0) returns true if and only if d divides n

Proper divisors of 12? 13?

0, 1, 2, 3, …
n d

d n n = d ⋅ q q
q n d
n d

d n d ≠ 1, n

-....
. =2.3

2 divides 6-
W

--

E
>

12:2, 3, 4, 6

13:nove

Prime De!nitions
A natural number is prime if it has no proper
divisors.

A natural number that is not prime is composite

Examples:

 are prime

 are composite

p > 1

n > 1

2, 3, 5, 7, 11, 17, 19
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20

13 is prime

13

↑ ↑ ↑ -
↑ ↑

Who Cares?
Mathematicians

primes are atomic building blocks of natural numbers
understanding how prime numbers are distributed is
a central goal of number theory

Computer Scientists
prime numbers are essential for RSA encryption
error correcting codes

Everyone
RSA encryption is most widely used public key
encryption
used for secure communication everywhere

E

7

Final Project, Option 1
The Task. Generate an array int[] primes that contains
every prime number that can be stored as an int in Java in
increasing order.

Integer.MAX_VALUE = 2_147_483_647
there are primes up to this value

 400 MB of primes!

105, 097, 565
⟹ ∼

-

>-
-

Testing if a Number is Prime
Method 1: Trial Division

Check all numbers less than n to see if n is divisble by
them:

public boolean isPrime(int n) {
 if (n <= 1) return false;

 for (int d = 2; d < n; ++d) {
 if (n % d == 0)
 return false;
 }

 return true;
}

1
tial divisor

Example
Is 91 prime?
-

b =2 :
X

d =3: X
~c) =4: don't merd to check!

a =5: X

-> a =6:-

b =7:G1 =7 *13

Notprime

Is Trial Division E"cient?
Can we improve trial division?

Do we have to check all possible divisors up to n-1?

- No:can omit composite #
-

d =d,dz I onlybeeadirichs n ?
d
i

- stop e in

n =d.g ~Id,g>
un

=>
b.g(un)(r)) =n

Making Things More E"cient
Claim 1. If is composite, then it has a divisor with

Why?

n d
d ≤ n‾√

Prev slick

Making Things More E"cient
Claim 1. If is composite, then it has a divisor with

Why?

n d
d ≤ n‾√

Conclusion. Only need to check divisors up to n‾√

A Faster Procedure
public boolean isPrime(int n) {
 if (n <= 1) return false;

 for (int d = 2; d * d <= n; ++d) {
 if (n % d == 0)
 return false;
 }

 return true;
}

*
-
() d =in

Can Procedure Be Improved More?
Claim 2. If is composite, then it has a prime divisor at
most .

So we only need to check primes up to

Example:

To determine if a number less than…
…100 is prime, need only check divisibility by
…1,000 is prime, need only check divisibility by

…1,000,000 is prime, need only check divisibility by
primes up to 1,000

n
n‾√

n‾√

2, 3, 5, 7

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31

-

-

Generating Primes
Suppose we want to generate all primes up to …

How should we do this?

N

-> startwe all IS

When find a prime DI

remove mults of po

Sieve of Eratosthenes
1. Write numbers 2 through N
2. Read numbers in order:

if a number is not crossed out, it is prime
then cross out all multiples

 02 03 04 05 06 07 08 09 10

 11 12 13 14 15 16 17 18 19

 20 21 22 23 24 25 26 27 28

 29 30 31 32 33 34 35 36 37

0x0x0XXYE
8x8 xXx0xO
xxy0xxxxY
0x0x x xx x0

Observation/Optimization
In SoE, once we !nd primes up to Math.sqrt(N), we can
stop!

Why?

Eratosthenes in Code
1. Make boolean array isPrime of size N

interpretation: isPrime[i] == true if i is prime
2. Initialize isPrime[i] to true for all i >= 2
3. Iterate over indices i up to Math.sqrt(N):

if isPrime[i]:
set isPrime[j] = false for all j that are multiples
of i

otherwise, do nothing

When done: isPrime[i] is true precisely for prime i

Eratosthenes in Java
boolean[] isPrime = new boolean[N];
for (int i = 2; i < N; ++i) {
 isPrime[i] = true;
}
for (int i = 2; i < N; ++i) {
 if (isPrime[i]) {
 for (int j = 2 * i; j < N; j += i) {
 isPrime[j] = false;
 }
 }
}

Activity
Let’s compute the primes up to

To start, here are the primes up to 15:

225 = 152

2, 3, 5, 7, 11, 13

Primes up to 225:
1–44:

45–89:

90–134:

90–134:

135–179:

29,37,41,432,1,5,7,11,19,17,19,13,47,53,61,57,71,73,79,
83

97, 101, 103, 107, 109, 113,
127, 131

<

137,139,149157,163
S

16+, 173,179

180–225:

Project Technical Challenges
1. Storing boolean isPrime of size Integer.MAX_VALUE is

already on the order of 1GB of memory

2. How can we partition the problem to exploit
parallelism?

multithreading?
vector operations?

3. How to synchronize between di#erent sub-tasks?

