
Lecture 26: Finishing Locks
COSC 273: Parallel and Distributed

Computing

Spring 2023

This Week
Homework 03 Due Friday
Final Project group & topic selection, also due Friday

Option 1: computing prime numbers
Option 2: sorting
Option 3: choose your own adventure

Week Plan
Today: !nish locks
Wednesday: computing prime numbers
Friday: sorting

-

[
n

-

Last Time: TASLock
Test-and-set Lock

download tas-locks.zip

import java.util.concurrent.atomic.AtomicBoolean;
public class TASLock implements SimpleLock {
 AtomicBoolean locked = new AtomicBoolean(false);
 public void lock () {
 while (locked.getAndSet(true)) {}
 }
 public void unlock () {
 locked.set(false);
 }
}

-

L-

k

>) H-> -
- equiv.

val =
locke

· broleaw
->

· locked
=true

· return val

Progress Guarantees
Question. Is TASLock deadlock-free? Starvation-free?

->Deadlock free:
- if all threads take steps,
someone gets lock in finite

ofsteps

Yes:firstthread to call

locked. GetAnd Set I
trul

Obtains lock, nextafter

unlock gets lock nexttime...

·

"Starvation free?Each
locker eventually

S
gets lock No! No guarantel
aboutwho obtains lock afterrelease.

What About Performance?
atomic operations are expensive

writing operations more-so
more contention, more problems

T1
+2T3

IwW
locked

Question How does running time par
--

lock/unlock depend on threads.

Atomic Lock with Fewer Writes
Test-and-Test-and-Set Lock:

check if locked
if not, attempt getAndSet
return if successful

TTASLock Implementation
public class TTASLock implements SimpleLock {
 AtomicBoolean locked = new AtomicBoolean(false);
 public void lock () {

while (true) {
 while (locked.get()) {};
 if (!locked.getAndSet(true)) { return;}
}

 }
 public void unlock() { locked.set(false);}
}

e

~

L only reac

I - --> -
--

Comparing E"ciency
tas-locks.zip

Two Issues
1. Locks are less e"cient with more threads

more contention to single memory location

2. Locks are not starvation free

no notion of priority
-

-

e E
Fix # threads

->some notion of pority
=>more space required

A Tradeo#
More memory, less contention

each thread has its own !eld to lock/unlock

Incorporating priority

each thread has predecessor it waits on
like queue/Bakery algorithm

⑰

CLH Lock
Each thread has:

Node myNode node “owned” by thread
Node myPred node owned by predecessor thread

Each Node has:

boolean locked:
myNode.locked = true signals I want/have lock
myNode.locked = false signals I have released lock

Thread acquires lock when myPred.locked is false

->

thread Iam waiting on

CLH Lock Initial State

Thread 1 Arrives

Thread 1 Acquires Lock

T1 has lock

b/C mPred, locked
== false

Thread 2 Arrives

Thread 2 Locks

Thread 3 Arrives

Thread 3 Locks

Thread 1 Unlocks (1)

Thread 1 Unlocks (2)

Thread 2 Unlocks

Thread 3 Unlocks

CLHLock Implementation
import java.util.concurrent.atomic.AtomicReference;

public class CLHLock implements SimpleLock {
 AtomicReference<QNode> tail;
 ThreadLocal<QNode> myPred;
 ThreadLocal<QNode> myNode;

 private static class QNode {
volatile boolean locked = false;

 }
}

[
S
I each

thread
auch

- was
- E IIam version

[3

CLHLock Constructor
 public CLHLock () {

tail = new AtomicReference<QNode>(new QNode());
myNode = new ThreadLocal<QNode> () {

@Override
protected QNode initialValue() {
 return new QNode();
}};

myPred = new ThreadLocal<QNode>() {
@Override
protected QNode initialValue() {
 return null;
}};}

+R
crea-

mckethread
initi is

↳ prec
null

CLHLock Lock/Unlock
 public void lock () {

QNode qnode = myNode.get();
qnode.locked = true;
QNode pred = tail.getAndSet(qnode);
myPred.set(pred);
while (pred.locked) {};

 }

 public void unlock () {
QNode qnode = myNode.get();
qnode.locked = false;
myNode.set(myPred.get());

 }

->
-

--
-

->

->

->

->

->

Try It Yourself
clh-lock.zip

Ugh
A Mystery. Why doesn’t the implementation work?

deadlock for many threads?

Next Time
 prime numbers!105, 097, 565

