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This Week
Homework 03 Due Friday
Final Project group & topic selection, also due Friday

Option 1: computing prime numbers
Option 2: sorting
Option 3: choose your own adventure

Week Plan
Today: !nish locks
Wednesday: computing prime numbers
Friday: sorting
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Last Time: TASLock
Test-and-set Lock

download tas-locks.zip

import java.util.concurrent.atomic.AtomicBoolean;
public class TASLock implements SimpleLock {
    AtomicBoolean locked = new AtomicBoolean(false);
    public void lock () {
        while (locked.getAndSet(true)) {}
    }
    public void unlock () {
        locked.set(false);
    }
}
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Progress Guarantees
Question. Is TASLock deadlock-free? Starvation-free?

->Deadlock free:
- if all threads take steps,
someone gets lock in finite
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What About Performance?
atomic operations are expensive

writing operations more-so
more contention, more problems
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Atomic Lock with Fewer Writes
Test-and-Test-and-Set Lock:

check if locked
if not, attempt getAndSet
return if successful



TTASLock Implementation
public class TTASLock implements SimpleLock {
    AtomicBoolean locked = new AtomicBoolean(false);
    public void lock () {

while (true) {
    while (locked.get()) {};
    if (!locked.getAndSet(true)) { return;}
}

    }
    public void unlock() { locked.set(false);}
}
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Comparing E"ciency
tas-locks.zip



Two Issues
1. Locks are less e"cient with more threads

more contention to single memory location

2. Locks are not starvation free

no notion of priority
-
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Fix # threads

->some notion of pority
=>more space required



A Tradeo#
More memory, less contention

each thread has its own !eld to lock/unlock

Incorporating priority

each thread has predecessor it waits on
like queue/Bakery algorithm
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CLH Lock
Each thread has:

Node myNode node “owned” by thread
Node myPred node owned by predecessor thread

Each Node has:

boolean locked:
myNode.locked = true signals I want/have lock
myNode.locked = false signals I have released lock

Thread acquires lock when myPred.locked is false
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CLH Lock Initial State



Thread 1 Arrives



Thread 1 Acquires Lock

T1 has lock

b/C mPred, locked
== false



Thread 2 Arrives



Thread 2 Locks



Thread 3 Arrives



Thread 3 Locks



Thread 1 Unlocks (1)



Thread 1 Unlocks (2)



Thread 2 Unlocks



Thread 3 Unlocks



CLHLock Implementation
import java.util.concurrent.atomic.AtomicReference;

public class CLHLock implements SimpleLock {
    AtomicReference<QNode> tail;
    ThreadLocal<QNode> myPred;
    ThreadLocal<QNode> myNode;

    private static class QNode {
volatile boolean locked = false;

    }
}
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CLHLock Constructor
    public CLHLock () {

tail = new AtomicReference<QNode>(new QNode());
myNode = new ThreadLocal<QNode> () {

@Override
protected QNode initialValue() {
    return new QNode();
}};

myPred = new ThreadLocal<QNode>() {
@Override
protected QNode initialValue() {
    return null;
}};}
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CLHLock Lock/Unlock
    public void lock () {

QNode qnode = myNode.get();
qnode.locked = true;
QNode pred = tail.getAndSet(qnode);
myPred.set(pred);
while (pred.locked) {};

    }

    public void unlock () {
QNode qnode = myNode.get();
qnode.locked = false;
myNode.set(myPred.get());

    }
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Try It Yourself
clh-lock.zip



Ugh
A Mystery. Why doesn’t the implementation work?

deadlock for many threads?



Next Time
 prime numbers!105, 097, 565


