Lecture 25: Atomic Locks

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements

Homework 03 1s finalized

e NO New questions
e due next Friday

Today

e More Lock Implementations

Last Time:

e Peterson lock implementation
= peterson—-lock.zip
e disappointment
» it didn’t achieve mutual exclusion!

Peterson LLock Code

PetersonlLock {

[1 flag = [2]; victim;
—

lock () {
((PetersonThread)Thread.currentThread())
.getPetersonId();
] = 1 - 1i;

&
~H)flag[i] = ; victim = 1i;

((flaal0] && flag[l]) &&{victim == 1) {};}
e —

unlock () {

1 = ((PetersonThread)Thread.currentThread()).getPetersonI
flag[i] = Pt}

Memory Consistency!

32 kB

256 kB

6 MB

16 GB

fy C,QLW

CPU
S

L1 Cache

L1 Cache

L2 Cache

L3 Cache

W

.l :
! ,Q
| (0]

N
H

A y 4

t\l.\t.\'\\r’\ O’

L]

Main Memory
»

Copcsnae

volatile Variables

Java can make variables visible between threads:

e use volatile keyword
 individual read/write operations to volatile are atomic

Drawbacks:

e volatile variables are less efficient

 only single read/write operations are atomic
= e.g. count++ not atomic

« only primitive datatypes are visible

= if volatile SomeClass..., only the reference is
treated as volatile

Making Variables Volatile

e In PetersonLock
= flag: an array (object) can’t be volatile
o replace with boolean flag@, flagl
= victim ik A —

e In LockedCounter -
= count

Fixing Implementation

e peteson-lock.zip

Finally!!!
What have we done?

1. Proven correctness of a lock
e idealized model of computation
e atomic read/write operations
2. Implemented lock
e used Java to resemble idealized model

3. Used lock
e saw expected behavior

Theory and practice converge!

Peterson: Good and Bad
The Good:

1. It works!
2. It only uses read/write operations!

The Bad:

1. It only works with two threads!
2. Ugly implementation
e need a separate PetersonThread to assign IDs

Question. How could we lock more simply?

Better Tech!

Use more advanced Atomic Objects!

Introducing the AtomicBoolean class:

an AtomicBoolean with initial value value
e [ab.get () return the current value J

e ab.getAndSet (boolean pewValue) atomically set the
valte to newVa lue and return the old value 4

e ab.compareAndSet(boolean expected, boolean pew)
atomically update to new if previous value was expected
and return whether or not the value was updated

"_(j (vel ne == Ll((')ed-u,&
Volug = new
NI PR (VN

2 \s2

cotuen felre

efvar ab = new AtomicBoolean(boolean value) makj

A Simpler Lock?

Question. How could we use AtomicBooleans to design a

simBIer lock?
Tt wie aX{o-\¢ Q-Q QS\'Q\M.;Q £>

bor 4\—\%(13

OQnobad Bre have OWe 0. s
b Skt Stedel” of leck

A% locked -
o I obdwin Dk locleed + Hwr

Odl\y obdun ok 5
- locled was ‘Q‘“\S'ﬂ

oAd

— T seb £ (e

C

Test and Set Lock

Idea. An AtomicBoolean locked stores state of the lock:

e locked.get() == true indicates the lock is in use
e locked.get() == false indicates the lock is free
Obtaining the lock:

o wait until locked is false, and set it to true
Releasing the lock:

e set Llocked to false

TASLock 1in Code

java.util.concurrent.atomic.AtomicBoolean;
TASLock SimpleLock {

AtomicBoolean locked = AtomicBoolean (

lock () {
(locked.getAndSet ()) {}
unlock () {
locked.set();

« download tas-locks.zip

Progress Guarantees

Question. Is TASLock deadlock-free? Starvation-free?

Alternative Implementation

Potential Issue:

e getAndSet operation is somewhat inefficient
» slower than just get

Test and Test and Set Lock:

e check if locked
» if not, attempt getAndSet
» return if successtul

TTASLock Implementation

TTASLock SimpleLock {

AtomicBoolean locked = AtomicBoolean (

lock () {

) |
(locked.get()) {};

(!locked.getAndSet ()) {

unlock() { locked.set(

Comparing Efficiency

e tas—locks.zip

