
Lecture 24: Progress and
Locks

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements
1. Homework 03 Dra! Posted

due Friday, April 14th
2. Short quiz on Friday, April 7th

Given two implementations, which is faster?
Reason about parallelism/locality of reference

Today
1. Progress
2. Lock Implementations

UnboundedQueue Enqueue
 public void enq (T value) {

enqLock.lock();
try {
 Node nd = new Node(value);
 tail.next = nd;
 tail = nd;
} finally {
 enqLock.unlock();
}

 }

-

P-

LockFreeQueue Enqueue
 public void enq(T item) {

if (item == null) throw new NullPointerException();
Node node = new Node(item);
while (true) {
 Node last = tail.get();
 Node next = last.next.get();
 if (last == tail.get()) {

if (next == null) {
 if (last.next.compareAndSet(next, node))

tail.compareAndSet(last, node); return;
} else {
 tail.compareAndSet(last, next);}}}}

en

-

UnboundedQueue Progress
Guarantee: Starvation Freedom (assuming lock is
starvation-free)

if all pending method calls continue to take steps, then
every pending method call completes in a "nite number
of steps

this is blocking progress: if even one thread stops taking
steps, then all other threads can be impeded

Question. When is this “good?”

#
e.g. engy

-

-> We "know" thatall threads
-

scheduled fairly

LockFreeQueue Progress
Guarantee: Lock Freedom

if some pending method call makes progress, then some
pending method call completes in a "nite number of
steps

this is nonblocking progress: if some threads stall,
others are still guaranteed to make progress

-

-

if scheduling is notknown to
be fair ofifa thread could

crash, non-blocking progress is preferable
toblocking.

Progress, 4 Ways
Blocking Progress:

deadlock freedom if all threads take steps, some
completes in "nite time
starvation freedom if all threads take steps, all complete
in "nite time

Nonblocking Progress:

lock freedom if some threads take steps, some completes
in "nite time
wait freedom all threads taking steps complete in "nite
time

If threads .] =>[]
-

-

-
-> E

z
-> E
-

R I
Erread] => []

What About Performance?
Demo: concurrent-queues.zip

Lock Implementations
1. Peterson Lock
2. Test-and-set Lock
3. Test-and-test-and-set Lock
4. CLH Lock

E

The Peterson Lock

Download: peterson-lock.zip

class Peterson implements Lock {
 private boolean[] flag = new boolean[2];
 private int victim;
 public void lock () {
 int i = ThreadID.get(); int j = 1 - i;
 flag[i] = true; // set my flag
 victim = i; // set myself to be victim
 while (flag[j] && victim == i) {}; }
 public void unlock () { int i = ThreadID.get();

flag[i] = false; }
}

-

-

-7 E
->

-

->

-

A Challenge
Peterson lock assumes 2 threads, with IDs 0 and 1

How do we accomplish this?

Make a Thread Subclass
We’ll use this thread to increment a counter

Next week: A better way

public class PetersonThread extends Thread {
 private int id;
 private LockedCounter ctr;
 private int numIncrements;
 public PetersonThread (id, ctr, numIncrements) {

super(); this.id = id; this.ctr = ctr;
this.numIncrements = numIncrements; }

 public int getPetersonId() { return id; }
 @Override
 public void run () {

for (int i=0; i<numIncrements; ++i) { ctr.increment(); }}
}

- -

De
E

-

A-
-

-

-

-

Making a PetersonLock
class PetersonLock {
 private boolean[] flag = new boolean[2];
 private int victim;
 public void lock () {

int i = ((PetersonThread)Thread.currentThread())
 .getPetersonId();
int j = 1 - i; flag[i] = true; victim = i;
while (flag[j] && victim == i) {};

 }
 public void unlock () {...}
}

-

-

e

↑

-

-

And Now: A Locked Counter
public class LockedCounter {
 private int count = 0;
 PetersonLock lock = new PetersonLock();
 public void increment () {

lock.lock();
try { ++count; }
finally { lock.unlock(); }

 }
 public int read () {

return count;
 }
}

->

-

I

- I

->

->

Finally, We’re Ready to Test It!

D’oh!
What happened?

Memory Consistency!

i
e

volatile Variables
Java can make variables visible between threads:

use volatile keyword
individual read/write operations to volatile are atomic

Drawbacks:

volatile variables are less e#cient
only single read/write operations are atomic

e.g. count++ not atomic
only primitive datatypes are visible

if volatile SomeClass..., only the reference is
treated as volatile

-

What Variables Should be volatile?
In PetersonLock?

flag?
victim?

In LockedCounter?
count?

A Problem
Only primitive datatypes can be volatile

volatile boolean[] flag makes the reference
volatile, not the data itself

How to "x this?

A Fix
Just make 2 boolean variables, flag0 and flag1

Yes, I know this is ugly

Fixing Implementation
peteson-lock.zip

Testing Our Counter Again

Finally!!!
What have we done?

1. Proven correctness of a lock
idealized model of computation
atomic read/write operations

2. Implemented lock
used Java to resemble idealized model

3. Used lock
saw expected behavior

Theory and practice converge!

Peterson: Good and Bad
The Good:

1. It works!
2. It only uses read/write operations!

The Bad:

1. It only works with two threads!
2. Ugly implementation

need a separate PetersonThread to assign IDs

Question. How could we lock more simply?

Better Tech!
Use more advanced Atomic Objects!

Introducing the AtomicBoolean class:

var ab = new AtomicBoolean(boolean value) make
an AtomicBoolean with initial value value
ab.get() return the current value
ab.getAndSet(boolean newValue) atomically set the
value to newValue and return the old value
ab.compareAndSet(boolean expected, boolean new)
atomically update to new if previous value was expected
and return whether or not the value was updated

A Simpler Lock?
Question. How could we use AtomicBooleans to design a
simpler lock?

no Java gymnastics to deal with thread IDs
no complicated data structures

