Lecture 24: Progress and
Locks

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements

1. Homework 03 Draft Posted
e due Friday, April 14th
2. Short quiz on Friday, April 7th
e Given two implementations, which is faster?
e Reason about parallelism/locality of reference

Today

1. Progress
2. Lock Implementations

UnboundedQueue Enqueue

enq (T value) {
engLock.lock();

.

Node nd = Node (value);

tail.next =
tail = nd;
{

engLock.unlock();

LockFreeQueue Enqueue

eng (T item) {

(item ==) NullPointerException();

Node node = Node (item) ;
() A
Node last = tail.get();
Node next = last.next.get();
(last == tail.get()) {
(next ==) {

(last.next.compareAndSet (next, node))

tail.compareAndSet(last, node);
e ——

{
tail.compareAndSet(last, next);}}}}

UnboundedQueue Progress

Guarantee: Starvation Freedom (assuming lock is

—

starvation—flfge) e ey | A(LCG

o if all pendi ethod calls continue to take steps, then
every pending method call completes in a finite number

of steps

o this is hlocking progress: if even one thread stops taking
steps, then all other threads can be impeded

Question. When is this “good?”

5wt lewow” Faek ol Paveadd
¢ el ol Q on € \\/

LockFreeQueue Progress

Guarantee: Lock Freedom

. _1£ some pending method call makes progress, then some
pending method call completes in a finite number of
steps

o this is nonblocking progress: if some threads stall,
others are still guaranteed to make progress

& scad e g 1S nob oo
be Soil of $ o Hngead could
C.< oS\ (NWOW- b(oc_(u\i, 'P { o\S (*kssS S '|> ('Q qudb(y\
o \OQOC.,(A. :v\c(]

C V tieads - 3 ‘QCI
Progress, 4 Ways — - \

Blocking Progress:
-ydeadlock freedom/ hreads take steps, some
completes in finite tyme

—)starvation freedom@@hreads take steps, all complete
in finite time

Nonblocking Progress:
-9lock freedom if fome threads take steps, some completes
in finite time

ofwait freedom all threads taking steps complete in ﬁnitel

ime E3 ,\)\\Jco«&] :>E 3

What About Performance?

Demo: concurrent—queues.zip

Lock Implementations

1. Peterson Lock &—

2. Test-and-set Lock

3. Test-and-test-and-set Lock
4. CLH Lock

The Peterson Lock

Peterson Lock {
[1] flag =
e—

victim;
Cr———
lock () {

— i = [ThreadID.get ()

—) flag[i] = :
~yictim = i;
—) (flag[j] && victim == i) {}; }

unlock () { ' ThreadID.get();

A flag[i] = .

Download: peterson-lock.zip

A Challenge

Peterson lock assumes 2 threads, with IDs 0 and 1

« How do we accomplish this?

Make a Thread Subclass

We’ll use this thread to increment a counter

PetersonThread Thread {

[— 4
-@ e
LockedCounter ctr; &

numIncrements; &~
PetersonThread (id, ctr, numIncrements) {

.id = id; .ctr = ctr;

.numIncrements = numIncrements;

et
getPetersonId() { id; }

f-\.

run () {

i=0; i<numIncrements; ++i) { ctr.increment(); }}
—\—ﬂ

Next week: A better way

Making a PetersonLock

PetersonlLock {
[] flag =
victim;
lock () {

((PetersonThread)Thread.currentThread())
e —— §

.getPetersonId();
1 - 1i; flag[i] = ; victim = i;
~

(flag[j] && victim == i) {}; &~

unlock () {...

And Now: A Locked Counter

LockedCounter {
count = 0;
~)PetersonLock lock = PetersonLock();
-~ increment () {
~—f lock.lock();
-\ { ++count; }

— { lock.unlock(); }

read ()

count;

Finally, We're Ready to Test It!

D’oh!
What happened?

Memory Consistency!

32 kB

256 kB

6 MB

16 GB

CPU
-~ L1 Cache L1 Cache

1
i
L2

3

C—]

Main Memory \l/

\@at ile Variables

Java can make variables visible between threads:

e use volatile keyword
 individual read/write operations to volatile are atomic

Drawbacks:

e volatile variables are less efficient

 only single read/write operations are atomic
= e.g. count++ not atomic

« only primitive datatypes are visible

= if volatile SomeClass..., only the reference is
treated as volatile

What Variables Should be volatile?

e In PetersonLock?
« flag’
= victim?

e In LockedCounter?
= count?

A Problem

Only primitive datatypes can be volatile

e« volatile boolean[] flag makes the reference
volatile, not the data itself

How to fix this?

A Fix
Just make 2 boolean variables, flag0d and flagl
e Yes, I know this is ugly

Fixing Implementation

e peteson-lock.zip

Testing Our Counter Again

Finally!!!
What have we done?

1. Proven correctness of a lock
e idealized model of computation
e atomic read/write operations
2. Implemented lock
e used Java to resemble idealized model

3. Used lock
e saw expected behavior

Theory and practice converge!

Peterson: Good and Bad
The Good:

1. It works!
2. It only uses read/write operations!

The Bad:

1. It only works with two threads!
2. Ugly implementation
e need a separate PetersonThread to assign IDs

Question. How could we lock more simply?

Better Tech!

Use more advanced Atomic Objects!

Introducing the AtomicBoolean class:

e var ab = new AtomicBoolean(boolean value) make
an AtomicBoolean with initial value value

e ab.get() return the current value

e ab.getAndSet(boolean newValue) atomically set the
value to newValue and return the old value

e ab.compareAndSet(boolean expected, boolean new)
atomically update to new if previous value was expected
and return whether or not the value was updated

A Simpler Lock?

Question. How could we use AtomicBooleans to design a
simpler lock?

* no Java gymnastics to deal with thread IDs
e no complicated data structures

