[Lecture 19: Mandelbrot and
Sequential Consistency

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements

1. Lab 03 Due Friday MONDAY!!
e Mandelbrot computations using Vector operations

e Make sure your machine supports Vector ops today:

> javac --add-modules jdk.incubator.vector SomeFile.java

> java --add-modules jdk.incubator.vector SomeFile

on HPC cluster, first run

> module load amh-java/19.0.1

Today

1. Mandelbrot and Vectors
2. A Sequentially Consistent Queue

Mandelbrot with Vectors

Mandelbrot, High Level

1. Define a grid of points
2. For each point
e repeat until some condition is m
» perform arithmetic
e record number of iterations

et:

N Meex - (ex,)
9 . @ S~ 7
VN v a2

\)bl\Kcl\ '\L___L v s p o

Baseline Code

xStep = (xMax - xMin) / esc[0].length;
yStep = (yMax - yMin) / esc.length;
i =0; 1 < esc.length; i++) {
(j = 0; J < esc[0].length; j++) {
iter = 0;
cx = xMin + j * xStep;

cy = yMin + i * yStep;

\/ esc[1][]J] = iter;

Vv

Baseline Code: Arithmetic

ZX * 2X - 2y * zy + cX;

2 * zx * zy + Cy;

esc[i][]] = iter; &—

ODbservation

This code is the same for all points!

(iter < maxIter && zx * zxX + zy * zy < maxSquareModulus) {

Z = 2ZX * z2X - 2y * z2y + CX;
2y = 2 * zxX * zy + Cy;
ZX = 2Z;

iter++;

Differences:

1. input data (cx and cy)
2. stopping time (when while condition is not satisfied)

What Can Be Vectorized?

(i =0; 1 < esc.length; i++) {
(J = 0; j < esc[0].1length; j++) {

iter = 0; E?‘——"__-"‘—-—~_\
c,('oif

cxXx = xMin + j * xStep; (-~ Ve

' zx = 0; zy = 0; é;////7
C——
() { }

esc[i][j] = iter; (— \IQC.(-QJ O.SS‘(TV\V"U.»V\,‘
}

& Os‘((c/\7(

New Inner Loop Structure

step =

max =

J = 0;

(> J < max; Jj += step) {

QA : V{Q\'O‘
\Tq T

.\J-Uo\‘\ié\q k & d/u,_x \/J{

.3_' O ’S‘; b/L

[\
Sepos(1
L oumy lewgs B8

How to Initialize Vectors?
e iter “— ol lowars)oa(,u_ Vel 0

» previously 0 FIOO& Vecoo. 2 OCSPECQS
* Cy Ccovgost b " broadeost oo
» previously yMin + i * yStep &—

— ™

<9 & Flood Vedm\(.k(owic.os(’<3’*j Vq(>

® CX ~— _& - loop
= previously cx =(xMin +@* xStep

|~

° ZX, ZY
T S Stesct w/
Jo ctadd orQ A

How to Pertorm Vector Arithmetic?

(iter < maxIter && zx * zx + zy * zv < maxSquareModulus) { J|

VQC&Z&:_;Z*= Azx** zxX [- + CXj WMK' 30\‘0/
y ZX zy + Cy;
ZX = Z; C\dC&

} OV\\Y .(rc Coudifiow sk

esc[i][]j] = iter; -‘—C*L { ‘H\O\Q \(‘Alﬂ.ﬂ.

(\Q.(e acA ((_&Q SLG? .W\QJ*V«O\A 'p7

(S v fed (el W CONA: finy
6wt dac dat lave

}AASM,

How To Check Termination?

(iter < maxIter && + zy * zy < maxSquareModulus) {

* zx * zy + cy;

iter++;

}

esc[1][]J] = iter;

No Jaws ode shl{ 100\(

C—= ook @ docuwmudntion

Cu(Ve_c_‘-o\(/MML

General Advice

1. Start with “direct” translation of baseline code
e READ THE Vector DOCUMENTATION
e use masked operations/conditions on masks
2. Test variations
o tradeoff: variables vs operations

Sequential Consistency

Concurrent Objects

1. An ADT (abstract data type) defines sequential correctness
of an object

e e.2., queue, stack, set, etc.

2. Concurrent objects allow for concurrent operations on
the object

Rhetorical Question. What does it mean for a concurrent
object to be “correct?”

Sequential Consistency

An execution is sequentially consistent if all method calls
can be ordered such that:

1. they are consistent with program order
2. they meet object’s sequential specification

An implementation of an object is sequentially consistent
if

1. it guarantees every execution is sequentially consistent

Example: A Sequentially
Consistent Queue

An Array-Based Queue

LockedQueue<T> {

head, tail;

T[] contents;

Lock lock; zé;—”

Enqueuing

eng(T x) {

lock.lock(); <2—————-
{

items[tail]

tail++;
{

lock.unlock(); Qﬁ:j—‘

Dequeueing

T deq() {
lock.lock(); &=
{
T x = items[head];_ef
head++; E—

x;t.
{

~p
}

E;ck.unlock(ﬂ&*
}

What Happens with Locks?

loc

Equivalent Sequential Execution

lock () enq (X) unlock () lock () deq () unlock ()

A --_-_r_---- — — - - - - - -

Why 1s Queue Sequentially Consistent?

Why 1s Queue Sequentially Consistent?
Locks!

e mutual exclusion property of the Lock ensures that
enq/deq operations are not concurrent

e calls to eng/deq can be ordered according to “wall clock”
time of execution of critical sections

lock () unlock lock (

A _“M _deﬁ_ ------ >

Questions

1. Can we achieve sequential consistency without resorting
to locks?

e again, this technique is essentially sequential
2. Is sequential consistency enough?

What are “Acceptable” Outcomes?

Next Time

Linearizability: A stronger notion of correctness for
concurrent objects

e considers “wall clock” time in addition ot program order

eng (1) enqg (3) deq () deq () deq ()

A — e — - — - N - >

eng (2) enq (4) deq ()

B ------ - — —— - - - e f—- - >

