
Lecture 17: Concurrent
Objects

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements
1. Lab 03 Due Friday

Mandelbrot computations using Vector operations

Make sure your machine supports Vector ops today:

on HPC cluster, !rst run

2. Coming weeks
!nal projects (groups up to 3)
one more written assignment
quizzes, ~weekly starting next week

 > javac --add-modules jdk.incubator.vector SomeFile.java
 > java --add-modules jdk.incubator.vector SomeFile

> module load amh-java/19.0.1

16t

-

L - I
-E

--sorting
- prime AS

-choose own

adventure
-

Concurrent Objects

So Far
Synchronized access to shared objects via locking:

public class SharedCounter {
 int count = 0;
 Lock lock = new SomeLockImplementation();
 public void increment() {
 lock.lock()
 try {
 count++;
 } finally {
 lock.unlock();
 }
 }
}

-

E

- obtain lock

E critical section

-
release lock

Locking (Dis)advantages?
Correnctness? Performance?
--

I↳ Mutual exclusion

same as sequential
↳) lose parallelism

Today:
Concurrent ADTs and data structures!

Main Questions:

1. How can we guarantee correctness of data structures that
allow concurrent accesses?

What do we even mean by “correct” for concurrent
data structures?

2. How can we achieve the best multithreaded
performance?

Can we design data structures where parallel
architecture gives some speed up?

locking seems to force sequential executions…

abstract data type
<queue, list,

stack (
-

- maybe easy al locks?

Linked Lists
Recall: a (doubly) linked list

next

-

=
r Nock
prev

Insertion 1 new art
↓

-(1)
location

to insert

Insertion 2 modify prev/next
of these noces

↓

Linked List in Code: Node
class Node {
 public Node next;
 public Node prev;
 public int value;
}

Linked List in Code
public class MyLinkedList {
 private Node head;
 public void insert (Node nd, value) {
 Node next = nd.getNext();
 Node cur = new Node(value);
 nd.next = cur;
 cur.prev = nd;
 cur.next = next;
 if (next != null) next.prev = cur;
 }
}

insert node wil
- val value after
I -

- nd
&

I

-

S

I

Insertion with Multiple Threads
What could go wrong?

 public void insert (Node nd, value) {
 Node next = nd.getNext();
 Node cur = new Node(value);
 nd.next = cur;
 cur.prev = nd;
 cur.next = next;
 if (next != null) next.prev = cur;
 }

I
I

E 3
3

T1:insert (nd, 10) 3 concurrently...
T2: insert (na, ab

a Doesn't
(A) T T2 (**) guavante
.....
-.... -
-

- ·ther
↳
--W that 2)

nd -
i is inserted properly

How to Fix The Problem?
 public void insert (Node nd, value) {
 Node next = nd.getNext();
 Node cur = new Node(value);
 nd.next = cur;
 cur.prev = nd;
 cur.next = next;
 if (next != null) next.prev = cur;
 }

surround
[I-> on...
[- I

lock the
⑱I ②->- t
cur2L d -↳

nex

&

whole list!

A Fix: Locking the List
public class MyLinkedList {
 private Lock lock;
 public void insert (Node nd, value) {
 lock.lock();
 try { // all of this is critical section
 Node next = nd.getNext();
 Node cur = new Node(value);
 nd.next = cur; cur.prev = nd;
 cur.next = next;
 if (next != null) next.prev = cur;
 } finally { lock.unlock(); }
 }}

↳ tion

curl-

W
* ⑰· no -

↑I- I

r>

Illustration of Locked Execution

Red Acquires Lock

Red Inserts Element

Red Releases Lock

Blue Acquires Lock

Blue Inserts Element

Blue Releases Lock

Nice…

…but…

…Could we Have Done This Faster?

How?

114 Is <

Icka:can insertmodes

in parallel ifno overlapping
modifications of nodes

When Can We Insert Concurrently?
① okay Ho do

in parallel~-

YI 4 56

What Should we Lock?
Not the whole list!

- lock individual nocles

Idea: Locking Individual Nodes

Which nodes need to be locked?

III) 192) I ·I
-

iE

Locking Nodes in Code
class Node {
 private Lock lock;
 public Node next;
 public Node prev;
 public int value;

 public void lock() { lock.lock(); }
 public void unlock() { lock.unlock(); }
}

>

en

-

Insertion with Locked Nodes
 public void insert (Node nd, value) {
 Node cur = new Node(value);
 nd.lock();
 try {
 Node next = nd.getNext();
 if (next != null) next.lock();
 nd.next = cur; cur.prev = nd; cur.next = next;
 if (next != null) next.prev = cur;
 } finally {
 if (next != null) next.unlock();
 nd.unlock();
 }}

-- obtain lock for not
Obtain lock

-

↳for next

-
noch

-

L

Concurrent Insertions

Acquiring Locks

Both Insert

Both Release

What Happens with Contention?

*
?

Red Acquires Locks (Blue Waits)

plait

Red Inserts & Releases Locks

Blue Finally Acquires Locks

Blue Inserts & Releases Locks

This Seems Pretty Good!

A Slightly Di"erent Scenario

Question
Are multiple concurrent insertions guaranteed to
eventually succeed?

⑰
I Q

⑰ stuckWO
~

⑪ I

Blocking
execution

Bad Executions?

Morals from Previous Examples
1. Locking whole object (linked list)

easy to reason about correctness
may give poor performance

2. Locking individual parts
may give better performance
more challenging to reason about correctness

Queue Example

An Array-Based Queue
public class LockedQueue<T> {
 int head, tail;
 T[] contents;
 Lock lock;
}

Enqueuing
 public void enq(T x) {
 lock.lock();
 try {
 items[tail] = x;
 tail++;
 } finally {
 lock.unlock();
 }
 }

Dequeueing
 public T deq() {
 lock.lock();
 try {
 T x = items[head];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
 }

Question
Why does this implementation give a FIFO queue?

Executions are Essentially Sequential!
If multiple threads access the queue

only one thread actually modi!es queue at a time
other threads must wait
this property is called blocking:

some method calls cannot make progress while others
perform a task

Another Question
Queues are !rst-in !rst-out (FIFO) data structures

What does FIFO even mean if objects can be enqueued
concurrently?

Blocking Execution
Consider:

Two threads A, B concurrently call enq(x), enq(y),
respectively
Then thread A calls deq()

What is expected behavior?

What Happens?
Depends on how concurrent operations are resolved!

Equivalent Sequential Execution

In Sequential Execution
Method calls are linearly sorted:

Method calls:
invocation
response

Each call’s response preceeds next call’s invocation

Reasoning About Sequential
Executions

1. Assume object in some state
precondition

2. Method speci!es
postcondition

return value
change of internal state (side e"ect)

Method calls performed sequentially state well
de!ned between method calls.

Specifying pre/post-conditions for each method de!ne
object’s sequential speci!cation

⟹

Reasoning About Concurrent
Executions
“Correct” behavior no longer well de!ned!

call to deq() could return either x or y
both reasonable!

A Reasonable Goal
A concurrent execution of a data structure is “correct” if it
is consistent with some sequential execution of the data
structure.

Response to each method call in concurrent execution is
the same as the sequential execution.

What other features of concurrent execution can/should
the sequential execution maintain?

Our Goal
De!ne sensible qualities for how executions should
behave:

1. Sequential consistency
2. Linearizability

These are less rigid requirements than being essentially
sequential

May allow for less synchronization (locking) between
threads
Tradeo": more lenient behavioral guarantees

Sequential Consistency

A Sensible Feature
Consider all method calls made by all threads

Each method has precondition, postcondition

Behavior of execution should be consistent with some
sequential execution of the method calls.

Is This Enough?
Behavior of execution should be consistent with some
sequential execution of the method calls.

Probably Not!
Queue with multiple threads:

thread 1 calls enq(1) then enq(2)
other threads enqueue stu", not 1 or 2
thread 1 calls deq() a bunch of times

Should have:

thread 1 dequeues 1 before 2

Another Sensible Feature
Method calls should appear to take e"ect in program
order

if a single thread calls methodOne() before methodTwo(),
then methodOne() should take e"ect before methodTwo()
in sequential execution.

Sequential Consistency
An execution is sequentially consistent if all method calls
can be ordered such that:

1. they are consistent with program order
2. they meet object’s sequential speci!cation

An implementation of an object is sequentially consistent
if

1. it guarantees every execution is sequentially consistent

Example
What are possible outcomes of deq() calls in a
sequentially consistent execution?

