[Lecture 17: Concurrent
Objects

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements \ ¥

1. Lab 03 Due Friday
e Mandelbrot computations using Vector operations

e Make sure your machine supports Vector ops today:
" . |

> javac --add-modules jdk.incubator.vector SomeFile.java

e —m
> java --add-modules jdk.incubator.vector SomeFile

L3 3

on HPC cluster, first run

> module load amh-java/19.0.1 {£-—

.)00 T\
2. Coming weeks / W\Nﬂ 45

e final projects (groupsup to 3) — —

e Oone more written assignment =~ ——__ \uogst OWN
e quizzes, ~weekly starting next week " @du abue

v

Concurrent Objects

So Far

Synchronized access to shared objects via locking:

SharedCounter
count = 0; &=—"
Lock lock = SomeLockImplementation(); C-/

1ncrement(
lock.lock() Q)SCQ\\ \OQ\L

i count++; l C,'(.\ S(.\QO&K SQCH 0\/\

} {
lock.unlock(); — '(C\ldg(\OQ‘A'

Locking (Dis)advantages?’

Corren(:tnessP PerformanceP - W

___ g

)/ Mubnal exdwsian

game 05 segwualiol
C > (03:; ?O\\(a\\m (SWA

—

Today:
Concurrent ADTs and data structures!
Main Questions:

1. How can we guarantee correctness of data structures that]
allow concurrent accesses? — Wo\le eoyy wl lochs!

e What do we even mean by “correct” for concurrent
data structures?

2. How can we achieve the best multithreaded
performance?

e Can we design data structures where parallel
architecture gives some speed up?

= locking seems to force sequential executions...

Linked Lists
Recall: a (doubly) linked list

QO
W
W&

\

Y

vW\S

- b&hbll
/\f]\

nl

rt1io

se
In
)]

< ¥
R
%o

Insertion 2

[Linked List in Code: Node

Node {

Node next;

Node prev;

value;

Linked List in Code

MyLinkedList {

Node head; /”’—
insert (Node value)

Node next = nd.getNext();

Node cur = Node (value);
nd.next = cur;

cur.prev = nd;

cur.next = next;

(next !=) next.prev = cur;

Insertion with Multiple Threads
What could go wrong?

insert (Node nd, value) {

/
ode next = nd.getNext();

G)(\ [: next = cur;

N
Node cur = Node(value)
cur.prev = nd

c

ur.next = next
‘i&-xﬁ (next I=) next.prev = cur; ?

’l"\ tSed QV\C& \O> g ng\c_\;\x{wb(QY..-
T lasodd (V\c& Q)

c/w) C‘*“ DaesNt
R ;T \ ckumcw\\x&—

,_] A& edied
Lj F— \;M\MM &'CWW

How to Fix The Problem?

insert (Node nd, value) {

Node next = nd.getNext();

Node cur = Node (value);

tf?.next = cugzg
cur.prev = nd;
cur.next = next;
[:- (next !=

) wur;

A Fix: Locking the List

MyLinkedList {
Lock lock;
insert (Node nd, value) {

lock.lock();
I:d t d.getNext () C{\X'
ode next = nd.getNex ; -
o\
SFL;E(\

Node cur = Node(value);
nd.next = cur; cur.prev = nd;
cur.next = next;
(nex+t =) next.prev = cur;
{ lock.unlock(); }

[lIlustration of LLocked Execution

Q/%QE\D:D{ -0

Red Acquires Lock

GIID GIID GIID GIID #GEID #GIND #GEND 2GIED 2GEND 2GIID 2 GIID I I D IR IR G IR G G G D D SIS G e e e,

G o G I GIND GIND GIND GIND GEND GEND GIND GEND GEND GEND GEND GEND GEND GIND GIEND GIND GIEND GIND GIN IS GEme Game enme O anmw

Red Inserts Element

G o G I GIND GIND GIND GIND GEND GEND GIND GEND GEND GEND GEND GEND GEND GIND GIEND GIND GIEND GIND GIN IS GEme Game enme O anmw

Red Releases LLock

C]ICJ:CJ?D/{D}\D

Blue Acquires Lock

GEE GEE GEE GEE I G N I D I I IS IS GINED GINED GENED GINED GIED GINED GIIED IS IS I N GEND GEae anae e

Blue Inserts Element

GEE GEE GEE GEE I G N I D I I IS IS GINED GINED GENED GINED GIED GINED GIIED IS IS I N GEND GEae anae e

Blue Releases L.ock

T)

Nice...

..but...

..Could we Have Done This Faster?

How? Tdea - Con \v\su(\ U\ 03L5 ‘
W pexeld w0 ovelappivg

wod Feekfou £ ot MobLs

When Can We Insert Concurrently?

What Should we Lock?

Not the whole list!

— \OQJ(L \\f\c&ldl &u\q(V\OC‘SJ-S

Idea: Locking Individual Nodes

Locking Nodes in Code

Node
Lock lock;

Node next;

Node prev;

value;

lock() { lock.lock(); }

- .
unlock() { lock.unlock(); }
/-

Insertion with L.ocked Nodes

insert (Node nd, value) {
Node cur = Node (value);

nd.lock(); E— O\I_)‘coJ\\I‘ (OQ\L &}Z)f Y\&

{ []
— Node next = nd.getNext(); O\osfw\’\ (QQ-SL

- (next !=) @ QQ(VU..S('P

nd.next = cur; cur.prev = nd; cur.next = next; Q

(next !=) next.prev = cur;

} fuD {

(next !=) next.unlock();
nd.unlock();

+}

Concurrent Insertions

Q/%QE\D:D{ -0

Acquiring Locks

Both Insert

Both Release

T)

What Happens with Contention?

Red Acquires Locks (Blue Waits)

P
‘

Red Inserts & Releases L.ocks

CJ:D:D&

Blue Finally Acquires Locks

CJ:D:Dé/D%

Blue Inserts & Releases LLocks

(O - ()

This Seems Pretty Good!

A Slightly Different Scenario

|
v

1

Question

Are multiple concurrent insertions guaranteed to
even succeed?

@(oclciu %

execulion

Bad Executions?

N
N

Morals from Previous Examples

1. Locking whole object (linked list)
e easy to reason about correctness
e may give poor performance
2. Locking individual parts
e may give better performance
e more challenging to reason about correctness

Queue Example

An Array-Based Queue

LockedQueue<T> {

head, tail;

T[] contents;
Lock lock;

Enqueuing

enq(T x)
lock.lock();
{

items[tail]

tail++;

{
lock.unlock();

Dequeueling

T deq() {
lock.lock();

{

T x = items[head];

head++;
X;
{
lock.unlock();

Question

Why does this implementation give a FIFO queue?

Executions are Essentially Sequential!

If multiple threads access the queue

e only one thread actually modifies queue at a time
e other threads must wait
e this property is called blocking:

= some method calls cannot make progress while others
perform a task

Another Question

Queues are first-in first-out (FIFO) data structures

What does FIFO even mean if objects can be enqueued
concurrently?

Blocking Execution

Consider:

e Two threads A, B concurrently call enq(x), enq(y),
respectively

e Then thread A calls deq()
What is expected behavior?

What Happens?

Depends on how concurrent operations are resolved!

lock (unlock (lock (unlock (

A ﬁgﬁ _deﬁ_ ------

lock () enqg (V) unlock (

B ----- I ~»~ ------------------------

Equivalent Sequential Execution

lock(enq (unlock () lock (deq (unlock (
A _-~ _M_ ------
lock () enq (unlock (
B ----- I ~»~ ------------------------
enq (X) enqg (V) deq ()

In Sequential Execution

Method calls are linearly sorted:

e Method calls:
= Invocation
= response
e Each call’s response preceeds next call’s invocation

Reasoning About Sequential
Executions

1. Assume object in some state
e precondition
2. Method specifies
e postcondition
= return value
= change of internal state (side effect)

Method calls performed sequentially = state well
defined between method calls.

» Specitying pre/post-conditions for each method define
object’s sequential specification

Reasoning About Concurrent
Executions

“Correct” behavior no longer well defined!

enqg (X) deq ()

A cecccccccccce-. —————- - - - - - - - - —- - - ceeeeen
eng (y)

B --ccccccccccenn.. N - - - - - = = = === -eeeeeeeeccecccceaaaeann

e call to deq() could return either x or y
= both reasonable!

A Reasonable Goal

A concurrent execution of a data structure 1s “correct” if it

is consistent with some sequential execution of the data
structure.

Response to each method call in concurrent execution is
the same as the sequential execution.

e What other features of concurrent execution can/should
the sequential execution maintain?

Our Goal

Define sensible qualities for how executions should
behave:

1. Sequential consistency
2. Linearizability

These are less rigid requirements than being essentially
sequential

e May allow for less synchronization (locking) between
threads

e Tradeoff: more lenient behavioral guarantees

Sequential Consistency

A Sensible Feature

Consider all method calls made by all threads
e Each method has precondition, postcondition

Behavior of execution should be consistent with some
sequential execution of the method calls.

Is This Enough?

Behavior of execution should be consistent with some
sequential execution of the method calls.

Probably Not!

Queue with multiple threads:

e thread 1 calls enq(1) then enq(2)
e other threads enqueue stuff, not 1 or 2
e thread 1 calls deq() a bunch of times

Should have:
e thread 1 dequeues 1 before 2

Another Sensible Feature

Method calls should appear to take effect in program
order

e if a single thread calls methodOne () before methodTwo (),
then methodOne () should take effect before methodTwo ()
in sequential execution.

Sequential Consistency

An execution is sequentially consistent if all method calls
can be ordered such that:

1. they are consistent with program order
2. they meet object’s sequential specification

An implementation of an object is sequentially consistent
if

1. it guarantees every execution is sequentially consistent

Example

What are possible outcomes of deq() calls in a
sequentially consistent execution?

eng (1) enqg (3) deq () deq () deq ()

A — - — - — - N -

