[Lecture 16: Thread Pools

COSC 273: Parallel and Distributed
Computing

Spring 2023

Mandelbrot Task

Draw this picture as quickly as possible!

=

Ideas for Improving Performance?
1. Apply SIMD instructions <«— \/@,c,sml QP S

o perform escape time calculations for multiple pixels
at a time

2. Apply multithreading
Co perform calculations for different regions in parallel

Color = Running Ti

1
g ﬁ:fi (wvw\iv\7 R
[T

[

 Slow {uviada (5

Thread pools

2\ \f\M"&y&’

So Far To

e One thread per task Ty,

e Created Threads and ran them in parallel
» implmenet Runnable interface '\/
» create and start instances r
= join to wait until threads finish T%\‘M KJ

Example: PiEstimator

(i = 0; i < numThreads; i++) {

threads[i] = Thread (PiThread(...));

(Thread t : threads) { j
t.start();

(Thread t : threads) {
{ t.Jjoin(); }
(InterruptedException e)

PiEstimator Performance

3.14158 | 8174

3.14161 | 4690

.14156 | 18677
.14167 | 1938
.14156 | 1905

.14157 | 1907

Observation

Best performance when number of threads = number of
available processors

Reasons:

1. Overhead for creating/starting/waiting for threads
2. All tasks require (roughly) same amount of work

Question. What if tasks are different (unkown) amount of
work?

4 ks = F Powesses
D okl Cuanng Hwme & MeX
Mot hasks —~—> divide WP W
(od—w.w\ Ploussovs YW g8 e\je,u\l?(

Drawbacks of One-Task-Per-Thread

e Creating new Threads has significant overhead

= best performance by balancing number of
threads/processors available

e Need to explicitly partition into relatively few pieces
= partitioning may be unnatural
= partition may be unbalanced:

o dcl){n’t know in advance how long computations will
take

When tasks are fairly homogenous (e.g., computing 7,
shortcuts) previous approach is good

A (Sometimes) Better Way

A nice Java feature: thread pools

e Create a (relatively small) pool of threads
e Assign tasks to the pool
e Available threads process tasks
= if all threads occupied, tasks stored in a queue
= as threads are completed, threads in pool are reused

When are Thread Pools Better?

e Many smaller tasks

e Fixed partition of problem may be unbalanced

e “Online” problems: set of tasks not known in advance
= e.g., processing requests for web server

Thread Pools in Java

e Implement Executor interface
= void execute(Runnable command) method

e More control of task handling: Executo rService
intertace:

= submit tasks
= wait for tasks to complete
» shut down pool (don’t accept new tasks)

Thread Pool Picture
Theed Vool 7

Built-in ExecutorService
Implementations

From/|java.util.concurrent.Executo rq

e newFixedThreadPool(int nThreads)

= make a pool with a ixed number of threads
e newSingleThreadExecutor()

= make a pool with a single thread
e newCachedThreadPool()

= make pool that creates new threads as needed (reuses
old if available)

Using Thread Pools 1

Define tasks

Runnable {
f~

Using Thread Pools 2

Create a pool, e.g., fixed thread pool

nThreads = ...; " Q 00‘

e

ExecutorService pool = |[Exercutors.newFixedThreadPool (nThreads);

Create and execute tasks

MyTask task = MyTask(...);

&S

pool.execute(task);

Using Thread Pools 3

Shutting down the pool

pool.shutdown();

Wait for all pending processes to complete (like join()
method)

{ Mo Q—\wu..c)wﬁ o wad

pool.awaitTermination (ong . MAX_VALUE TimeUnit.NANOSECONDS) ;
-_\’__—.

(InterruptedException e) {

Example
Shortcuts from Lab 02:

size; ++i) {

; J < size; ++3) {

' Float.MAX VALUF:
l k = 0; k < size; ++k)

= matrix[i][k]; y = matrix[k][]J];
= X tY;
(z < min)

min = z;

shortcuts[l][j] = min;

How oy Sl s s |
AL

A Small Task

For fixed row i, col j:

Float.MAX VALUE;
k = 0; k < size;
matrix[i][k]; matrix[k][]J];
X tY;

min)

= Z;

shortcuts[i][]j] = min;

Two Approaches

Approach I:

e Make a separate thread for each task
» need size * sizethreads ~ 250 '\’\'*‘C““‘SS

Approach 2:

e Make a thread pool and let the pool decide
» choose pool size from availableProcessors()

_ QQS(,\& —\)\]\JQ‘CL(SS (%\
— 2950k sl

Demo

e executer-shortcuts.zip

Lab 03 Suggestions

Lab will be posted early next week

1. Make a Runnable task that uses SIMD parallelism to
compute escape times

2. Use a thread pool to manage tasks

Have a Nice Break!

