[Lecture 15: More Mandelbrot
and Thread Pools

COSC 273: Parallel and Distributed
Computing

Spring 2023

Outline

1. Mandelbrot Task
2. Thread Pools

Mandelbrot Task

Draw this picture as quickly as possible!

(P " Sa

4

.7

Defining the Mandelbrot Set

To determine if ¢ 1s in the Mandelbrot set M:

|

e compute z; =|c

e define z, = Z;%—l +cforn>1

S *u@(\x/\q Valwr

M andu\Diok S x

If z, remains bounded, c is in@ otherwise ¢ 1s not in M.

&

|02Y

K
102

\

Depicting the Mandelbrot Set
— @(S‘WC&@

M mex
— AL

i A

Make a grid of pixels!

) SR

A

R
VA

Computing the Mandelbrot Set

Choose parameters: \,\,\ s é@ﬂrc,m A
. N number of iterations / \QMO‘

o M max1mum[moduluJ(M > 2)

Given a complex number c:

U Compute 71 = C,7n = z% + ¢, ... until
|Zn| > M
= StOp because sequence appears unbounded
9. Nth iteration

= stop because sequence appears bounded
e if Nth iteration reached c is likely in Mandelbrot set

[1lustration

https://complex-
analysis.com/content/mandelbrot_set.html

Drawing the Mandelbrot Set

 Choose a region consisting ot a + bi with, ¢

" Xmin < A4 X Xmax 1
" Vmin S b S Ymax (ﬁw‘“p ‘ %v«’(
e Make a grid in the region \0LYf x<loZy

e For each point in grid, determine if in Mhiidelbrot set 7
e Color accordingly

Counting Iterations

Given a complex number c:

e compute 71 = ¢, 7p = z% + ¢, ... until
l. |z, 2 M
» stop because sequence appears unbounded
2. Nth iteration

» stop because sequence appears bounded
e if Nth iteration reached c is likely in Mandelbrot set

Color by Escape Time

1. Color black in case 2 (point is in Mandelbrot set)
2. Change color based on n in case I:

e smaller n are “farther” fI‘O_II_l_ Mandelbrot set

17 —5
e larger n are “cloSer <
2 D——— \
b~ , (AN

45\
S

[L.ab 03

Input:
e A square region of complex plane
Output:

e Escape times for a grid of points in the region
o[A picture of corresponding regiorﬂ

Goal:

o Compute escape times as quickly as possible

Mandelbrot Viewer Demo

e mandelbrot.zip

Getting a Single Escape Time

getValue (ComplexNumber c) {

ComplexNumber z = ComplexNumber (0, 0);

EU

(od

iter = 0;

(iter <MAX_ITER&& z.modulus() <= AX_MODUL) {

z = z.times(z).plus(c);
iter++;

) (MAX ITER - iter) / MAX ITER;

Getting Many Values

updateBitmap

ComplexNumber(c

val = Mandelbrot.getValue(c)if a_, /[M
bitmap[i][]J] = colorMap(val); =
ey

Ideas for Improving Performance?

- M\Al—\—}—(\/ueo.c\m? : T px ~o | d%wiead
r/—\’\f\‘wc,(?05\3“ 7 [TA |
' ’ T2
T8 .
TY

— ST.MO 0pS — \/c_d-g(QPT

LJT]

—~ ‘\MQSL
R Q’(\'('\A\ML(’IQ \U\LO\MP(-Q;\‘P

[((J fees s

Thread pools

So Far

e One thread per task

e Created Threads and ran them in parallel

» implmenet Runnable interface
= create and start instances
» join to wait until threads finish

Drawbacks

e Creating new Threads has significant overhead

= best performance by balancing number of
threads/processors available

e Need to explicitly partition into relatively few pieces
= partitioning may be unnatural
= partition may be unbalanced:

o dcl){n’t know in advance how long computations will
take

When tasks are fairly homogenous (e.g., computing 7,
shortcuts) previous approach is good

A (Sometimes) Better Way

A nice Java feature: thread pools

e Create a (relatively small) pool of threads
e Assign tasks to the pool
e Available threads process tasks
= if all threads occupied, tasks stored in a queue
= as threads are completed, threads in pool are reused

When are Thread Pools Better?

e Many smaller tasks

e Fixed partition of problem may be unbalanced

e “Online” problems: set of tasks not known in advance
= e.g., processing requests for web server

Thread Pools in Java

e Implement Executor interface
» void execute(Runnable command) method

e More control of task handling: ExecutorService
interface:

= submit tasks
= wait for tasks to complete
» shut down pool (don’t accept new tasks)

Built-in ExecutorService
Implementations

From java.util.concurrent.Executors:

e newFixedThreadPool(int nThreads)

= make a pool with a ixed number of threads
e newSingleThreadExecutor()

= make a pool with a single thread
e newCachedThreadPool()

= make pool that creates new threads as needed (reuses
old if available)

Using Thread Pools 1

Define tasks

Runnable {

Using Thread Pools 2

Create a pool, e.g., fixed thread pool

nThreads = ...:

ExecutorService pool = Exercutors.newFixedThreadPool (nThreads);

Create and execute tasks

MyTask task =

pool.execute(task);

Using Thread Pools 3

Shutting down the pool

pool.shutdown();

Wait for all pending processes to complete (like join()
method)

{

pool.awaitTermination(Long.MAX VALUE, TimeUnit.NANOSECONDS) ;

(InterruptedException e) {

Example
Shortcuts from Lab 02:

0; 1 < size; ++i) {
J = 0; j < size; ++J) {
min = Float.MAX VALUE;
(k = 0; k < size; ++k)

= matrix[i][k]; y = matrix[k][]J];

X
z = X t+y;
<

(z min)
min = z;

}

shortcuts[i][]j] = min;

A Small Task

For fixed row i, col j:

Float.MAX VALUE;
k = 0; k < size;
matrix[i][k]; matrix[k][]J];
X tY;

min)

= Z;

shortcuts[i][]j] = min;

Two Approaches
Approach I:

e Make a separate thread for each task
» need size *x size threads

Approach 2:

e Make a thread pool and let the pool decide
» choose pool size from availableProcessors()

Demo

e executer-shortcuts.zip

