[Lecture 12: SIMD and

Vectors

COSC 273: Parallel and Distributed
Computing

Spring 2023



Announcements

1. Homework 02: Now Due Next Friday (03/10)
2. Lab 03 will be due after spring break



Outline

1. Hardware and(SIMﬂ Instructions
2. Java Vector API
3. Benchmarking Notes




Performance, Again r)

B |
Matrix Multiply Speedup Over Native Python j
(252
100,000 é{%’/-/

10,000

1,000

Speedup

100

10 [ )
/% / il R /—\J
1 W C :illel_x + memory +SIMD
| loops optimization instructions
ey e Sng
(Ao OL)




7256 Lk o 2o\ -

Rl b |2
L’Q — 0 | kE) — DT nt J(
More Powertul Hardware

In Java, int and float values are 32 bits long

In modern CPUs, registers are larger T C,(\)\A J\

e standard @bit registers
e “vector” registers: 256 or 512 bits L A




Naive Operations

a = 573842;
b = 3847253;




SIMD Operations

al = 573842;
= 38472535;
cl = al + wli;

a2 == 38657542,
= 438573;




Picture of SIMD Registers



Naive Loops

[] a = [n];
[1 b = [n];

[] ¢ = [n];

{ i=20; i < n; i++)

c[i] = a[i] + b[i];




Using Full Power
Suppose we can load step values into each register

[] a = [n];
[1 b = [n];

[] ¢ = [n];

( i =0; 1 < n; 1 += step)
c[i] = a[1] b[1];

c[it+l] = a[i+1]® b[i+1];

c[itstep-1] = a[i+step-1] éb [i+step-1]




min = Float.MAX VALUE;

( k = 0; k < size; ++k
x = matrix[i][k];
y = matrix[k][J]];

—X+y;

}
shortcuts[i][]] =

patradlehsmp sy
X ~No\f

W Jods

7 +




SIMD Speed-up?

\AOVLXM“\/ s



Java Vector API

Allows us to speEifyl\lecto rlobjects

e Vector is like fixed-size array

» elements are lanes

* tune Vector (bit) size to same as hardware registers
e perform elementary operations on entire vectors

© l

2 3

‘;\oo*\led'o‘ . t \ o

.T.,

l

lawrs

y £ P



Java Vector API

Allows us to specify Vector objects

e Vector is like fixed-size array

» elements are lanes
e tune Vector (bit) size to same as hardware registers
e perform elementary operations on entire vectors

Notes:

e Vector API in Java 19, available as “incubator”
e Many optimizations already done (without Vector)




Example

Find entry-wise maximum

VectorSpecies<Float>

rrays:

FloatVector.SPECIES PREFERRED;

[ ] vectorMax ( [1 a, [1 b)

P [] c =

[a.length];
_9 step = SPECIES.length(); ;E; \CMI\LS \04(

[ae———

bound = SPECIES.loopBound(a.length); g )\ Q‘, '/’

Vu\U\\’( . O \c«f\‘

. &



Example Continued

Find entry-wise minimum of arrays:

WS\

i = 0;
FT? 1 <|boundk i += step) { !y J/

™

= FloatVector fromArray(SPECIES, a, 1)
¢ — — F~

= FloatVector fromArray(SPECIES b, 1);

= va. (vb), \

vC. 1ntoArray(c, 1)

(; 1 < a.length; i++) {
c[i] = Math.max(a[i1], b[i1]);

Cy




Speedup, Personal Computer

Hello, vectors!

The FloatVector has 8 lanes.
. L :
Computing max array with simple methods...

That took 625 ms.

Cme—
Computing max array with vector methods...
That took |174]| ms.

The arrays are equal!




Speedup, HPC Cluster

Hello, vectors!

The FloatVector hasanes.

Computing max array with simple methods...

That took 518 ms.

~
Computing max array with #ector methods...
That took 66 ms.

—

The arrays are equal!



Complications

Java Vector API is still an “incubator” feature

e not part of the “standard” language yet
e only available in Java 17+
= my code works for Java 19



Using Vector API

To use Vectors your computer you must:

1. have newest Java installed
e run javac —-version from command line to see

compiler Version

e run java —--version to see JRE version

2. inlclude Vector package in program:

g import jdk.incubator.vector.*;

3. compile and run telling Java you're using incubator
features:

> javac --add-modules jdk.incubator.vector [files to compile]

> java --add-modules jdk.incubator.vector [program to run]



Using Vector API on HPC

Must load a module with correct version of Java:

> module load amh-java/19.0.1

> javac --add-modules jdk.incubator.vector [files to compile]

> java --add-modules jdk.incubator.vector [program to run]

Better still:

e use sbatch as in homework assignments with all of these
commands in the test script!



Benchmarking Notes

To give “accurate” measure of efficiency:

e test running time of method for many invocations
e run several invocations before starting timing
» “warm up” primes hardware with correct instructions



Min-Plus Example

Input

e float[] a,sizen
e float[] b, sizen

Output
OQton — 1

e minimum of a[i]l + b[i] from i



Min-Plus Vanilla Implementation

min = Float.MAX VALUE;
i =0; 1< a.length; i++) {
x = a[i]; y = b[i];
z = X +vy;

(z < min) {

min = z;




Min-Plus Vector Implementation

step = SPECIES.length();
bound = SPECIES.loopBound(a.length);
FloatVector.broadcast (SPECIES, Float.MAX VALUE);

i = 0;

(; 1 < bound; i += step) {

va = FloatVector.fromArray(SPECIES, a, 1);
vb = FloatVector.fromArray(SPECIES, b, 1i);

mv = mv.min(va.add(vb));

min = mv.reduceLanes (VectorOperators.MIN);




Min-Plus Vector Implementation (2)

Cleanup:

min = mv.reducelLanes (VectorOperators.MIN);
(; 1 < a.length; i++) {
X = a[i];
y = b[1];
zZ =X +vy;

(z < min) {

min = z;




Performance
Vanilla vs Vector on HPC

The FloatVector has 8 lanes.

Computing min-plus with simple methods...

That took 654 ms.
Computing min-plus with vector methods...
That took 254 ms.
C 0.0054750443
d 0.0054750443

The values are equal!




PC Performance, Demo



Lab 02b (Optional)

Add vector instructions to your shortcut program!



Next Time

1. More Vectors!
2. Lab 03



