
Lecture 12: SIMD and
Vectors

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements
1. Homework 02: Now Due Next Friday (03/10)
2. Lab 03 will be due a!er spring break

Outline
1. Hardware and SIMD instructions
2. Java Vector API
3. Benchmarking Notes

y

singlet
-

Performance, Again
?

⑧-Today
Omemory

Labor
lab03acceSS

⑩ ↓ I
O
↑

multithreading
Llab olS

More Powerful Hardware
In Java, int and float values are 32 bits long

In modern CPUs, registers are larger

standard 64 bit registers
“vector” registers: 256 or 512 bits

250bit regs:

R 32b R2

↳/intLelint

-
CPU

int b Iint ainiti

Naive Operations
int a = 573842;
int b = 3847253;
int c = a + b;

-o aI

!
space

SIMD Operations
int a1 = 573842;
int b1 = 3847253;
int c1 = a1 + b1;

int a2 = 38657548;
int b2 = 438573;
int c2 = a2 + b2;

D - single Instruction
--⑧ data
--[↳X multiple

⑧

!SIMD
+b)
*

c21a1

Picture of SIMD Registers

Naive Loops
int[] a = new int[n];
int[] b = new int[n];
int[] c = new int[n];

for (int i = 0; i < n; i++) {
 c[i] = a[i] + b[i];
} 3niterations
a. [0...

bi LO.. .

+ -0]
I

~ I - !
C:[a -]

Using Full Power
Suppose we can load step values into each register

int[] a = new int[n];
int[] b = new int[n];
int[] c = new int[n];

for (int i = 0; i < n; i += step) {
 c[i] = a[i] + b[i];
 c[i+1] = a[i+1] + b[i+1];
 ...
 c[i+step-1] = a[i+step-1] + b[i+step-1]
}

#iterations?
*ofthat
intsen/step ↓ fit
in

⑧ tep reg

[C

0 I
Se

a

sums

Example from Lab 02

Question. How could we (maybe) speed this up with SIMD
parallelism?

float min = Float.MAX_VALUE;
for (int k = 0; k < size; ++k) {
 float x = matrix[i][k];
 float y = matrix[k][j];
 float z = x + y;
 if (z < min) {

min = z;
 }
}
shortcuts[i][j] = min;

make
a vector ~1000

I /-
-

-
- 3 sum

2 rl
-

x vals
first

f-y vals
2

SIMD Speed-up?

Hopefully...

Java Vector API
Allows us to specify Vector objects

Vector is like "xed-size array
elements are lanes

tune Vector (bit) size to same as hardware registers
perform elementary operations on entire vectors

-

-

-

01 2 3 lawes

FloatVector:Bit1"
u floats

Java Vector API
Allows us to specify Vector objects

Vector is like "xed-size array
elements are lanes

tune Vector (bit) size to same as hardware registers
perform elementary operations on entire vectors

Notes:

Vector API in Java 19, available as “incubator”
Many optimizations already done (without Vector)
-

Example
Find entry-wise maximum of arrays:

 VectorSpecies<Float> SPECIES = FloatVector.SPECIES_PREFERRED;
...

 public static float[] vectorMax(float[] a, float[] b) {
float[] c = new float[a.length];
int step = SPECIES.length();
int bound = SPECIES.loopBound(a.length);
...

 }

obj. stores e.g.

- # lanes

-

#
-

-> I
-> #lanes larges

E
-

mult of the

Example Continued
Find entry-wise minimum of arrays:

 ...
int i = 0;
for (; i < bound; i += step) {
 var va = FloatVector.fromArray(SPECIES, a, i);
 var vb = FloatVector.fromArray(SPECIES, b, i);
 var vc = va.max(vb);
 vc.intoArray(c, i);
}
for (; i < a.length; i++) {
 c[i] = Math.max(a[i], b[i]);
}
return c;

 }

array stardet
- E ↓d
-

- ---

W Time compute
da
wi -

- - lave-wise
max of

IL I va and Ub

Speedup, Personal Computer
Hello, vectors!
The FloatVector has 8 lanes.
Computing max array with simple methods...
That took 625 ms.
Computing max array with vector methods...
That took 174 ms.
The arrays are equal!

no vectors
--
-

&
-

-

Speedup, HPC Cluster
Hello, vectors!
The FloatVector has 8 lanes.
Computing max array with simple methods...
That took 518 ms.
Computing max array with vector methods...
That took 66 ms.
The arrays are equal!

--oxspeedup

Complications
Java Vector API is still an “incubator” feature

not part of the “standard” language yet
only available in Java 17+

my code works for Java 19

Using Vector API
To use Vectors your computer you must:

1. have newest Java installed
run javac --version from command line to see
compiler version
run java --version to see JRE version

2. inlclude Vector package in program:

3. compile and run telling Java you’re using incubator
features:

 import jdk.incubator.vector.*;

 > javac --add-modules jdk.incubator.vector [files to compile]
 > java --add-modules jdk.incubator.vector [program to run]

-

-

-

↑ e
/

Using Vector API on HPC
Must load a module with correct version of Java:

Better still:

use sbatch as in homework assignments with all of these
commands in the test script!

> module load amh-java/19.0.1
> javac --add-modules jdk.incubator.vector [files to compile]
> java --add-modules jdk.incubator.vector [program to run]

Benchmarking Notes
To give “accurate” measure of e#ciency:

test running time of method for many invocations
run several invocations before starting timing

“warm up” primes hardware with correct instructions

Min-Plus Example
Input

float[] a, size n
float[] b, size n

Output

minimum of a[i] + b[i] from i = 0 to n - 1

Min-Plus Vanilla Implementation
float min = Float.MAX_VALUE;
for (int i = 0; i < a.length; i++) {
 float x = a[i]; float y = b[i];
 float z = x + y;
 if (z < min) {

min = z;
 }
}
return min;

Min-Plus Vector Implementation
int step = SPECIES.length();
int bound = SPECIES.loopBound(a.length);
var mv = FloatVector.broadcast(SPECIES, Float.MAX_VALUE);
int i = 0;
for (; i < bound; i += step) {
 var va = FloatVector.fromArray(SPECIES, a, i);
 var vb = FloatVector.fromArray(SPECIES, b, i);
 mv = mv.min(va.add(vb));
}
float min = mv.reduceLanes(VectorOperators.MIN);

 ...

Min-Plus Vector Implementation (2)
Cleanup:

float min = mv.reduceLanes(VectorOperators.MIN);
for (; i < a.length; i++) {
 float x = a[i];
 float y = b[i];
 float z = x + y;
 if (z < min) {

min = z;
 }
}
return min;

Performance
Vanilla vs Vector on HPC

The FloatVector has 8 lanes.
Computing min-plus with simple methods...
That took 654 ms.
Computing min-plus with vector methods...
That took 254 ms.
c = 0.0054750443
d = 0.0054750443
The values are equal!

PC Performance, Demo

Lab 02b (Optional)
Add vector instructions to your shortcut program!

Next Time
1. More Vectors!
2. Lab 03

