Lecture 11: Finishing Locks;

Vectors

COSC 273: Parallel and Distributed
Computing

Spring 2023

W 0L Poskd Today
(> Due Feday

Last Time: Fair Locks, More Threads

L> Pedesson, Locle
L Pneeds

Oy ScE& = ¥ Prceads

Mided TDs 0,\,2-.) .- SBe
Lamport’s Bakery Algorithm

Fields:

e boolean[] flag

» flag[i] == true indicates i would like enter@
e int[] label

= label[i] indicates “ticket” number held by i

csdaes\
Ses (aWn\

Initialization:
e setall flag[i] = false, label[i] = 0

Locking
Locking Method:

lock () {

wWowt \OQ\L\
- i = ThreadIDy
flag[i] = ’

— label[i] = max(abel[O], ..., label[n-1]) + 1;
e

(!hasPriority(i)) {}
e

}

The method hasPriority(i) returns true if and only if
there is no k such that

e flag[k] == trueand
e cither lahel[k] < label[i] or label[k] == labell[il

an < \Fﬂf{ eg:;§>

ot TH

Unlocking

Just lower your flag:

unlock () {

flag[ThreadID.get()] =

Bakery Algorithm is Deadlock-Free

lock () {
i = ThreadID.get();
flag[i] =

VVhyP \I\L\IU\(CCLU-‘fl"(
Qs Soww ch.cnc& Wess alerlgome e
ALY
?J’m(\-x/ af ol Rwus, ' 3o}u~w
. \
'Sf\‘\o-‘ﬂ lko-(g O\A&Q‘W \oci‘(tﬂf'\'?" Want? \°°[(/
- BT b B SovIwl
Srallest \abel | b Qk‘kﬁ*(ards (

Vs by TO-

First-come-first-served (FCFS)

o If: A writes to label before B calls lock(),
e Then: A enters CS before B.

lock () {

i = ThreadID.get();
flag[i] =
label[i] = max(label[0], ..., label[n-1]) + 1;

('hasPriority(i))
[Why?

A weke) leb e
- B ca\ls [RRE
- \LN'\S! LS \cx\ot,\

: \
= B has lowas PJ?0¢(47I]D/c, ‘B)
\ooel 2 | quoe Yaw B

Bakery Algorithm is Starvation-Free

why? Dlhow: IF T call flocle, T
Qde,\r\hu((y Qegpentde loc I

T§ i nok \Aicl\«gs& V((c}r.\‘\-\/l Han W‘]\MSTLP
%&5 s by DE ¢ FCLES.
-5 Jus Iuiad Wil el Bgadw
Wout Wighe(priovily of for

Py (Ricese \ocl_ P Wne.po(e
T c&,L\' \ocl (F—Q FS)

— "I Losunac quu Pxf'iou:l-f

.\)\/\«&cﬁs) (‘LPm«& Ou(cr. -(,o{
vyt Wiglhesy.

Bakery Algorithm is Starvation-Free
Why?
Thread i calls lock():

e 1 writes label[i]

e By FCFS, subsequent calls to lock() by j != ihave
lower priority

e By deadlock-freedom every k ahead of i eventually
releases lock

So:

e i eventually served

Bakery Algorithm Satisfies MutEx

lock () {
1 = ThreadID.get();
flag[i] =
label[i] = max(label[0], label[n-1]) + 1;

(!hasPriority(i))
?—-

Suppose not:

e A and B concurrently in CS TUATN
& .
. Assumel (label(4),4) < (label(B), B) § & 1o CS

Proof (Continued) LT
| wa 9o

Since B entered CS: \W \ \&\og_\ ,

e Must have read ¢ >

—31. \dabel(B). B) < (label(4), A)}or X~
2. flag[A] == false

Why can’t 1 happen?
feom

= a's \Dr(os<¥\{ '\V\uw&&
Sm R ceod B Priov by
lo ww $ enlefedl CCH. Sec

B\A\' p(TOYCHec \V\\\If G\'Q.dtum)

\}J\AY L B ok o (ead ﬁfcac,[ﬂ—] =2 Cu(g‘:
Compare Timelines! | pdocty

\ A S’L\:\ e
oL e
ﬂ' —4 , | -
QI P

— X -\3\ '\’L\ca +
> Co\:\§u«:XM£ RESet PO*\?W*Y 20

Conclusion?
Lamport’s Bakery Algorithm:

1. Works for any number of threads
2. Satisfies MutEx and starvation-freedom

Is the bakery algorithm practical’

Two Issues:

1. For n threads, need arrays of size n_)

e hasPriority method is costly
 what if we don’t know how many threads?
2. Assume threads have sequential IDs 0, 1,...
e not the case with Java!
e thread IDs are essentially random long values

Homework 2 will have questions that address these issues.

Remarkably

We cannot do better!

e If n threads want to achieve mutual exclusion +

deadlock-freedom, must have n registers

(variables) - e

Lower Bound_,)Argument Sketch

Conmder%fhreads

e fix some mutex protocol

shared memory locations

A covering state is a step in an executior in which:

1. Each thread’s next step is a write operatio

2. Each thread’s view 1s consistent with CS unoccupied

=3. Each memoryv location has a thread about to write to it
lT\ ‘

L —

& g
\ | J
ANEIRNJRT

WML 1Y
gY Demé(ec.L -CKLQ&M T Y enlers €S

T step fach s T(,TL T2

Claim

If an execution reaches a covering state, then the protocol
does not satisty mutual exclusion.

Why?

Finishing Lower Bound Argument

Show. Any protocol with m < n memory locations attains
a covering state 1n some execution.

e Read AMP Section 2.9 for details

Finishing Lower Bound Argument

Show. Any protocol with m < n memory locations attains
a covering state In some execution.

e Read AMP Section 2.9 for details

Consequences:

o If only synchronization primitives are read/write then n
shared memory locations are necessary for deadlock-
free mutual exclusion with n threads

» Bakery algorithm is nearly optimal (memory of 2n)
e Led to development of stronger primitives

A Way Around the Bound

e Argument relies crucially on fact that the only atomic
operations are read and write

e Modern computers offer more powertul atomic
operations

e In Java, AtomicInteger class

» getAndIncrement () is supported atomic operation

Homework 2 Use AtomicIntegers to get a cleaner and
more eflicient realization of Lamport’s bakery idea.

Changing Gears

Performance, Again

Matrix Multiply Speedup Over Native Python

100,000 2280

10,000 Bl /

Speedup

1,000 /
100

y
10

Lo

Python C + parallel + memory + SIMD
loops optimization instructions

More Powerful Hardware

In Java, int and float values are 32 bits long

In modern CPUs, registers are larger

e my computer: 256 bit registers

Naive Operations

a = 573842;

b = 3847253;

c = a + b;

SIMD Parallel Operations

573842;
3847253;
al + bl;

38657548;
= 438573;
= a2 + b2;

Naive Loops

! [n];
[n];

e [n];

{ i=20; i< n; i++) {

c[i] = a[i] + b[i];

Using Full Power
Suppose we can load step values into each register

[n];
[n];

[] c [n];

(i =0; i< n; 1 += step) {
c[i] afi] + b[i];
c[i+l] = a[i+1l] + b[i+1];

c[i+step-1] = a[i+step-1] + b[i+step-1]

Java Vector API

Allows us to specify Vector objects

e Vector is like fixed-size array
e tune Vector (bit) size to same as hardware registers
e perform elementary operations on entire vectors

Java Vector API

Allows us to specify Vector objects

e Vector is like fixed-size array
e tune Vector (bit) size to same as hardware registers
e perform elementary operations on entire vectors

Notes:

e Vector API in Java 19, available as “incubator”
e Many optimizations already done (without Vector)

Example

Find entry-wise minimum of arrays:

VectorSpecies<Float> SPECIES = FloatVector.SPECIES PREFERRED;

[] vectorMax([1 a, [1 b) {
[] ¢ = [a.length];
step = SPECIES.length();
bound = SPECIES.loopBound(a.length);

Example Continued

Find entry-wise minimum of arrays:

bound; i += step) {
FloatVector.fromArray(SPECIES, a, 1i);
FloatVector.fromArray (SPECIES, b, 1i);
va.max(vb);

vc.intoArray(c, 1i);

(; 1 < a.length; i++) {
c[i] = Math.max(a[i1], b[i1]);

C;

Speedup for Me

The FloatVector has 8 lanes.
Computing max array with simple methods...
That took 927 ms.

Computing max array with vector methods...
That took 572 ms.

The arrays are equall!

Next Lab

Use Vector operations to speed up programs!

