
Lecture 11: Finishing Locks;
Vectors

COSC 273: Parallel and Distributed
Computing

Spring 2023

#WO2 postedtoday
- Due Friday

Last Time: Fair Locks, More Threads

Petersstock
2 threads

Lamport's Bakery ↓
Lock

Lamport’s Bakery Algorithm
Fields:

boolean[] flag
flag[i] == true indicates i would like enter CS

int[] label
label[i] indicates “ticket” number held by i

Initialization:

set all flag[i] = false, label[i] = 0

array size =A threads

thread IDS 01,2, ... Size

critical
section

⑳

Locking
Locking Method:

The method hasPriority(i) returns true if and only if
there is no k such that

flag[k] == true and
either label[k] < label[i] or label[k] == label[i]
and k < i

public void lock () {
 int i = ThreadID.get();
 flag[i] = true;
 label[i] = max(label[0], ..., label[n-1]) + 1;
 while (!hasPriority(i)) {} // wait
}

T

- ~
- wantlock!

-> I
en -

-

0 Omy ID
other ID

Unlocking
Just lower your !ag:

public void unlock() {
 flag[ThreadID.get()] = false;
}

Bakery Algorithm is Deadlock-Free

Why?

public void lock () {
 int i = ThreadID.get();
 flag[i] = true;
 label[i] = max(label[0], ..., label[n-1]) + 1;
 while (!hasPriority(i)) {} // wait
}

-

e I
never caught

Obs. some thread has stalemate

priority atall times, E
if soreve

that thread obtains lookI
-
among flagtit:-

wants lock
someone

smallestlabel, breaking gets it

ties by ID.

First-come-"rst-served (FCFS)
If: writes to label before calls lock(),

Then: enters CS before .

Why?

A B
A B

public void lock () {
 int i = ThreadID.get();
 flag[i] = true;
 label[i] = max(label[0], ..., label[n-1]) + 1;
 while (!hasPriority(i)) {} // wait
}

- Awrites label

· B calls lockI writes label-

Bhas lower prior bla b's
=> If
label?I move than As

Bakery Algorithm is Starvation-Free
Why? Show: If I call lock, I

eventually acquire lock

If:nothighest priority, then highest p

gets lock by D.F. T F.2 F.S.

->this thread will never again
have higher priority after
they release lock - before

Igetlock (FCFS)
->new fewer higher priority

threads repeatarg, for
nexthighest.

Bakery Algorithm is Starvation-Free
Why?

Thread i calls lock():

i writes label[i]
By FCFS, subsequent calls to lock() by j != i have
lower priority
By deadlock-freedom every k ahead of i eventually
releases lock

So:

i eventually served

Bakery Algorithm Satis"es MutEx

Suppose not:

 and concurrently in CS

Assume:

public void lock () {
 int i = ThreadID.get();
 flag[i] = true;
 label[i] = max(label[0], ..., label[n-1]) + 1;
 while (!hasPriority(i)) {} // wait
}

A B
(label(A), A) < (label(B), B)

-

=

when
-

h-
-

I I in CS
-

Proof (Continued)
Since entered CS:

Must have read
1. , or

2.

Why can’t 1 happen?

B

(label(B), B) < (label(A), A)
flag[A] == false

reac
B

when labele
-> [3 X

-> It's priority increased from

when Iread A's priority
to when is entered crit. See

But priorities only decrease!

Compare Timelines!
Why can is nothave read flag [A]==false.

Ahas priority
flay

A sets A

true labe
PA

A-

&
->

B

fi s
flag B I B has

B checks
true labelEfalteriority A's flag.

If B reacs

here
=>Pis< fo set

--
->label [A]
=>contradicts assumption that

Ahad higher priority

Conclusion
Lamport’s Bakery Algorithm:

1. Works for any number of threads
2. Satis"es MutEx and starvation-freedom

?

Is the bakery algorithm practical?
Two Issues:

1. For threads, need arrays of size
hasPriority method is costly
what if we don’t know how many threads?

2. Assume threads have sequential IDs 0, 1,...
not the case with Java!
thread IDs are essentially random long values

Homework 2 will have questions that address these issues.

n n

-"I

Remarkably
We cannot do better!

If threads want to achieve mutual exclusion +
deadlock-freedom, must have read/write registers
(variables)

n
n-

Lower Bound Argument Sketch
Consider threads, shared memory locations

"x some mutex protocol

A covering state is a step in an execution in which:

1. Each thread’s next step is a write operation
2. Each thread’s view is consistent with CS unoccupied
3. Each memory location has a thread about to write to it

n m < nE B

⑭
I t↓

memory

In 3
BY Deadlockfreedom? Tu enters CS
Istep each for +1,52,53

Claim
If an execution reaches a covering state, then the protocol
does not satisfy mutual exclusion.

Why?

Finishing Lower Bound Argument
Show. Any protocol with memory locations attains
a covering state in some execution.

Read AMP Section 2.9 for details

m < n

Finishing Lower Bound Argument
Show. Any protocol with memory locations attains
a covering state in some execution.

Read AMP Section 2.9 for details

m < n

Consequences:

If only synchronization primitives are read/write then
shared memory locations are necessary for deadlock-
free mutual exclusion with threads

Bakery algorithm is nearly optimal (memory of)
Led to development of stronger primitives

n

n
2n

-

-

A Way Around the Bound
Argument relies crucially on fact that the only atomic
operations are read and write

Modern computers o#er more powerful atomic
operations

In Java, AtomicInteger class

getAndIncrement() is supported atomic operation

Homework 2 Use AtomicIntegers to get a cleaner and
more e$cient realization of Lamport’s bakery idea.

-

Changing Gears

Performance, Again

More Powerful Hardware
In Java, int and float values are 32 bits long

In modern CPUs, registers are larger

my computer: 256 bit registers

Naive Operations
int a = 573842;
int b = 3847253;
int c = a + b;

SIMD Parallel Operations
int a1 = 573842;
int b1 = 3847253;
int c1 = a1 + b1;

int a2 = 38657548;
int b2 = 438573;
int c2 = a2 + b2;

Naive Loops
int[] a = new int[n];
int[] b = new int[n];
int[] c = new int[n];

for (int i = 0; i < n; i++) {
 c[i] = a[i] + b[i];
}

Using Full Power
Suppose we can load step values into each register

int[] a = new int[n];
int[] b = new int[n];
int[] c = new int[n];

for (int i = 0; i < n; i += step) {
 c[i] = a[i] + b[i];
 c[i+1] = a[i+1] + b[i+1];
 ...
 c[i+step-1] = a[i+step-1] + b[i+step-1]
}

Java Vector API
Allows us to specify Vector objects

Vector is like "xed-size array
tune Vector (bit) size to same as hardware registers
perform elementary operations on entire vectors

Java Vector API
Allows us to specify Vector objects

Vector is like "xed-size array
tune Vector (bit) size to same as hardware registers
perform elementary operations on entire vectors

Notes:

Vector API in Java 19, available as “incubator”
Many optimizations already done (without Vector)

Example
Find entry-wise minimum of arrays:

 VectorSpecies<Float> SPECIES = FloatVector.SPECIES_PREFERRED;
...

 public static float[] vectorMax(float[] a, float[] b) {
float[] c = new float[a.length];
int step = SPECIES.length();
int bound = SPECIES.loopBound(a.length);
...

 }

Example Continued
Find entry-wise minimum of arrays:

 ...
int i = 0;
for (; i < bound; i += step) {
 var va = FloatVector.fromArray(SPECIES, a, i);
 var vb = FloatVector.fromArray(SPECIES, b, i);
 var vc = va.max(vb);
 vc.intoArray(c, i);
}
for (; i < a.length; i++) {
 c[i] = Math.max(a[i], b[i]);
}
return c;

 }

Speedup for Me
The FloatVector has 8 lanes.
Computing max array with simple methods...
That took 927 ms.
Computing max array with vector methods...
That took 572 ms.
The arrays are equal!

Next Lab
Use Vector operations to speed up programs!

