[Lecture 10: More Locks

COSC 273: Parallel and Distributed
Computing

Spring 2023

[LLast Time: Fair Locks
Safety Goal:

e Both dogs are not simultaneously out in the yard
» mutual exclusion property

Liveness Goals:

e If a dog needs to go outside, eventually one does

= deadlock-freedom property
e If a dog needs to go outside, eventually that dog does

» starvation-freedom property

Peterson lock Pseudocode

lock() {
i = ThreadID.get();

j=1-1i;

— flag[i] =

,_.>ictim _ i; —

—_— (flag[j] && victim ==_3j) {

}
}

Peterson unlock Pseudocode

unlock() {
i = ThreadID.get();

flag[i] =

Left Off

Showed:

Mutual Exclusion. If both threads concurrently call
lock(), then both cannot return until other calls

unlock().
Today:

Starvation Freedom. If thread i calls lock() then
eventually thread i returns.

Why?

Starvation Freedom I

Claim. If thread A calls lock(), eventually the method will
return.

lock() {
i = ThreadID.get();

j=1-1ij;

flag[i] =
victim = i;
— (flag[j] && victim == i) {
}

Case 1. A reads flag[B] == false orvictim == B.

Mo wwef =eselac \Oo?

Y . W
Starvation Freedom I~ Wat Fee

Claim. If thread A calls lock(), eventually the method will
return.

lock() {
i = ThreadID.get();

j=1-1ij;

flag[i] =
victim = i;
(flag[j] && victim == i) {

Case 2. A reads flag[B] == trueand victim == A.

T enS \»J\I\.(Lo_ \OO?

/\M'\ Q.- B seks L\m, Y Llse oC

stfs sel o viehw ﬂ\oj:jrs

Starvation Freedom III
Assumption. After B obtains lock, B calls unlock()

unlock () {
1 = ThreadID.get();

flag[i] =

What then happens to thread A?
— (O W (ead [Ceads
Plag (&Y 5 Llse, sbhates

\oc
— Q¢ Xalead R call lach 0410&«\/
q=fs Jidam = 8 bad B
ol bekns ool

Conclusion II

The Peterson lock satisfies starvation freedom!

Semantics of Peterson Lock el

e flag variable signals intent to ente@ Se_d’\ N
= easily generalizes to more threads
e victim variable signals priority to enter CS
= victim = me means you have priority
e For more threads
S
= more victims?
o how decide priority among victims?
= how can this system be fair?

Lamport’s Bakery Algorithm

L.ocks for more threads!

Lamport’s Inspiration for Priority
 Naw SQWRQ

£ £ |

An Attempt
Setup:

e n threads, IDs@, 1,...,n-1
e flag is Boolean array of size n

= flag[i] == true if thread i wants to obtain lockg_(
e label is integer array of size n L % Mam

+ label[i] is priority of thread i & debrased”

An Attempt
Setup:

° 1 threads,(IDs 0, 1,...,n-1

e flag is Boolean array of size n

» flagl[i] == trueif thread i wants to obtain lock
e labelis integer array of size n

= label[i] is priority of thread i
Attempt:

oo , CM‘SJ&"S
e indicate intent: set flag[i] = true Q\I\\"'I R‘\%QIC)7

e set prio label[i] = 1 + _—
max (Labé%l[@] , Label[n-1]))

e wait until label [1_ is smallest label with corresponding
flag set to true

Question

Why won't this attempt work?
— C,Om\c(W awe '\MUJ-F(P e
PWiewds W Souwe label

Breaking Priority Ties

Two processes may see the same set of tickets and take
same label:

e have label[i] == labell[j] fori != j

Breaking Priority Ties

Two processes may see the same set of tickets and take
same label:

e have label[i] == labellj] fori !'= j

Solution:

Break ties by ID:

o if label[i] == labell[j] and i < j, then i has priority

Use lexicographic order on pairs (label[i], i)

Question About Tie-breaking

Is this process fair?

e Seems we are always giving priority to thread 0...

Bk cach S WS SQ\—RV\?
& lobes S%Ec)v\'?/ AC Lasing

Lamport’'s Bakery Algorithm

Fields:
e boolean[] flag
» flag[i] == true indicates i would like enter CS

e int[] label
= label[i] indicates “ticket” number held by i

Initialization:
e setall flag[i] = false, label[i] = 0

Locking
Locking Method:

lock () {
i = ThreadID.get();
flag[i] =

label[i] = max(label[0], label[n-1]) + 1;
(!hasPriority(i)) {}

The method hasPriority(i) returns true if and only if
there is no k such that

e flag[k] == trueand

o either label[k] < labelli] or labell[k] == labell[i]
and k < i

Unlocking

Just lower your flag:

unlock () {

flag[ThreadID.get()] =

Bakery Algorithm is Deadlock-Free

lock () {
1 = ThreadID.get();
flag[i] =
label[i] = max(label[0], label[n-1]) + 1;

(!hasPriority(1i))

First-come-first-served (FCFS)

o If: A writes to label before B calls lock(),
e Then: A enters CS before B.

lock () {
i = ThreadID.get();
flag[i] =

—2 label[i] = max(label[0], ..., label[n-1]) + 1;
(!hasPriority(i))

}

Why?

Bakery Algorithm is Starvation-Free
Thread i calls lock():

e i writes label[i]

e By FCFS, subsequent calls to lock() by j != ihave
lower priority

e By deadlock-freedom every k ahead of i eventually
releases lock

So:

e i eventually served

Bakery Algorithm Satisfies MutEx

lock () {
i = ThreadID.get();
flag[i] =

label[i] = max(label[0], label[n-1]) + 1;
(!hasPriority(i))

Suppose not:

e A and B concurrently in CS

o Assume: (label(A), A) < (label(B), B) wwie \oc’r\& W\

Proof (Continued)
Since B entered CS:

e Must have read
» (label(B), B) < (label(A),A), or
= flag[A] == false

e Former can not happen: labels strictly increasing
e So B read flag[A] == false

Compare Timelines!

sek> ks
oy Yo et \503»0 \ (< TOY
A | i ‘. 7
Qs O O-p
bg‘. by bP
\ \ } rd
= 92t S §=4S Was p((m:d-/
x_\ut‘ t \Os\DL\ C cepds €S
Lcw— lolboe))

Conclusion
Lamport’s Bakery Algorithm:

1. Works for any number of threads
2. Satisfies MutEx and starvation-freedom

Is the bakery algorithm practical’

Two Issues:

1. For n threads, need arrays of size n

e hasPriority method is costly
e what if we don’t know how many threads?
2. Assume threads have sequential IDs 0, 1,...
e not the case with Java!
e thread IDs are essentially random long values

Homework 2 will have questions that address these issues.

Remarkably

We cannot do better:

e If n threads want to achieve mutual exclusion +
deadlock-freedom, must have n read/write registers
(variables)

e This is really bad if we have a lot of threads!

= 1,000 threads means each call to lock() requires
1,000s of reads

= each call to hasPriority requires either 1,000s of
reads or a more advanced data structure

e Things are messy!

A Way Around the Bound

e Argument relies crucially on fact that the only atomic
operations are read and write

e Modern computers offer more powertul atomic
operations

e In Java, AtomicInteger class
» getAndIncrement () is supported atomic operation

Homework 2 Use AtomicIntegers to get a cleaner and
more eflicient realization of Lamport’s bakery idea.

Next Week

Vector operations!

