Lecture 09: Fair Locks

COSC 273: Parallel and Distributed
Computing

Spring 2023

Last Week
A Tale of Two Pups

Mutual Exclu

10
— d \ ')'\Ck VAN
Safety Goal: %0 & A P dc)v\ b

e Both dogs are not simultaneously out in the yard

@utual exclusion Property " &VW\SM&\[Y)\o.ﬂbu\
Liveness Goal: 7 Qoo oo “
= S0 A Sl

o It a dog needs to go outside, eventually one does
» Headlock-freedom property

A(n Aysmmentric) Protocol I

When Finn needs to go out:

1. Raise flag
2. While Scott’s flag is raised, wait
3. Let Finn out

4. When Finn comes in, lower flag

A(n Aysmmentric) Protocol 11

When Ru needs to go out:

1. Raise flag
2. “While Will’s flag is raised &Qv\\

2 hile Will’s flag is raised: <colb ‘é\LCUS
1. lower flag) [TR
—2. wait until Will’s flag is lowered U:‘w\ux

S — S

=—3. raise flag
3. When Scott’s flag is up and Will’s is down, release Ru

4. When Ru returns, lower tlag

Crucial Observation
Before letting a dog out, both Scott and Will do:

1. raise flag
2. see other’s flag down
3. let dog out

Dotuwme Do é\OQ‘S W YC'{(C& 0 SQowme Hw
> Desvt Conbdadicdon

Mutual Exclusion & Timelines

(oS

AT O
&
{C&< “:(| : : ™\ 5
f . .'\ { A i \
e S-de ST et
/\.’_/:‘ - . . ‘\\I\ cx
- | ' >
L | s
C oS Ao ‘é\;\
£3C Ty

EW\{WEWI Ve lewow:
ngdef'.(f&er %

Deadlock Freedom

Claim. If a dog wants to go out, eventually some dog will.

Why?
cose 1 ¢ hno Coalembonr —
OH'\U(g—\our ot ‘(C&(SQ.(‘S\[
QAL &’? ouf
Case L - canten o — Yot wonk o

(?0 0»&‘
—) Lo ‘-‘/0?—3 ot

Question

rl. . A\
Is the protocol fair?

— No

C,-) Q_Q\/\\/i'mc.g QC\-C Mis S
Qossy (e

Fairness Condition
Safety Goal:

e Both dogs are not simultaneously out in the yard
= mutual exclusion property

Liveness Goals:

e If a dog needs to go outside, eventually one does
= deadlock-freedom property

Fairness Condition
Safety Goal:

e Both dogs are not simultaneously out in the yard
= mutual exclusion property

Liveness Goals:

e If a dog needs to go outside, eventually one does
= deadlock-freedom property N\

e If a dog needs to go outside, eventually that dog does
. /starvation-freedonﬁp;epeﬁy

Peterson LLock

Back to Computers

Two processes (threads) want to access a shared resource
e e.g., Increment Counter object

Assume:

e processes haveIIDs 0 Iand‘ﬁ

» ThreadID. get(). returns the ID of the thread calling
the metho ,
e -0 of L

e threads share:
» boolean[]
o flagli
= Int victim
o victim == i if process i is willing to wait (like Ru)

lag
== true if process i wants to use resource

Peterson Lock Idea

Similar to asymmetric protocol with Finn and Ru, but can

switch roles. o Safe b Lk wmy tKoe/ out
!\Io obtain lock:

1. indicate intent: set my flag to true
2. defer to other thread: set myself as victim
3. wait until either

e other thread’s flag is false, or

\-Iamnotvictim \ O\ﬂ‘mv\ug locle wWhen

To release Tock: o \O“W weRug
1. set my flag to false

Peterson lock Pseudocode

lock() {
i = ThreadID.get();

j=1-1i;

flag[i] =

victim = i;

v 0\0 \‘(\&MC‘, \o&\zf TVAVSI o el
Cehning

Peterson unlock Pseudocode

unlock() {
i = ThreadID.get();

flag[i] =

DP(J\;(us‘\QV\ :

(D) call {ocfe) o ~ ol

[u) do Wuhx 3""\0‘6\1& Seckian
(3) e umlock

Goals

Mutual Exclusion. If both threads concurrently call
lock(), then both cannot return until other calls
unlock().

Starvation Freedom. If thread i calls lock() then
eventually thread i returns.

uestion. Whyv does Peterson lock achieve these
. y
properties?

Proof of Mutual Exclusion I

Suppose not...

e A and B concurrently call lock()
e both return before other calls unlock()

In this case we say both threads enter critical sectlon

\/\./e..u\Sc I owo (c,\ B

Proof of Mutual Exclusion II

Atomic operations:

e Actions of A:
= (A.1) writes flag[A] = true
» (A.2) writes victim = A
= (A.3) reads flag[B]
» (A4) reads victim
e Actions of B:
= (B.1) writes flag[B] = true
» (B.2) writes victim = B
= (B.3) reads flag[Al
» (B.4) reads victim

Proof of Mutual Exclusion III
Suppose (B.2) — (A.2):
e 1.e., A wrote to victim last

e if not, continue argument with roles of A and B reversed

WA IRV — | \\\/
Timelines o [cesd ‘ jﬁ,\ Shony

R L—— | W\ \QQQ
A } ' | ‘ 7\
a, 'ﬂ o, (Y Ay m
h‘ { b'z.:" \33 b"\ Q(;Sf
.] a . DU
PlaglB) VRN el cesd Seckion

N both Pueds do ot

Cohudn [entax Q"SW
\O&C?) TR 4 O3 wnlodes

Conclusion I

The Peterson lock satisfies mutual exclusion!

Starvation Freedom I

Claim. If thread A calls lock(), eventually the method will
return.

lock() {
i = ThreadID.get();

j=1-1ij;

flag[i] =
victim = i;
(flag[j] && victim == i) {

Case 1. A reads flag[B] == falseorvictim ==

Starvation Freedom II

Claim. If thread A calls lock(), eventually the method will
return.

lock() {
i = ThreadID.get();

j=1-1ij;

flag[i] =
victim = i;
(flag[j] && victim == i) {

Case 2. A reads flag[B] == trueand victim ==

Starvation Freedom III

Assumption. Once thread B obtains lock, eventually B calls
unlock()

unlock() {
i = ThreadID.get();

flag[i] =

What then happens to thread A’

Conclusion II

The Peterson lock satisfies starvation freedom!

Next Time

L.ocks for more threads!

