
Lecture 07: Locality of
Reference

COSC 273: Parallel and Distributed
Computing

Spring 2023

HW OI submission link

soon! I submission per group

Coming Soon!
Lab 02: Computing Shortcuts
HPC cluster instructions

Outline
1. Activity: Locality of Reference

download lec07-locality-of-reference.zip from
website

2. Computer Architecture, Oversimpli!ed
3. Computing Shortcuts

less
R

Two Stories
1. Multithreaded performance

embarrassingly parallel computaton
e.g., estimating

2. Multithreaded correctness
e.g., Counter example
mutual exclusion (continued next week)

π S
- ↓ ↓a/

sol'n

ve-> object
->2 Δ

Two Stories
1. Multithreaded performance

embarrassingly parallel computaton
e.g., estimating

2. Multithreaded correctness
e.g., Counter example
mutual exclusion (continued next week)

π

Today:

Single-threaded performance!
locality of reference
LocalAdder.java

-

*

LocalAdder Class
Task. Create an array of random (float) values and
compute their sum.

LocalAdder Class
Task. Create an array of random (float) values and
compute their sum.

Two Solutions.

1. Sum elements in sequential (linear) order
linearIndex = [0, 1,...,size-1]

2. Sum element in random order
randomIndex stores shu"ed indices

[31 32 1477↳******
+ 7

Two Implementations
Linear Sum:

Random Sum:

float total = 0;
for (int i = 0; i < size; ++i) {
 int idx = linearIndex[i];
 total += values[idx];
}
return total;

float total = 0;
for (int i = 0; i < size; ++i) {
 int idx = randomIndex[i];
 total += values[idx];
}
return total;

[0,,2, ..., Size
-1]

-

1 scramble
/
-

Tester
AdderTester:

computes linear sum
computes random sum
compares running times

Parameters:

STEP the step size been array tests
START starting size value
MAX maximum size value

Activity
Run AdderTester for a wide range of sizes:

1,000 – 10,000
10,000 – 100,000
100,000 – 1,000,000
1,0000,000 – 10,000,000
10,000,000 – 100,000,000

Questions.

1. How do running times compare between linear/random
access for smaller arrays? What about larger arrays?

2. How does running time scale with linear/random access?

3. Did you expect to see the trend you see?

ISTART STEPL MAX
--

-

How do running times compare?
linear access is random access?

small: random better?

linear faster than random

for arrays

100M -4.7x

7.

Can you explain the trend?
- Cache? ↳

Memory accesses

-
Iare not all equal E

"spatial locality (emory
"Paying"

Architecture, Less
Oversimpli!ed

Idealized Picture

Unfortunately
Computer architechture is not so simple!

Accessing main memory (RAM) directly is costly
~100 CPU cycles to read/write a value!

Use hierarchy of smaller, faster memory locations:
caching
di#erent levels of cache: L1, L2, L3
cache memory integrated into CPU faster access⟹

-

A More Accurate Picture

How Memory is Accessed
When reading or writing:

Look for symbol (variable) successively deeper memory
locations

L1, L2, L3, main memory
Fetch symbol/value into L1 cache and do manipulations
here
When a cache becomes full, push its contents to a
deeper level
Periodically push changes down the heirarchy

Memory Access Illustrated

Why Is Caching Done? E$ciency!

-

-

-

Why Caching Is E$cient
Heuristic:

Most programs read/write to a relatively small number
of memory locations o%en
These values remain in low levels of the hierarchy
Most commonly performed operation are performed
e$ciently

Why Caching is Problematic
Cache (in)consistency

L1, L2 cache for each core
Multiple cores modify same variable concurrently
Only version stored in local cache modi!ed quickly
Same variable has multiple values simultaneously!

Takes time to propogate changes to values

Shared changes only occur periodically!

What Your Computer (Probably) Does
arr a large array

On read/write arr[i], search for arr[i] successively in

L1 cache
L2 cache
L3 cache
main memory

Copy arr[i] and surrounding values to L1 cache

usually arr[i-a],...,arr[i+a] ends up in L1

This process is called paging

Performance Tuning
Be aware of your program’s memory access pattern

reading values sequentially can be 10s of times faster
than reading randomly or jumping around

Lab 02: Computing
Shortucts

A Network

·OoI

Network
nodes and edges between nodes

nodes labeled

directed edges from to for each

edges have associated weight,

weight indicates cost or distance to move from to

0, 1, … , n
(i, j) i j i ≠ j

(i, j) w(i, j) ≥ 0
i j

- I

-

Shortcuts

What is cheapest path from 0 to 2?

Blue path

-shortcut

A Problem
Given a network as above, for all , !nd cheapest path
of length (at most) 2 from to

weight of a path is sum of weight of edges
convention:

a shortcut from to is a path where

i ≠ j
i j

w(i, i) = 0
i j i → k → j

w(i, k) + w(k, j) < w(i, j)

Shortcut Distances

Representing Input

D =
⎛

⎝
⎜⎜

0
1
4

2
0
5

6
3
0

⎞

⎠
⎟⎟

rows: starting nocks

or colums = ending nocles

eO 12

⑧

⑰ E
2

Computing Output

Output

 = shortcut distance from to

computed by

D = ()dij
R = ()rij

rij i j
= +rij mink dik dkj

N,
-

-

~

-----7⑥
- 1
⑫

Example

D =
⎛

⎝
⎜⎜

0
1
4

2
0
5

6
3
0

⎞

⎠
⎟⎟

In Code
Create a SquareMatrix object
SquareMatrix stores a 2d array of floats called matrix

matrix[i][j] stores w(i, j)

Your Assignment
Write a program that computes shortcut matrix as quickly
as possible!

You’ll be given
getShortcutMatrixBaseline()

Your assignment is to optimize the code to write
getShortcutMatrixOptimized ()

Assignment Challenges
1. Optimize memory access pattern for operations

make access pattern linear, when possible
2. Apply multithreading to get further speedup

partition the problem into smaller parts

Payo#: optimized program will be 10s of times faster on
your computer, 100s of times faster on HPC cluster!

