Lecture O5:(Limits of
{Parallelism)and LocksJ

COSC 272: Parallel and Distributed
Computing

Spring 2023

Dowt answed

(
cwste Qs
Announcement
1. Lab Assignment Ol Due Today

2. Written Homework 01 Posted Sunday
e due next Friday ~))

\

AT

Outline

1. Limitations of Parallelism
2. Mutual Exclusion Q\Qd&)

Last Time

Embarrassingly Parallel Problems

e can be broken into many simple computations, (almost)
all of which can be performed in parallel

Example: Monte Carlo Estimation

§ dochs W&

c

Question

Why is Monte Carlo estimation embarrassingly parallel?

Womk = 1,000,000 eialg
- 2 Plocessy (Pageads 5
— eo\n PL&-(-\O C \‘MS __‘_L%/\/ Icals
— (QGOTCS\ -{JF" \/\(S\S _&(eo.c\\
docess |
Wlaon dowe “?j‘IQC/“LF B ads

Another Question

How much performance increase with k cores?

T = | cove Fwn
\——

Q)(PLC..Q ik_ *"\M ‘(_\0(
\0\\1\040—5

Another Question

How much performance increase with k cores?

e What if £k ® number of samples taken?

Caowr D\A('DLZQJ\ ’\MA Cave
I(S (%y Saach ,

\/\,\u_c.&'\ \0‘\'\‘7’(*(

Not So Parallel

Dependencies?

‘ al = bl + cl;
YAl a2 = b2 - c2;
d=al*a2

Not So Parallel

Dependencies?

al = bl + c1;

a2z = b2 - c2;
d = al * a2

Dependency relation: directed acyclic graph (DAG)

N
0 —
(’* _ Qﬁ?
R NG \
A \

More Generally Rl @ o

Consider a program that requires %(\IN\ $o o RO

e N elementary operations

. Z time to run sequentially - ov((‘S
Suppose)(\:\&c\'\““c‘

A
*ap- -fraction of operations can be performed in parallel

. 1 — p tfraction must be perfor &ned sequentially

L kg
Question: how 101‘;S Coc{ﬂd program take with n parallel

machines’ T 0t Conning «\'\WL. \’
| T 1(\—*?}T | B

— ' 4 ‘\D\L
\
/ R sk MQ dbv&
ye%um(ﬂa\\y

Idea

With n parallel machines:

e perform p-fraction of parallelizable ops in parallel on all
n machines
[T-p

= total time —=

e perform remaining ops sequentially on a single machine

= total time[T- (1 — p)]
Total time: T - (1 —p)+ T - % =[T° (1 —P+a

How Much Improvement?

The speedup is the ratio of the original time T to the
parallel time 7 - (1 —p + B):

n

of§ = —1 ¥ nwus .(-\QSLU’ o Plewsied
s gb\\"\"léd\ O Kown ,S. ’\NAU.SN

This relation is called Amdahl's Law “{ ¢ Keal
udpA boand

How Much Improvement?

The speedup is the ratio of the original time T to the
parallel time 7 - (1 —p + %):

e § = 1

1—p+%
This relation i1s called Amdahl’s Law

This is the best performance improvement possible in
principle

e may not be achievable in practice!

L e

Example

1 person can chop 1 onion per minute
Recipe calls for: (\74.(«\\1«\(¢ ‘-tb(-e

e chop 6 onions ~ (. (
e saute onions for 4 minutes < SK%MUIL 73

Note:

e chopping onions can be done in parallel
e sauteing

» takes 4 minutes no matter what

» must be accomplished after chopping

7/: \D \1\'\'\\/\.
&)
P« = OF

Example (continued)

How much can the cooking process be sped up by n cooks?

Example (continued)

e Foronechet, 7 =6+4 =10

e Only chopping onions is parallelizable, so
p =06/10 =0.6

e Amdahl’s Law:

_ 1 _ |
"5 = 1—p—% _[%0.6

e So:
=2 = §=143
=3 = S=1.67
=6 = S=2

-Ai;v?ys have 5? 1/(T—‘p)=g

Speedup Improvement by Adding
More Processors

e Second processor: 43%
e Third processor: 17%

e Fourth processor: 9%

e Fifth processor: 6%

e Sixth processor 4%

Latency vs Number of Processors

How does latency T scale with n?
» Adding more processors has declining marginal utility:

» each additional processor has a smaller effect on total
performance

= at some point, addingl‘cmore processors to a
computation 1s wastetul

e Another consideration:

= after parallel ops have been performed, extra
processors are idle (potentially wasteful!)

Remarks

The proportion of parallelizable operations p is not always
obvious from problem statement

Remarks

The proportion of parallelizable operations p is not always
obvious from problem statement

e Amdahl’s law a valuable heuristic for general
phenomena:

1. an n-fold increase in parallel processing power does
not typically give an n-fold speedup in computations

2. adding new parallel processors becomes less helpful
the more parallel processors you already have

Remarks

The proportion of parallelizable operations p is not always
obvious from problem statement

e Amdahl’s law a valuable heuristic for general
phenomena:

1. an n-fold increase in parallel processing power does
not typically give an n-fold speedup in computations

2. adding new parallel processors becomes less helpful
the more parallel processors you already have

e Often helpful to think about scheduling subtasks (not
individual operations)

e May have relationships between tasks (e.g., one must be
pertormed before another)

[.ocks

Back to Counter Example
The problem with

increment () {

++count;

The operation Ecoun’g 1S not atomic

e consists of:
1. read count value
2. increment value in register
3. write updated value

 these operations can be interleaved for concurrent
executions

A Strategy

Fix the issue by locking the count

To increment the Counter:

1. check if Counter is locked
e if so, wait until it is unlocked
2. lock the Counter
e no other thread can modity while locked
3. Increment the counter
4. unlock the Counter

An Attempt

LockedCounter {
count = 0;
getCount () { count; }
increment () { count++; }
reset () { count = 0; }
lock (id) {

—
' (locked) { }
locked = -

S

}

unlock () { locked = S
e —— e,
isLocked () { locked; }

Running the Locked Counter

run () {

(i =0; 1< times; i++) {

counter.lock(id);

{

counter.increment();

{

counter.unlock();

Will It Work?

LockedCounterTester
Demo!

Question

What happened? Can we make the locked counter idea
work?

Morals

1. Empirical testing is not enough!
2. Must understand correctness formally

Next Week

Two threads:

e Mutual Exclusion
e Locality of Reference

