
Lecture 05: Limits of
Parallelism and Locks
COSC 272: Parallel and Distributed

Computing

Spring 2023

3 c (3

Announcement
1. Lab Assignment 01 Due Today
2. Written Homework 01 Posted Sunday

due next Friday

Don'tanswer

l
cluster Q's

#
⑩gin
↑

Outline
1. Limitations of Parallelism
2. Mutual Exclusion (10ks)

Last Time
Embarrassingly Parallel Problems

can be broken into many simple computations, (almost)
all of which can be performed in parallel

Example: Monte Carlo Estimation

Area of a disk: : estimate !A = πr2 π

Asquare Pr
-
I boots hit

11 circ
- v

todarts Prob bort hits

circle
v 1

Asq

A circ
= ~

122r ->1
r2

= ⑨

I Δ 4r2

I ⑰

#

Question
Why is Monte Carlo estimation embarrassingly parallel?

Want:1,000,000 trials

K:# processes (threads

- each performs #M trials

a
record hits for each
process

When done regate
ofhits

Another Question
How much performance increase with cores?k

T =1 core time

expect #ntime forres
infores
overhead

ation
ofaggreg

Another Question
How much performance increase with cores?k

What if number of samples taken?k ≈

computation per core

-5 really short,
⑤

butagg. mighttake

much longer

Not So Parallel
Dependencies?

a1 = b1 + c1;
a2 = b2 - c2;
d = a1 * a2:

③
x ↑
①

Not So Parallel
Dependencies?

a1 = b1 + c1;
a2 = b2 - c2;
d = a1 * a2

Dependency relation: directed acyclic graph (DAG)

0

8-5%1 ↑
⑧ 8-00

More Generally
Consider a program that requires

 elementary operations

 time to run sequentially

Suppose

a -fraction of operations can be performed in parallel

 fraction must be performed sequentially

Question: how long could program take with parallel
machines?

N
T

p
1 − p

n

⑭ to
T time

<-
similar each

10
②

- darfs
eg. throwing

- --

- aggregating # hifs

running time
BestorATPOssibP

&

mustbe done
done in 1 sequentially

Idea
With parallel machines:

perform -fraction of parallelizable ops in parallel on all
 machines

total time

perform remaining ops sequentially on a single machine
total time

Total time:

n
p

n
T⋅p
n

T ⋅ (1 − p)
T ⋅ (1 − p) + T ⋅ = T ⋅ (1 − p +)p

n
p
n

How Much Improvement?
The speedup is the ratio of the original time to the
parallel time :

This relation is called Amdahl’s Law

T
T ⋅ (1 − p +)p

n

S = 1
1−p+ p

n

times faster a processorD solution is than 1 processor
Theoretical
upper bound

How Much Improvement?
The speedup is the ratio of the original time to the
parallel time :

This relation is called Amdahl’s Law

T
T ⋅ (1 − p +)p

n

S = 1
1−p+ p

n

This is the best performance improvement possible in
principle

may not be achievable in practice!
-

Example
1 person can chop 1 onion per minute

Recipe calls for:

chop 6 onions
saute onions for 4 minutes

Note:

chopping onions can be done in parallel
sauteing

takes 4 minutes no matter what
must be accomplished a!er chopping

Parallelizable
-

- sequential

T =10 min.

P =10 =0.6

Example (continued)
How much can the cooking process be sped up by cooks?n

Example (continued)
For one chef,
Only chopping onions is parallelizable, so

Amdahl’s Law:

So:

Always have

T = 6 + 4 = 10

p = 6/10 = 0.6

S = =1
1−p− p

n

1
0.4+ 0.61

n

n = 2 ⟹ S = 1.43
n = 3 ⟹ S = 1.67
n = 6 ⟹ S = 2

S < 1/(1 − p) = 2.5

⑤

-

- -

Speedup Improvement by Adding
More Processors

Second processor: 43%
Third processor: 17%
Fourth processor: 9%
Fi!h processor: 6%
Sixth processor 4%

Latency vs Number of Processors
How does latency scale with ?

Adding more processors has declining marginal utility:
each additional processor has a smaller e"ect on total
performance
at some point, adding more processors to a
computation is wasteful

Another consideration:
a!er parallel ops have been performed, extra
processors are idle (potentially wasteful!)

T n

-

Remarks
The proportion of parallelizable operations is not always
obvious from problem statement

p

Remarks
The proportion of parallelizable operations is not always
obvious from problem statement

p

Amdahl’s law a valuable heuristic for general
phenomena:
1. an -fold increase in parallel processing power does

not typically give an -fold speedup in computations
2. adding new parallel processors becomes less helpful

the more parallel processors you already have

n
n

Remarks
The proportion of parallelizable operations is not always
obvious from problem statement

p

Amdahl’s law a valuable heuristic for general
phenomena:
1. an -fold increase in parallel processing power does

not typically give an -fold speedup in computations
2. adding new parallel processors becomes less helpful

the more parallel processors you already have

n
n

O!en helpful to think about scheduling subtasks (not
individual operations)
May have relationships between tasks (e.g., one must be
performed before another)

Locks

Back to Counter Example
The problem with

The operation ++count is not atomic

consists of:
1. read count value
2. increment value in register
3. write updated value
these operations can be interleaved for concurrent
executions

public void increment () {
 ++count;
}

⑨

A Strategy
Fix the issue by locking the count

To increment the Counter:

1. check if Counter is locked
if so, wait until it is unlocked

2. lock the Counter
no other thread can modify while locked

3. increment the counter
4. unlock the Counter

An Attempt
public class LockedCounter {
 long count = 0;
 boolean locked = false;
 public long getCount () { return count; }
 public void increment () { count++; }
 public void reset () { count = 0; }
 public void lock (int id) {

while (locked) { }
locked = true;

 }
 public void unlock () { locked = false; }
 public boolean isLocked () { return locked; }
}

Running the Locked Counter
 public void run () {

for (long i = 0; i < times; i++) {
 counter.lock(id);
 try {

counter.increment();
 }
 finally {

counter.unlock();
 }

}

Will It Work?

LockedCounterTester
Demo!

Question
What happened? Can we make the locked counter idea
work?

Morals
1. Empirical testing is not enough!
2. Must understand correctness formally

Next Week
Two threads:

Mutual Exclusion
Locality of Reference

