Lecture 04: Embarrassingly
Parallel, or Not

COSC 273: Parallel and Distributed
Computing

Spring 2023

Announcements

1. Programming Assignment Ol Posted
e ignore HPC cluster part of assignment for Friday
e accounts registered, but no documentation yet
e visit hpc.amherst.edu
e ssh access: [[amherstid]@hpc.amherst. Edl_Jj
9. First written assignment next Friday
e posted this weekend
3. Oftice Hours

» TA (Mary Kate) Office Hours Wednesday 7-9pm,
SCCE CI09

e My individual OH: Thursday 1:00-2:30

Outline

1. Lecture 03 Activity

2. Parallelism vs Concurrency

3. Embarrassingly Parallel Problem
4. Limitations of Parallelism

Svoted Deloen

Lecture 03 Activity nieads

inﬁnent([1a, { » 4’\(\'{&&(& OC.C*\ Vo \
i 0;

(L < a.length) {
a[i] = a[i] + 1;

i=1++1;

Question 1

Ifa = [0, 0, 0, 0] and two threads, what are possible
outcomes?’

increment ([1 a) {

i=0;
(L < a.length)
a[i] = a[i] + 1;

Question 2

Ifa = [0, 0, 0, 0] and k threads, wh
outcomes’

increment ([1 a) {

i=0;
(L < a.length) {
a[i] = a[i] + 1;

i=1+1;

e o.C\W wdux Cauld S\(DJL A\
Joe Hom 1 &% & o
= 1O Ww b g 6 ? QQLO(S)
— ik § Mareeds Cesnd (foe Auidie

W SUCCaSSEIN AR SVVEN
— a8t 5 Meds a\(¥ ?-acf/, e\l N

—

Parallelism vs Concurrency

Concurrency performing multiple tasks that occupy
overlapping time intervals

e E.g., [teach COSC 225 and COSC 273 concurrently
Jan 30 N\C&Y (9

E 73% — .
228 | \A)‘\\

-

Doy | Weds %é T//f/ éa
7Y

aEZe

Parallelism vs Concurrency

Concurrency performing multiple tasks that occupy
overlapping time intervals

e E.g., [teach COSC 225 and COSC 273 concurrently

Parallelism making progress on multiple tasks at the same
time

e E.g., COSC 273 and MATH 410 are taught in parallel
(F 10-10:50)

e parallel = concurrent C
— [2l |
WedS) "

[hel 7

Virtues and Perils

Parallelism can give performance boost

e performance is one focus of this class

Virtues and Perils

Parallelism can give performance boost
e performance is one focus of this class

Concurrency is necessary for basic functionality of
computers

e cannot execute multiple programs without concurrency

e operating system typically handles issues of
concurrency

. {/)vh you probably haven’t encountered concurrency
efore

Virtues and Perils

Parallelism can give performance boost
e performance is one focus of this class

Concurrency is necessary for basic functionality of
computers

e cannot execute multiple programs without concurrency

e operating system typically handles issues of
concurrency

. {/)vh you probably haven’t encountered concurrency
efore

Issues of nondeterminism exist for concurrent programs,
not just parallel ones

Orn*) S0E)

Back to Counter

increment () {

++count;

}

How could we fix the problem of mis-counting?

e Want every increment to count!

— Tyyends Wave oun local

Coum te

— QS‘- Q/V\CS\ \ O\C_C_\}\VVLUK\ CA L—L N CL'\V;

“Easy” Solution

Each thread stores own private count!

e run threads until they're done
e aggregate local counts when threads terminate

Question

When might “easy” solution not be sufficient?

1, M\CI\A(\\L,LC((iV\&,,L!MCCKLQ

C,O\N\%

7 Céuxvxjrs Could y& On- TO{ucr
(0o Hxed ~\—9\(\M'\\/w\4‘fdu)

2 AT Prseds s Covant

OGN T LxecC.

Question

When might “easy” solution not be sufficient?

We'll revisit this next week

Embarrassingly Parallel Problems

A computational problem is embarrassingly parallel if it
can be broken into many simple computations, (almost)
all of which can be performed in parallel.

\ Pioole

’\”\\%N&C 7 (W’\JL od -

N

Example: Monte Carlo
Estimation

A Formula from High School

/Y

A4

Area of a disk: A = 7r?

T 2Ty ze 5357 -

An Idea from Probability

Pick a random point inside the framed region

P\fc)\ocn\o d—7/ S%\m“—.
d&{((WY i
ﬂC&(c—u— a Q_\{Q
(e
Q((o\ S% A
: TWZ T
i s

The probabzlzty the point lies in the disk is proportional to
the disk’s area.

In More Detail

e area of disk is 77?2

e area of surrounding square is (2r)* = 4r?

e the probability that a (uniformly) randor121 point in the

square lies in the disk is; 2caotarcle _ ar— _ 1,
area of square 4r 4

SO...

Estimation by Sampling

..to estimate 7, suffices to estimate the probability that a
random point point in the square lies inside the disk:

e pick a bunch of random points
e see how many lie in disk

e p = proportion of points that do
e T X 4p

Example of Monte Carlo method

Question

Why is Monte Carlo estimation embarrassingly parallel?

Another Question

How much performance increase with k cores?

Another Question

How much performance increase with k cores?

e What if £k ® number of samples taken?

Not So Parallel

Dependencies?

al = bl + c1;

a2 - b2 + c2;
d = al * a2

Not So Parallel

Dependencies?

al = bl + c1;

a2 - b2 + c2;
d = al * a2

Dependency relation: directed acyclic graph (DAG)

More Generally

Consider a program that requires

e N elementary operations
e T time to run sequentially

Suppose

e a p-fraction of operations can be performed in parallel
e 1 — p fraction must be performed sequentially

Question: how long could program take with »n parallel
machines?

Idea

With n parallel machines:

e perform p-fraction of parallelizable ops in parallel on all
n machines

. T.
= total time TP

e perform remaining ops sequentially on a single machine
» total time 7" - (1 — p)

Totaltime:T-(l—p)+T°%=T°(1—P+%)

How Much Improvement?

The speedup is the ratio of the original time T to the
parallel time 7 - (1 —p + %):

e § = 1

P
1—p+;

This relation 1s called Amdahl’s Law

How Much Improvement?

The speedup is the ratio of the original time T to the
parallel time 7 - (1 —p + %):

e § = 1

1—p+%
This relation i1s called Amdahl’s Law

This is the best performance improvement possible in
principle

e may not be achievable in practice!

Example

1 person can chop 1 onion per minute

Recipe calls for:

e chop 6 onions
e saute onions for 4 minutes

Note:

e chopping onions can be done in parallel
e sauteing

» takes 4 minutes no matter what

» must be accomplished after chopping

Example (continued)

How much can the cooking process be sped up by n cooks?

Example (continued)

e Foronechet, 7 =6+4 =10

e Only chopping onions is parallelizable, so
p =06/10 =0.6

e Amdahl’s Law:

1 1
| — —
S 1-p—£ 0.4+-0.6

e So:
rn=2 = §=143
=3 = S=1.67
=6 = S=2

e Always have S < 1/(1 — p) = 2.5

Speedup Improvement by Adding
More Processors

e Second processor: 43%
e Third processor: 17%

e Fourth processor: 9%

e Fifth processor: 6%

e Sixth processor 4%

Latency vs Number of Processors

How does latency T scale with n?

e Adding more processors has declining marginal utility:

» each additional processor has a smaller effect on total
performance

= at some point, addingl‘cmore processors to a
computation 1s wastetul

e Another consideration:

= after parallel ops have been performed, extra
processors are idle (potentially wasteful!)

Remarks

The proportion of parallelizable operations p is not always
obvious from problem statement

Remarks

The proportion of parallelizable operations p is not always
obvious from problem statement

e Amdahl’s law a valuable heuristic for general
phenomena:

1. an n-fold increase in parallel processing power does
not typically give an n-fold speedup in computations

2. adding new parallel processors becomes less helpful
the more parallel processors you already have

Remarks

The proportion of parallelizable operations p is not always
obvious from problem statement

e Amdahl’s law a valuable heuristic for general
phenomena:

1. an n-fold increase in parallel processing power does
not typically give an n-fold speedup in computations

2. adding new parallel processors becomes less helpful
the more parallel processors you already have

e Often helpful to think about scheduling subtasks (not
individual operations)

e May have relationships between tasks (e.g., one must be
pertormed before another)

Next Time

Start Mutual Exclusion

e How can we fix our Counter to work as intended if we
need to maintain a running count that can be accessed
by multiple threads?

