
Lecture 02: Multithreading
in Java

COSC 272: Parallel and Distributed
Computing

Spring 2023

Outline
1. What is multithreading?
2. Writing multithreaded programs in Java
3. Activity: Counter Example
4. RAM and PRAM

Last Time: Motivation

Today

- COSE
-

Δ 1
273

0

Today
Writing multithreaded programs!

What is Multithreading?
Preliminary question. What is a program?

a input
of

↓ sequenceΔcomputationofoperations

↓
output

What is Multithreading?
Preliminary question. What is a program?

A sequence of operations to be performed

some operations may depend out the outcomes of other
operations, others may be independent:

 a1 = b1 + c1;
 a2 = b2 - c2;
 p = a1 * a2

-

& indup of each other

I L depends on first two 7
logically
independent

What is Multithreading?
Preliminary question. What is a program?

A sequence of operations to be performed

some operations may depend out the outcomes of other
operations, others may be independent:

 a1 = b1 + c1;
 a2 = b2 - c2;
 p = a1 * a2

A thread is a sequence of operations—think subprogram

di!erent threads specify logically independent
sequences operations

Art of Multithreading
Goal. Partition a program into multiple (logically
indpendent) threads.

Payo!. Di!erent threads can be executed in parallel (on
parallel computer architecture)

computer with cores could see up to a -fold increase
in throughput!

k k

Art of Multithreading
Goal. Partition a program into multiple (logically
indpendent) threads.

Payo!. Di!erent threads can be executed in parallel (on
parallel computer architecture)

computer with cores could see up to a -fold increase
in throughput!

k k

Challenges.

How to partition a program into threads?
How to synchronize resources that must be shared by
threads? (e.g., memory)
How to ensure program always gives desired output?

OS ultimately decides how to allocate resources…

Multithreading in Java
Steps to writing a multithreaded program

1. De"ne a Runnable object
class implements the Runnable interface
must implement a method void run()
run() de"nes what your thread should do

2. Create a Thread instance initialized with an instance of
your Runnable object

3. Start the thread
4. (optional) Wait for the thread to complete

-

E
bint

↑ -join"

Example
A thread that increments a counter a bunch of times.

lec02-shared-counter.zip

Step 1: De"ne Runnable Object
public class CounterThread implements Runnable {
 private Counter counter; private long times;

 public CounterThread (Counter counter, long times) {
this.counter = counter; this.times = times;

 }

 public void run () {
for (long i = 0; i < times; i++) {
 counter.increment();
}

 }
}

*
1
-.

↑-
what
thread
does

What about the Counter?
public class Counter {
 private long count = 0;

 // return the current counter value
 public long getCount () { return count; }

 // increment the counter
 public void increment () { ++count; }

 // reset the counter value to 0
 public void reset () { count = 0; }
}

-
Atimes increme

since last

reset
S

④

④

Next Steps
Step 2. Create a Thread instance initialized with an
instance of your Runnable object

Step 3. Start the thread

Step 4. (optional) Wait for the thread to complete

See CounterExample.java

Activity (Small Groups)
1. Run CounterExample with NUM_THREADS set to 1. What

happens?
2. Run CounterExample with NUM_THREADS set to 2.

How does the "nal count change?
How does the running time change?

3. Repeat 2 for NUM_THREADS set to 4, 8, 16, 1000, 1000…

What Happened?
What happened with "nal counts as number of threads
increased?

What happend with running times?

A thread 100M⑤2 thread ~ 50M 50548,490
4 -

- 28M

1000- -97M, 98M,65M

7ms 1
256MS 1

150ms 2

%0 ms H

15/ MS 16

Question
Why did this behavior occur?

Understanding What
Happened

Computer Architecture, Oversimpli"ed

von Neuman Architechture
Computer has two main components

Central Processing Unit (CPU)
Memory Unit

CPU Capabilities:

perform "xed set of operations (e.g., arithmetic)
program control (e.g., branching)

Memory stores:

program instructions
data

CPU1
I

*clarithe

CPU/Memory Interactions
Random Access Machine (RAM) model interactions:

read a value from memory address
load value into CPU register

write a value to memory address
copy value stored in CPU register

copy to
.py-registersVal

write copyregister read value
ou
-

beg. to-Memory mem

Counter Example, 1 thread
Counter object is stored in memory

Counter stores a value count
CountThread instructions stored in memory

When CounterThread is executed, it follows these
instructions

In turn:

for (long i = 0; i < times; i++) {
 counter.increment();
}

public void increment () { ++count; }

readval of count toreg.
incrementregister+count- write new value back to

men.

Question
What are CPU/Memory interactions when
counter.increment() is executed?

public void increment () { ++count; }

Multicore Architecture
Modern computers:

multiple cores
think of them as separate, independent CPUs
di!erent cores can execute di!erent threads
simultaneously

shared memory

Multicore Counter Example
two threads perform increment operation on di!erent
cores
threads both try to increment same Counter
concurrently

Question
Suppose: count = 7 & two threads both call increment()
concurrently

What are the possible outcomes? What are results of
di!erent read/write operations?

PRAM model
Parallel Random Access Machine (PRAM)

Abstract model for parallel computing
Shared memory: cells w/ addresses

think one giant array
Multiple processors access memory

basic operations are read(i) and write(i, val)

PRAM Assumptions
read/write operations are atomic

Nondeterminism:

if multiple threads access same memory location
simultaneously all “consistent” outcomes are possible

two processes call write(i, a) and write(i, b)

one process calls read(i) another write(i, a)

Next Time
Consider: How could we avoid the CounterExample
weirdness (nondeterminacy) and get a correct count with
multiple threads?

More on nondeterminacy!

