Lecture 02: Multithreading
In Java

COSC 272: Parallel and Distributed
Computing

Spring 2023

Outline

1. What is multithreading?
2. Writing multithreaded programs in Java

3. Activity: Counter Example
4. RAM and PRAM

Last Time: Motivation

Matrix Multiply Speedup Over Native Python
62,806

10,000 Toéxc»(6,727 /
1,000 /)/ c/cs%
100 T '21
10 e L/
B \/ I - '\
: | Python ‘ C + parallel + memory + SIMD (

L_\ loops optimization instructions

e _—

100,000

Speedup

Today

Writing multithreaded programs!

What is Multithreading?

Preliminary question. What is a program?

- 'w\@ch
ly

CGV\/\DU\L&(? 0

J
OM‘\”\)\I*

;Q%\AU/\QL Oe

OQLSOJ&MS
\ L S

R

What is Multithreading?

Preliminary question. What is a program?

e A sequence of operations to be performed

e some operations may depend out the outcomes of other
operations, others may be independent:

al = bl + cl;
a2z = b2 - c2;

p = al * a2

"

Qe

Wwoap ©
C)L‘QL\&CSJ (AN S\ﬁ(%jf '\U‘IO

\quca\\Y
S gl

What is Multithreading?

Preliminary question. What is a program?
e A sequence of operations to be performed

e some operations may depend out the outcomes of other
operations, others may be independent:

al = bl + cl;
a2z = b2 - c2;

p = al * a2

A thread is a sequence of operations—think subprogram

o different threads specity logically independent
sequences operations

Art of Multithreading

Goal. Partition a program into multiple (logically
indpendent) threads.

Payoft. Different threads can be executed in parallel (on
parallel computer architecture)

e computer with k cores could see up to a k-fold increase
in throughput!

Art of Multithreading

Goal. Partition a program into multiple (logically
indpendent) threads.

Payoft. Different threads can be executed in parallel (on
parallel computer architecture)

e computer with k cores could see up to a k-fold increase
in throughput!

Challenges.

e How to partition a program into threads?

 How to synchronize resources that must be shared by
threads? (e.g., memory)

e How to ensure program always gives desired output?
= OS ultimately decides how to allocate resources...

Multithreading in Java

Steps to writing a multithreaded program

1. Define aﬁunnable‘\object ﬁ\ \oiu\}\\"’
\
e

e class implements the Runnable interfac |
e must implement a method]Vo id run()
e run() defines what your thread should do |

2. Create arc'\ﬁg_erzﬂ instance 1nitialized with an instance of
your Ru e object

aunmab
3. Start the thread ,
4. (optional) Wait for the thread to complete —))O\V\

! t

Example

A thread that increments a counter a bunch of times.

e lecO2-shared-counter.zip

Step 1: Define Runnable Object-

ounterThread Runnable/ {

Counter countery imes;

CounterThread (Counter counter, ltimesA {
m. .
.counter = counter; .times = times,

W ok

run () { _AQV\{Q£Fé>

(' 0; 1 < times; i++) {

counter.increment(); 6&0 Q'S

What about the Counter?

Counter ({ : ' {e. W\
count = 0; — i &'\\.MLS N\C <
QNS \oS

CaseX

getCount () { count; }

increment () { ++count; }

reset () { count = 0; }

Next Steps

Step 2. Create a Thread instance initialized with an
instance of your Runnable object

Step 3. Start the thread
Step 4. (optional) Wait for the thread to complete

e See CounterExample. java

Activity (Small Groups)

1. Run CounterExample with NUM_THREADS set to 1. What
happens?

2. Run CounterExample with NUM_THREADS set to 2.
 How does the final count change?
« How does the running time change?

3. Repeat 2 for NUM_THREADS set to 4, 8, 16, 1000, 1000...

What Happened?

e What happened with final counts as number of threads
increased? -

/I ‘“/\J ¢aC\ (oM

9 hnatad ng,(/\ 205UQ, €40
_\¢ 28M
(b TET A Y8 M, 65
e What happend with running times?
Ty ;| LSE ws 1
[§O MS Z

Question
Why did this behavior occur?

Understanding What
Happened

Computer Architecture, Oversimplified

von Neuman Architechture [P (A

Computer has two main components ’\oq'(c/ (N(.("\/.\
e Central Processing Unit (CPU) _ i — ",
e Memory Unit D e

CPU Capabilities: MO Y

e perform fixed set of operations (e.g., arithmetic)
e program control (e.g., branching)

Memory stores:

e program instructions
e data

CPU/Memory Interactions

Random Access Machine (RAM) model interactions:

e read a value from memory address
» load value into CPU register

e write a value to memory address
= copy value stored in CPU register

v | crw |
Q’OK \1<Q—FV7r—W =) wysl*f >
{Qc\(W w e \,Cf\ii

S Yi‘\lﬁif h
MQ,W\OCY ML

Counter Example, 1 thread

e Counter object is stored in memory
= Counter stores a value count
e CountThread instructions stored in memory

e When CounterThread is executed, it follows these
Instructions

(i=0; i < times; i++) {

counter.increment();

increment () { ++count;

F ook — TN e ua b \ruffsh-f

Wicke W Velwe becle o
2L .

Question

What are CPU/Memory interactions when
counter.increment() is executed?

increment () { ++count; }

Multicore Architecture

Modern computers:

e multiple cores
» think of them as separate, independent CPUs

= different cores can execute different threads
simultaneously

e shared memory

Multicore Counter Example

e two threads perform increment operation on different
cores

e threads both try to increment same Counter
concurrently

Question

Suppose: count = 7 & two threads both call increment ()
concurrently

What are the possible outcomes? What are results of
different read/write operations?

PRAM model
Parallel Random Access Machine (PRAM)

e Abstract model for parallel computing
e Shared memory: cells w/ addresses
= think one giant array
e Multiple processors access memory
= basic operations are read(i) and write(i, val)

PRAM Assumptions

e read/write operations are atomic

Nondeterminism:

e if multiple threads access same memory location
simultaneously all “consistent” outcomes are possible

= two processes callwrite(i, a) andwrite(i, b)

= one process calls read(1i) anotherwrite(i, a)

Next Time

Consider: How could we avoid the CounterExample
weirdness (nondeterminacy) and get a correct count with
multiple threads?

More on nondeterminacy!

