
Lecture 01: Intro and
Motivation

COSC 272: Parallel and Distributed
Computing

Spring 2023

Outline
1. Course Motivation
2. Structure and Policies
3. Parallelism and Concurrency

Question
How do we quantify the computational power of a
computer?

How much more powerful are computers today than
5/10/25/50 years ago?

- memory
a computation speed

- speedbenchmarking

Speed = Power?
Tangible notion computational power:

run a program and see how long it takes
less time = faster execution = more (evident) power

N
n

Processor Speed = Power?
My !rst laptop:

Compaq Presario 2100
Intel Celeron processor @1.6 GHz
$ 900 new (1,500 now w/ in"ation)
now < $ 15 used

clock speed
↓
⑥

Processor Speed = Power?
My !rst laptop:

Compaq Presario 2100
Intel Celeron processor @1.6 GHz
$ 900 new (1,500 now w/ in"ation)
now < $ 15 used

My current laptop:

Apple MacBook Pro, 2020
Intel Core i5 @1.4 GHz
$ 1,400 new (1,500 now w/ in"ation)
now ~ $ 600-1,000 used

Question. What gives?!

-

/shower
core?

-
Δ #

2)

move cores !
->
-

Moore’s Law
Transister density chip doubles every 2 years

Transister density for Intel chips ().img source

But Processor Speed Is Not Increasing!
Year Transistors Clock speed CPU model
1979 30 k 5 MHz 8088
1985 300 k 20 MHz 386
1989 1 M 20 MHz 486
1995 6 M 200 MHz Pentium Pro
2000 40 M 2 000 MHz Pentium 4
2005 100 M 3 000 MHz 2-core Pentium D
2008 700 M 3 000 MHz 8-core Nehalem
2014 6 B 2 000 MHz 18-core Haswell
2017 20 B 3 000 MHz 32-core AMD Epyc
2019 40 B 3 000 MHz 64-core AMD Rome
1

Speed vs Throughput
Processor speed = # processor clock cycles per second

latency of a single operation bounded by processor speed
phyiscal constraints (e.g., speed of light) limit processor
speed

-

Speed vs Throughput
Processor speed = # processor clock cycles per second

latency of a single operation bounded by processor speed
phyiscal constraints (e.g., speed of light) limit processor
speed

Throughput = # useful operations processor can perform
per second

Question. How can we increase throughput without
increasing speed?

-

-

- do more than 1 op
atu time

What is Parallelism?
The ability to perform multiple operations simultaneously.

What is Parallelism?
The ability to perform multiple operations simultaneously.

Examples:

bit-level parallelism (e.g., adding two 32-bit numbers)

+oicoCiFie↓

What is Parallelism?
The ability to perform multiple operations simultaneously.

Examples:

bit-level parallelism (e.g., adding two 32-bit numbers)
single instruction, multiple data (SIMD) parallelism

-> a) =18C

-> a2 =
b20C2

↑ alaz-
+a
->laz

What is Parallelism?
The ability to perform multiple operations simultaneously.

Examples:

bit-level parallelism (e.g., adding two 32-bit numbers)
single instruction, multiple data (SIMD) parallelism
multi-core: independent processors operating at same
time on same computer

What is Parallelism?
The ability to perform multiple operations simultaneously.

Examples:

bit-level parallelism (e.g., adding two 32-bit numbers)
single instruction, multiple data (SIMD) parallelism
multi-core: independent processors operating at same
time on same computer
distributed networks: clusters, server farms, internet

HPC cluster

Promise of Parallelism
“Many hands make light work.”

More processors more operations per second!
Greater throughput!
Perform multiple operations at once!

⟹

The Power of Parallelism I

notionmains

The Power of Parallelism II

-I
X

Perils of Parallelism
More processors, more problems

Perils of Parallelism
More processors, more problems

Some computations need to be done sequentially in
order

next step relies on result of current step <- dependen

betweens

Perils of Parallelism
More processors, more problems

Some computations need to be done sequentially in
order

next step relies on result of current step
Processors must share resources

communication and sychronization are costly

Perils of Parallelism
More processors, more problems

Some computations need to be done sequentially in
order

next step relies on result of current step
Processors must share resources

communication and sychronization are costly
Nondeterminism

di#erent executions give di#erent behavior
algorithms must account for all possible executions!

Unavoidability of Parallel &
Distributed Computing
Modern computing is inherently distributed!

Di#erent parts of the computer interact
cores within processors
processor registers, cache, main memory, IO, etc.

Di#erent computers interact
local computer networks
clusters and server farms
internet

What this Course is About
1. Exploiting parallelism to write performant code

write programs that are 100s of times faster than
simple sequential code

2. Reasoning about parallel programs and executions

parallel programs can be incredibly subtle!
arguing correctness is signi!cantly more challenging
than for sequential programs

Course Structure

Expected Background (Programming)
Object Oriented design in Java

classes and inheritance
interfaces
exception handling
generics

Expected Background (Conceptual)
Basic data structures:

linked lists
stacks
queues
(balanced) trees

Supported operations, and their complexities

Main Topics Covered
multithreaded programming in Java
mutual exclusion,
concurrent objects,
locks and contention resolution,
blocking synchronization,
concurrent data structures,
SIMD/vector operations

Course Materials
The Art of Multiprocessor Programming (Moodle -> Course
Reserves)
Notes (posted to course website)
Recorded lectures

Course Focus
Principles of parallel computing:

conceptual & technical issues that are fundamental to
parallel programming
indpendent of computing technology
want provable guarantees for behavior

We care about performance but…
newest technologies will not be emphasized
prefer methods that enhance our understanding of a
problem

Course Structure
3 lectures/week

guided discussion
small group discussion
mixture of lecture/discussion/activities
small-group activities will require your laptop

Readings posted to course website
do readings before class

-

Coursework
Coding Assignments (bi-weekly)

some individual, some pairs
focus on performance
semi-competitive

Written Assignments (bi-weekly)
focus on formal reasoning/problem solving
small groups

Quizzes/in class activities
Final Project (small group)
-

Attendance & Illness
Attendance

Regular attendance is expected
No penalty for a few missed classes

lectures will be recorded and posted to Moodle

Illness & Masking

do not attend class if you are sick (e.g., with fever)
if mild symptoms:

take a Covid test before coming to class
wear a mask

otherwise come to class, masks optional

C

-

S

O$ce Hours
Will’s o$ce: SCCE C216

Drop-in (in person):

M/W/F A%er Class (11:00–11:30)

By appointment (in person or on Zoom):

Thursday (time tbd)

please wear a mask to in-person o!ce hours

This Week
1. Writing multithreaded programs in Java
2. Subtleties of multithreading

What is Multithreading?
Preliminary question. What is a program?

What is Multithreading?
Preliminary question. What is a program?

A sequence of operations to be performed

some operations may depend out the outcomes of other
operations, others may be independent:

 a1 = b1 + c1;
 a2 = b2 + c2;
 p = a1 * a2

What is Multithreading?
Preliminary question. What is a program?

A sequence of operations to be performed

some operations may depend out the outcomes of other
operations, others may be independent:

 a1 = b1 + c1;
 a2 = b2 + c2;
 p = a1 * a2

A thread is a sequence of operations—think subprogram

di#erent threads specify logically independent
sequences operations

Art of Multithreading
Goal. Partition a program into multiple (logically
indpendent) threads.

Payo". Di#erent threads can be executed in parallel (on
parallel computer architecture)

computer with cores could see up to a -fold increase
in throughput!

k k

Art of Multithreading
Goal. Partition a program into multiple (logically
indpendent) threads.

Payo". Di#erent threads can be executed in parallel (on
parallel computer architecture)

computer with cores could see up to a -fold increase
in throughput!

k k

Challenges.

How to partition a program into threads?
How to synchronize resources that must be shared by
threads? (e.g., memory)
How to ensure program always gives desired output?

OS ultimately decides how to allocate resources…

