
Homework 02 COSC 273: Parallel and Distributed Computing, Spring 2023

Due: Friday, 03/03/2023 at 11:59 pm
Instructions: You may work on this assignment in groups of up to 3 and submit a single
solution for your group. All group members are responsible for understanding all submitted
solutions.

Exercise 1. Consider the following modified lock() method for the Peterson lock (cf.
Section 2.3.3 in The Art of Multiprocessor Programming):

1 public void lock() {
2 int i = ThreadID.get();
3 int j = 1 - i;
4 victim = i;
5 flag[i] = true;
6 while (flag[j] && victim == i) {} // wait
7 }

The only difference with the original method is that the statements victim = i and
flag[i] = true are reversed in the modified version. Does the modified Peterson satisfy
mutual exclusion? Why or why not? If so, you should argue that mutual exclusion is
satisfied. If not, describe an execution for which mutual exclusion fails.

Exercise 2. So far in our discussion of locks, we have assumed that the only atomic oper-
ations to shared memory locations are read and write. Most modern computer hardware,
however, supports other atomic operations as well. One such operation is the getAndIncrement
operation which is implemented in Java for the AtomicInteger class. An AtomicInteger
stores an integer, whose value can be accessed by the get() method. The getAndIncrement
method (1) returns the current value of an AtomicInteger, and (2) increments the stored
value as a single atomic operation. For example, if AtomicInteger ai stores a value 7,
and two threads (say, thread1 and thread2) concurrently call ai.getAndIncrement(), then
exactly one thread will get the value 7, and the other will get the value 8. After both
operations, the stored value will be 9.

Using AtomicIntegers that support the getAndIncrement operation, devise a simple
lock that works for any number of threads. Argue that your lock satifies mutual exclusion
and starvation freedom.

Hint: consider Lamport’s original idea of a ticket counter in a bakery.



Exercise 3. Consider the following Bouncer object:

1 class Bouncer {
2 public static final int DOWN = 0;
3 public static final int RIGHT = 1;
4 public static final int STOP = 2;
5 private boolean goRight = false;
6 private int last = -1;
7 int visit () {
8 int i = ThreadID.get();
9 last = i;

10 if (goRight)
11 return RIGHT;
12 goRight = true;
13 if (last == i)
14 return STOP;
15 else
16 return DOWN;
17 }
18 }

Suppose n threads call the visit() method. Argue that the following hold:

1. At most one thread gets the value STOP.

2. At most n− 1 threads get the value DOWN.

3. At most n− 1 threads get the value RIGHT.

Exercise 4. So far in this course, we have assumed that all threads have IDs that are
reasonably small numbers. In Java, however, thread IDs can be arbitrary long values. In
this exercise, we will see how to use Bouncer objects as above to create unique IDs that are
reasonably small compared to the number of threads.

Consider a 2D triangular array of ‘Bouncer‘ objects arranged as follows:



Suppose each thread performs the following procedure: All threads start by calling
visit() on Bouncer 0. Whenever a thread visits a Bouncer, if the Bouncer returns STOP,
the thread adopts the number of the Bouncer as its ID. If DOWN is returned, the thread then
visits the Bouncer below; if RIGHT is returned, the thread visits the Bouncer to the right.

(a) If there are 2 threads, argue that all threads adopt unique IDs in the range 0 to 2.

(b) If there are 3 threads, argue that all threads adopt unique IDs in the range 0 to 5.

(c) More generally, argue that if there are n threads and sufficiently many Bouncer objects,
then all threads adopt unique IDs. How many such Bouncers are sufficient in this case?


