514

[18] G. A. Miller, “The magical number seven, plus or minus two,”
Psychological Rev., pp. 311-329, 1956.

R. W. Motley and W. D. Brooks, “Statistical prediction of pro-
gramming errors,” Rome Air Develop., Final Tech. Rep., RADC-
TR-77-175,May 1977.

J. D. Musa, “A theory of software reliability and its application,”
IEEE Trans. Software Eng., vol. SE-1, pp. 312-327, Sept. 1975.
—, “Measuring software reliability,” in Proc. TIMS-ORSA Joint
Nat. Meeting, San Francisco, May 9-11, 1977.

G. J. Myers, “An extension to the cyclomatic measure of program
complexity,” ACM SIGPLAN Notices, vol. 12, pp. 61-64, Oct.
1977.

L. M. Ottenstein, ‘“Predicting parameters of the software valida-
tion effort,” Ph.D. dissertation, Purdue Univ., Aug. 1978.

N. F. Schneidewind, ‘“‘Analysis of error processes in computer soft-
ware,” in Proc. 1975 Int. Conf. Reliable Software, Los Angeles,
CA, Apr. 21-23,1975; also, ACM SIGPLAN Notices, vol. 10, pp.
337-346, June 1975.

N. F. Schneidewind and H. M. Hoffman, “‘Software structure and
error properties: Models vs. real programs,” in Proc. TIMS-ORSA
Joint Nat. Meeting, San Francisco, May 9-11, 1977.

, “An experiment in software error data collection and
analysis,” in Proc. 6th Texas Conf. Computing Systems, Nov.
14-15, 1977.

M. L. Shooman, “Operational testing and software reliability
estimation during program development,” in Proc. IEEE Symp.
Computer Software Reliability, New York, Apr. 30-May 2,
1973, pp. 51-57.

—, “Structured models for software reliability prediction,” in
Proc. 1976 IEEE 2nd Int. Conf. Software Eng., San Francisco,
Oct. 13-15, 1976, pp. 268-280.

M. L. Shooman and M. I. Bolsky, ‘“Types, distributions and test
and correction times for programming errors,” in Proc. 1975 Int.
Conf. Reliable Software, Los Angeles, CA, Apr. 21-23, 1975;
also, ACM SIGPLAN Notices, vol. 10, pp. 347-357, June 1975.

[19]

[20]
[21]
[22]

[23]
[24]
[25]
[26]

[27]

(28]

[29]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

[30] H. A. Simon, “How big is a chunk?” Science, vol. 183 (4124),
pp. 482-488, Feb. 1974.

A. N. Sukert, “A software reliability modeling study,” Rome Air
Develop., RADC-TR-76-247, Aug. 1976.

J. E. Sullivan, “Measuring the complexity of computer software,”
MITRE MTR-2648, vol. V, June 25, 1973.

T. A. Thayer, “Understanding software through empirical
reliability analysis,” in AFIPS Conf. Proc., vol. 44, 1975, pp.
335-341.

T. A. Thayer et al., “Software reliability study,” Rome Air
Develop., Final Tech. Rep., RADC-TR-76-238, Aug. 1976.

R. W. Wolverton, “The cost of developing large-scale software,”
IEEE Trans. Comput., vol. C-28, pp. 615-636, June 1974.

M. V. Zelkowitz, “Perspectives on software engineering,” ACM
Computing Surveys, vol. 10, no. 2, June 1978.

[31]
[32]
(33]

[34]
[35]

[36]

Linda M. Ottenstein was born in Sheboygan,
WI, on December 22, 1950. She received the
B.S., M.S., and Ph.D. degrees all in computer
science from Purdue University, Lafayette, IN,
in 1972, 1974, and 1978, respectively.

She is currently an Assistant Professor of
Computer Science at Michigan Technological
University, Houghton, MI. Her research in-
terests include software science, software
reliability, and programming methodologies.

Dr. Ottenstein is a member of the Associa-
tion for Computing Machinery and the IEEE Computer Society.

Tidy Drawings of Trees

CHARLES WETHERELL anp ALFRED SHANNON

Abstract—Trees are extremely common data structures, both as inter-
nal objects and as models for program output. But it is unusual to see a
program actually draw trees for visual inspection. Although part of the
difficulty lies in programming graphics devices, most of the problem
arises because naive algorithms to draw trees use too much drawing
space and sophisticated algorithms are not obvious. We survey two naive
tree drawers, formalize aesthetics for tidy trees, and describe two algo-
rithms which draw tidy trees. One of the algorithms may be shown to
require the minimum possible paper width. Along with the algorithms
proper, we discuss the reasoning behind the algorithm development.

Index Terms—Aesthetics, binary trees, computer graphics, drawing
methods, trees.

Manuscript received May 15, 1978; revised February 26, 1979.

C. Wetherell is with the Computing Science Group, Department of
Applied Science, University of California at Davis, and the Lawrence
Livermore Laboratory, Livermore, CA 94550.

A. Shannon is with the Lawrence Livermore Laboratory, Livermore,
CA 94550.

OMPUTER programmers know well that trees are ex-
Ctremely common data structures. Trees model many real-
world problems and a host of efficient and useful tree-based al-
gorithms exist. Equally important, a good drawing of a tree is
often a powerful intuitive guide to a modeled problem; indeed,
some real problems consist of little more than finding and
drawing a particular tree. But programmers who use trees sel-
dom provide pretty graphic output. Users commonly tolerate
listings of trees rather than demanding pictures. We attribute
the lack of pictures to a dearth of published techniques for
tree drawing. In this paper, we present some algorithms and
heuristics for drawing tidy trees.

What, exactly, are the difficulties of drawing a tree? First,
of course, each node of the tree must be assigned a position on
the drawing surface. We assume that the drawing surface is al-
ways a flat sheet (e.g., of paper) and we will make use of no
expedients such as twisting a rubber surface. Positions will be

0098-5589/79/0900-0514$00.75 © 1979 IEEE

WETHERELL AND SHANNON: TIDY DRAWING OF TREES

assigned using a convenient coordinate scheme, usually rectan-
gular coordinates. Nodes are assumed to have very little ex-
tent. Once a positioning is known for all nodes, the tree can
be drawn by a simple drafting routine conversant with the va-
garies of local output devices. With this view of the problem,
drawing a tree is exactly the same as assigning coordinates to
the tree nodes.

But the nodes cannot be thrown willy-nilly onto the drawing
surface. In due course, we shall consider aesthetics; for the
moment, we shall discuss physical limits. No drawing surface
is actually an unbounded plane, and even though a plane can
be pieced together from smaller sheets, such subterfuges are
ruled out in many practical cases. Computer graphics devices
are bounded in one dimension (e.g., line printer, incremental
plotter) or in both (e.g., CRT, microfiche camera). A doubly
bounded sheet obviously limits the total size of potential
drawings, but even a singly bounded surface may require that a
drawing be wrenched about to fit properly. The assumption
that nodes are (almost) geometric points also bears examina-
tion. Nodes are often labeled, sometimes elaborately, and la-
bels may vary in size dramatically. Nodes must be positioned
so that labels do not overlap and so that edges avoid nodes.
Some devices (e.g., line printers) have difficulty drawing edges
other than parallel to the axes; others have discretization prob-
lems severe enough that edges may not be drawn between arbi-
trary points.

Of the physical limits discussed, we will be most concerned
with the effects of boundedness. We shall also consider prob-
lems caused by nodes with shape and size. However, we will
leave problems caused by a limited drawing repertoire and by
low resolution to be solved by the reader. Most installations
have libraries of graphics routines which cope with such diffi-
culties; any problems not so solved are probably so special that
we could not discuss them adequately.

Aesthetics pose the other great difficulty when making tidy
drawings of trees; indeed, the very notion of tidiness suggests
that a drawing should possess a visual structure which reflects
the properties of the underlying tree. Some properties which a
tidy drawing might have include the following.

o Trees are planar graphs; edges should not cross.

o Trees impose a distance on the nodes; no node should be
closer to the root than any of its ancestors.

e In a binary tree, the left son of a node should lie physically
to the left of its parent, and similarly, right sons should lie to
the right of their parents.

Naturally enough, aesthetic requirements often war against
physical limits of drawing devices. Were it not so, very simple
positionings would suffice for drawings even on severely lim-
ited devices; vertical columns or rectangular arrays of nodes
would serve. Aesthetics may also require exorbitant computa-
tions or provide only ill-defined notions of tidiness. In such
cases, heuristics rather than algorithms will be necessary, both
to lower costs and to approximate tidiness.

The problem of drawing a tidy tree reduces to finding a posi-
tioning which reconciles aesthetics and physical limits. The
separate consideration of aesthetics and physical limits is fruit-
ful because we shall be able to formalize each in a simple

515

Root

Father Interior Node
Son

Node height is 3.

Leaf

Height of tree is 4.

Fig. 1. An example tree.

way. In the following section, we will be more precise in our
discussion.

I. ANAIVE TREE DRAWER

A tree is formally a finite, directed, connected, acyclic graph
in which every node has at most one predecessor and exactly
one distinguished node, the root, has none. We rely here on
the view that anyone who has seen a tree can recognize one.
Fig. 1 is a typical tree with the salient features marked. An
important feature of the example tree is that all nodes of the
same height are drawn at the same horizontal level. Even if a
drawing rotated 90° or 180° counterclockwise is preferred
(trees with leaves on the left are seldom seen), the nodes at
any one height will still be drawn along a line. Hence, our first
aesthetic for trees follows.

Aesthetic 1: Nodes of a tree at the same height should lie
along a straight line, and the straight lines defining the levels
should be parallel.

We would like to draw trees on devices like line printers that
have drawing surfaces of bounded width. The term width is
used to suggest two distinct ideas: first, line printers and some
other devices are not able to rotate text, so normal reading
conventions imply a directionality on the surface; second, a
tree implies a directionality by itself, with height running
down the branches and width cutting across levels of equal
height. Naturally enough, these two notions of width should
be coordinated, so we have a physical limit.

Physical limit: Tree drawings should occupy as little width
as possible (the height of a tree drawing is fixed by the tree
itself).

The height of a node is the number of branches between that
node and the root. If trees are to be drawn as in Fig. 1, the
height of a node can be used to determine its y-coordinate.!
We will also use the height of the tree to allocate storage for
some of our algorithms. So our first problem is to find the
height of each node. Many applications will provide node
height as a by-product. If, however, node height or tree height
is not known, any tree walk which visits fathers before sons
can be used to find either.

The simplest tree positionings satisfying both the physical
limit and Aesthetic 1 jams all nodes as far left as possible along

1Computer science is, as has been remarked, perhaps the only disci-
pline in which trees wave their roots in the air and stick their leaves in
the ground. Readers unhappy with this ostrichlike behavior will find it
straightforward to make appropriate coordinate transformations to
reorient drawings.

516

Fig. 2. The example tree repositioned by Algorithm 1.

Input: A branch root pointing to the root of a well-formed tree and an
integer max_height giving the height of the tree.

Output: The x and y fields of each node are set so that the tree is
positioned with as narrow a width as possible. We assume that the
height of each node has been correctly set.

Method: A counter holding the next free x—coordinate is kept for each
level of the tree. We assume that each node has a width and height of
one unit and that there should be one unit gaps between the levels of
the tree and between the nodes across a level. In this and later
algorithms, spacing between levels or nodes can be changed by
modifying the spacing constants. This algorithm positions parents
before children; any tree walk is acceptable so long as each node is
visited after its relatives to the left on the same level. All
programs assume that the father of the root is nil.

input root : branch;
max_height : integer;
var next_x : array [0..max_height] of integer;
current : branch;
i : integer;
begin
for i := 0 to max_height do next_x[i] := 1; end for;
roott.status := 0;
current := root;

while current # nil do
if currentt.status = 0 then
current?.x := next_x[currentt.height];
currentt.y := 2%currentt.height + 1;
next_x[currentt.height] := next_x[currentt.height] + 2;
for i :=1 to currentt.#_of_sons do
currentt.son[i]t.status := 0; end for;
currentt.status = 1;
elseif 1 < currentt.status
& currentt.status € currentt.#_of_sons then
currentt.status := currentt.status + 1;
current := currentt.son[currentt.status—1];
else (* currentt.status > currentt.§_of_sons *)
current := currentt.father;
fi;
end while;
end; (* of Algorithm 1 *)

Algorithm 1. A naive positioning for trees.

each level. Fig. 2 shows the tree of Fig. 1 so repositioned.
Each node’s y-coordinate is simply a multiple of its height;
Aesthetic 1 is obviously satisfied. (All of our more sophisti-
cated positionings use this same method to satisfy Aesthetic 1.)
The algorithm for x-coordinate assignment is nearly as easy.
An array of available positions, with one entry for each tree
level, is initialized with the value one in each entry. A tree
walk is begun, the only requirement being that each node must
be visited before any node to the right on its own level. When
a node is visited, the node is given the current value of the
available position array indexed by the node’s level; then the
array entry is incremented by the width of the node and de-
sired spacing between nodes. The physical limit is satisfied
since each level is filled solidly from left to right.

Algorithm 1 is a program to supply a positioning. It is also a
model for the more sophisticated positioning programs to
come. We take this opportunity to discuss the programming
considerations common to all the programs, using Algorithm 1
for an example.

All the programs are written in a variant of Pascal [2]. Ex-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

type node(parameter #_of_sons : integer);

record
data : ; (* Whatever the user wants. *)
father : branch;
son : array [1..# of_sons] of branch;
height : integer;
x, y : integer;
status : O..#_of_sons+1;

end; (* node *)

type branch : pointer to node;

Fig. 3. Data types used in positioning programs.

tensions include dynamic arrays, some ‘‘syntactic sugar,” and
parameterized data types. Dynamic arrays make the programs
independent of arbitrary limits on storage space. The syntac-
tic extensions include explicit closers for each grouping state-
ment (if, case, for, while), an elseif construct, and both break
and # characters for identifiers. A parameterized data type
may be seen in Fig. 3 where the declarations for tree nodes are
given. The parameter of a data type is instantiated with a
value each time a new object of the type is created, i.e., at
block entry or during invocation of the Pascal system proce-
dure new. Once instantiated, the parameter may be refer-
enced like a field, may be used in the declarations of other
fields (e.g., array son and flag status), but may not have its
value modified. Declaration of an array with an empty index
set is not an error; reference to an element of such an array is.
These programs always check for the existence of the index set
before access if such an error is possible. (The check may be
done by a for loop with empty range—Fortran programmers
beware.) Readers using these programs will find that the appli-
cation will eliminate the dynamic arrays and parameterized
types by supplying specific application values for array bounds
and parameters; however, applications with dynamic data
structures will need these dynamic storage application features
in some form.

Finally, we shall not assume that our language is recursive.
Instead, all the programs will iterate over the tree structure.
There are a number of ways to use a tree to save the history of
a routine walking the tree.

o Build a parallel stack of nodes whose processing was inter-
rupted by processing the current node.

o Place a back trace pointer in each node to unwind the tree
walk.

o Maintain a status marker in each node and a pointer to the
node currently in process.

Readers probably know other means to the same end. We
prefer the method of status markers. Although iterative ver-
sions of the programs may be slightly more obscure than re-
cursive versions, they are no less efficient. Further, they may
be translated directly into Fortran, assembly language, or
other languages in which recursion is difficult or impossible.
The basic structure of such iterations is described by Knuth
[4], Bird [1], and Soule [S].

II. BINARY TREE DRAWINGS

As Fig. 2 illustrates, Algorithm 1 places fathers left of, right
of, or centered over their sons. If a tree has no labeling on its
branches, such a positioning is fine; graph theory books are
full of trees drawn helter-skelter. But trees used in programs
commonly are labeled, and perhaps most common are the

WETHERELL AND SHANNON: TIDY DRAWING OF TREES

Input: A branch root pointing to a well-formed binary tree and an integer
max_height giving the height of the tree. We assume that the height
field of every node is set correctly,.

Output: The x and y fields of each node are set so that each node is in
its in-order position.
Method: A variable next_number keeps track of the next number in the
in-order sequence. At each node, the left subtree is numbered, the
node itself is numbered, and then the right subtree is numbered. As
in the first two algorithms, status fields and variable current record
the progress of the numbering. In particular, status is set to
first_visit before the first visit to the node, toleft_visit while the
left son is numbered, and to right visit while the right son is

numbered. The same technique is used in the later programs.

root : branch;
max_height : integer;

input

var current : branch;
next_number : integer;

begin
next_number := 13
roott.status := first_visit;
current := root:
while current # nil do
case currentt.status of
first_visit : begin
currentt.status := left_visit;
if currentt.left_son # nil then
current := currentt.left_son;
currentt.status := first_visit;
fi;
end;
left _visit : begin
currentt.x := next_number;
next_number := next_number + 1;
currentt.y := 2%*currentt.height + 1;
currentt.status := right_visit;
if currentt.right_son # nil then
current := currentt.right_son;

currentt.status := first_visit;
1i;
end;
right_visit : current := currentt.father;

esac;
end while;
end; (* of Algorithm 2 *)

Algorithm 2. Position binary tree nodes by in-order (Knuth).

binary trees. In a binary tree, each branch is labeled Jeft or
right, and no node may have more that one left and one right
son. In drawings, a label may often be inferred from the posi-
tion of a son with respect to its father. This suggests the
following.

Aesthetic 2: In a binary tree, each left son should be posi-
tioned left of its father and each right son right of its father.

Algorithm 2, due to Knuth [3], satisfies Aesthetic 2 by as-
signing to each node an x-coordinate proportional to the node’s
index in an in-order numbering of the tree. Since the in-order
index of any node is always greater than that of its left son
and less than that of its right son, each node must be correctly
positioned with respect to its sons. By induction, every node
is thus correctly positioned. But we shall see, Algorithm 2
does not satisfy the physical limit.

Algorithms 2 and 3 both manipulate binary trees, so the data
structure for a node must be modified, as seen in Fig. 4.
Fields left_son and right_son will have value nil if a node has
no left son or right son, respectively.

ITI. DRAWINGS SATISFYING THE PHYSICAL LIMIT

Algorithm 2 constructs drawings which satisfy Aesthetic 1,
but which may be far too wide. Once a node occupies a col-
umn on the paper, no other node may occupy the same col-
umn; the drawing width is always equal to the number of
nodes in the tree. In some cases, this width may be very
nearly the best achievable; in others, considerable space may
be wasted. But Fig. 5 illustrates what can happen to a sparse

517

Input: A branch root pointing to a well-formed binary tree and an integer
max_height giving the maximum height of the tree. We assume that each
node has its height assigned.

Output: A tree positioned to satisfy Aesthetics

satisfying the Physical Limit

1 and 2 and usually

Method: In a first post-order walk, every node of the tree is assigned a
preliminary x-coordinate (held in field x). In addition, internal
nodes are given modifier’s which will later be used to move their sons
right. During a second pre-order walk, each node is given a final
x-coordinate by summing its preliminary x-coordinate and the
modifier’s of all the node’s ancestors. The y-coordinate depends, as
before, on the height of the node.

input root : branch;
max_height : integer;
var moditier : array [0..max_height] of integer;
next_pos : array [0..max_height] of integer;
i : integer;
place : integer;
h : integer;
is_leaf : Boolean;
modifier_sum : integer;
begin
for i := 0 to max_height do
modifier[i] := 0; next_pos[i] := 1;
end for;
current := root;
currentt.status := first_visit;

while current # nil do
case currentt.status of

first_visit : begin
currentt.status := left_visit;
if currentt.left_son # nil then
current := currentt.left_son;
currentt.status := first_visit;
fi
end;
left_visit : begin
currentt.status := right_visit;
if currentt.right_son #* nil then
current := currentt.right_son;
currentt.status := first_visit;
fi;
end;
right_visit : begin

h := currentt.height;

is_leaf := (currentt.left_son = nil)
& (currentt.right_son = nil)
if is_leaf
then place := next_pos[h];
elseif currentt.left_son = nil
then place := currentt.right_sont.x — 1;
elseif currentt.right_son = nil
then place := currentt.left_sont.x + 1;
else
place := (currentt.left_sont.x+currentt.right_sont.x) + 2;

fi;
modifier[h] := max(modifier[h], next_pos[h]-place);
if is_leaf
then currentt.x :=
else currentt.x :=

place;
place + modifier[h]:

i
next_pos[h] := currentt.x + 2;

currentt.modifier := modifier[h];
current := currentt.father;
end:
esac;
end while;
current := root;
currentt.status := first_visit;
modifier_sum := 0;

while current # nil do
case currentt.status of
first_visit : begin
currentt.x := currentt.x + modifier_sum;
modifier.sum := modifier.sum + currentt.modifier;
currentt.y := 2*currentt.height + 1;
currentt.status := left_visit;
if currentt.left_son # nil then
current := currentt.left_son;
currentt.status := first_visit;
fis
end;
left_visit : begin
currentt.status := right_visit;
if currentt.right_son # nil then
current := currentt.right_son;
currentt.status := first_visit;
fi;
end;
right_visit: begin
modifier_sum := modifier_sum — currentt.modifier;
current := currentt.father;
end;
esac;
end while;
end; (* of Algorithm 3 *)

o

Algorithm 3. A tidy tree drawer.

518

type node record
data : ; (* Whatever the user wants. *)
father : branch;

left_son, right_son : branch;

height : integer;

x, y : integer;

status : (first_visit, left_visit, right_visit);
modifier : integer; (* Used by Algorithm 3. *)

end node;

Fig. 4. The data type node modified for binary trees.

Tree Drawn by Knuth’s Algorithm.

A Narrower Version

Fig. 5. Two drawings of the same tree.

§ g
[e] e]
] (¢]

Best Drawing In—order Drawing

Fig. 6. A worst case example for Knuth’s tree drawing algorithm.

tree. On the left is a drawing produced by Algorithm 2. The
long branches A-B and C-D are required to leave room for
the subtrees beneath. On the right the same tree is drawn in a
width of six (versus 14) by folding subtrees beneath their an-
cestors where possible. Fig. 6 is a worst case example for Al-
gorithm 2.

Algorithm 1 and 2 each satisfy one constraint completely
while ignoring another; in each case, grotesque trees may re-
sult. Algorithm 3 merges the ideas of the two previous algo-
rithms. As in Algorithm 1, array next_pos maintains the next
available node position for each level in the tree. If a leaf
at level h is under consideration, placement of the leaf at
next_pos[h] is legal and satisfies the minimum width require-
ment. But an internal node placed willy-nilly at next__pos[h]
may well violate Aesthetic 2. Rather, a provisional place for
an internal node is the average of its sons’ positions (with ap-
propriate special cases when a son is missing). The actual posi-
tion assigned must be the maximum of the provisional place
and next__pos[h], since sons may try to drag their father too
far to the left and cause the father to collide with his relatives
to the left.

If the actual position of an interior node is right of its provi-
sional place, the subtree rooted at the node must be moved

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

modifier

N WY~ O
—

coogoooo

6

next_pos and modifier values.

Final x-coordinates are given.

Fig. 7. Example output from Algorithm 3.

bodily right to center the sons around the father. Rather than
immediately readjust all the nodes in the subtree [a process
that could make the algorithm run in time O (n?)], each node
remembers the distance to the provisional place in a modifier
field. In a second pass down the tree, modifier’s are cumu-
lated and applied to every node. During the first pass, which
assigns positions as described, a modifier is kept for each level;
the modifier’s of the nodes across a row must not decrease or
subtrees may overlap.

Fig. 7 shows our example tree as drawn by Algorithm 3.
Values from the two passes of the algorithm are also displayed
so that tracing the execution on this input tree will be easy.
The algorithm cost is linear in the number of tree nodes since
only two walks are necessary. The example tree is properly
positioned under Aesthetics 1 and 2 and the physical limit.

However, Algorithm 3 does not always meet the physical
limit. Fig. 8 provides an example of a tree positioned badly by
Algorithm 3. When the node marked A is pushed left, a nar-
rower, if uglier, positioning of the same tree results. The viola-
tion arises because Algorithm 3 attempts to enforce the fol-
lowing strong version of Aesthetic 2.

Aesthetic 3: A parent should be centered over its children.

The tree of Fig. 8 can be expanded ad libitum to make the
critical father arbitrarily biased towards his right son. These
drawings suggest the following.

WETHERELL AND SHANNON: TIDY DRAWING OF TREES

The tree drawn by Algorithm 3

A Narrower Version.

Fig. 8. A tree badly positioned by Algorithm 3.

Theorem (Uglification): Minimum width drawings exist
which violate Aesthetic 3 by arbitrary amounts.

Nonetheless, we can modify Algorithm 3 to produce minimum
width trees. In the second pass, a post-order walk passed the
modifier__sum down the tree. The direction of the walk was
chosen only for convenience; it seemed clearer to apply the
modifier__sum to a node the first time the node was encoun-
tered. However, a pre-order walk would have done as well.
Further, a pre-order walk positions nodes down the left edge
of the tree before right subtrees are seen. We take advantage
of this ordering by maintaining for each tree level the actual
next position available at the level. When a node is given its
final position, that position is the minimum of the next avail-
able position at the node’s level, its left son’s position plus
one, its father’s position plus one (for a right son), and the po-
sition that would have been applied by Algorithm 3. No
change to the node’s modifier need be made since the children
(right branch only) affected by the change in positioning will
apply the modification to themselves. Fig. 9 provides coding
to replace the second while loop and its initialization in Algo-
rithm 3.

Algorithm 3 has been presented for binary trees. But by
suitable policy choices, it may be modified to work for arbi-
trary trees. During the first while loop, the case statement
must be modified to allow for the increased number of
branches. Also, the simple average of the childrens’ positions
to find the father’s position must be replaced with any func-
tion desired to “center” fathers over sons. The centering func-
tion could use information about the children’s values and la-
bels, as well as positional information, to determine a father’s
position. In the second pass, the case statement must be modi-
fied. Otherwise, we need only ensure that each left child is po-
sitioned before its father, who is in turn positioned before his
right child. Although implementation of such policies may

519
for i := 0 to max_height do next_pos[i] := 1; end for;
current := root;
currentt.status := first_visit;
modifier_sum := 0;

while current # nil do
case currentt.status of
first_visit : begin
modifier_sum := modifier_sum + currentt.modifier;
currentt.status := left_visit;
if currentt.left_son # nil then
current := currentt.left_son;
currentt.status := first_visit;
fi;
end;
left_visit : begin
currentt.x = min(next_pos[currentt.height],
currentt.x+modifier_sum-currentt.modifier);
if currentt.left_son # nil
then currentt.x = max(currentt.x,
currentt.left_sont.x+1); fi;
if currentt.father # nil
then if currentt.fathert.status = right_visit
then currentt.x := max(currentt.x,

currentt.fathert.x+1); fi; fi;
next_pos[currentt.height] := currentt.x + 2;
currentt.y := 2*currentt.height + 1;
currentt.status := right_visit;
if currentt.right_son # nil then
current := currentt.right_son;
currentt.status := first_visit
fi;
end;
right visit : begin
modifier_sum := modifier_sum — currentt.modifier;

current := currentt.father;

Fig. 9. A modification to Algorithm 3.

take a considerable decision-making code, especially for trees
in which positions relative to absent children are important,
the basic idea is simple.

Since we first developed these algorithms, Knuth has drawn
our attention to the dissertation of Sweet. In his work, Sweet
had need to draw many trees and developed a primitive pro-
gram to do so. It embodies the same basic ideas as our algo-
rithms, but Sweet did not bother to develop them beyond his
specific problem. A brief discussion of his tree drawing tech-
nique can be found in an Appendix to his dissertation [6] .

IV. CONCLUSIONS

We have presented two algorithms for the tidy positioning of
trees. Within some aesthetic constraints, one algorithm uses
the minimum possible paper width and the other uses some-
what more paper to draw a prettier tree. Both algorithms run
in linear time, taking several walks over the tree structure. No
recursion is necessary, which makes the algorithms attractive
for use in nonrecursive programming languages. Both are easy
to code in common languages, although the presentation here
is somewhat long-winded so that the algorithms can be seen in
their full generality.

Trees are very common data structures, as has been men-
tioned. However, other planar and nonplanar graphs also ap-
pear as computer output. We are currently studying methods
for the tidy display of other graph structures, a subject not
covered in the literature.

REFERENCES

[1] R. S. Bird, “Notes on recursion elimination,” Commun. Ass.
Comput. Mach., vol. 20, pp. 434-439, June 1977.

[2] K. Jensen and N. Wirth, PASCAL User Manual and Report: Lec-
ture Notes in Computer Science, vol. 18. Berlin, Germany:
Springer-Verlag, 1974.

520

[3] D. E. Knuth, “Optimum binary search trees,” Acta Informatica,
vol. 1, pp. 14-25, 1971.

[4] —, The Art of Computer Programming/Fundamental Algorithms.
Reading, MA: Addison-Wesley, 1968.

[5] S. Soule, “A note on the nonrecursive traversal of binary trees,”
Comput. J.,vol. 20, no. 4, pp. 350-352, 1977.

[6] R. Sweet, “Empirical estimates of program entropy,” Ph.D. disser-
tation, Stanford Univ., Stanford, CA, 1977.

Charles Wetherell received the A.B. degree in
applied mathematics from Harvard University,
Cambridge, MA, in 1967 and the Ph.D. degree
in computer science from Cornell University,
Ithaca, NY, in 1975.

He currently holds a joint appointment as an
Assistant Professor at the University of Califor-
nia, Davis, and as a Research Scientist at Law-
rence Livermore Laboratory, Livermore, CA.
His research interests include programming lan-
guage design and implementation. Lately, he

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

has been concerned with design and standardization of advanced Fortran
dialects for use within the Department of Energy. His new textbook,
Etudes for Programmers, was published last winter by Prentice-Hall.

Dr. Wetherell is a member of the Association for Computing Machin-
ery and the Computer Society.

Alfred Shannon received the B.S. degree in ap-
plied mathematics from California State Univer-
sity at Hayward in 1974 and the M.S. degree in
computing science from the University of Cali-
fornia at Davis in 1976.

He is presently continuing work at Davis to-
wards a Ph.D. degree. He is a Computer Scien-
tist at Lawrence Livermore Laboratory, Liver-
more, CA, and works in the compiler group.
His current responsibilities include code genera-
tor production for a new compiler on the Cray-
1 and development of tools for automatic syntax analysis. Doctoral re-
search is in the area of parser generation and automation of complier
production.

Mr. Shannon is a member of the Association for Computing Machinery.

On Path Cover Problems in Digraphs and Applications
to Program Testing

S.C.NTAFOS AND S. LOUIS HAKIMI, FELLOW, 1EEE

Abstract—In this paper various path cover problems, arising in pro-
gram testing, are discussed. Dilworth’s theorem for acyclic digraphs is
generalized. Two methods for finding a minimum set of paths (mini-
mum path cover) that covers the vertices (or the edges) of a digraph are
given. To model interactions among code segments, the notions of re-
quired pairs and required paths are introduced. It is shown that finding
a minimum path cover for a set of required pairs is NP-hard. An ef-
ficient algorithm is given for finding a minimum path cover for a set
of required paths. Other constrained path problems are considered
and their complexities are discussed.

Index Terms—Algorithmic complexity, Dilworth number, minimum
path cover, must pairs, must paths, NP-hard, program testing, required
pairs, required paths.

Manuscript received April 26, 1978; revised January 29, 1979. This
work was supported by the U.S. Air Force Office of Scientific Re-
search, Systems Command, under Grant AFOSR-76-3017.

S. C. Ntafos was with the Department of Electrical Engineering and
Computer Science, Northwestern University, Evanston, IL 60201. He
is now with the Department of Mathematical Sciences, University of
Texas at Dallas, Richardson, TX 75080.

S. L. Hakimi is with the Department of Electrical Engineering and
Computer Science, Northwestern University, Evanston, IL 60201.

I. INTRODUCTION

ROGRAM testing is widely used in software validation
P [1]. It consists of selecting a set of test paths that covers
certain features of the program and finding appropriate test
data that exercise these paths. One may choose, for example,
a test set in which every program statement is executed at
least once, or a more extensive test set that would exercise all
exits from all branch statements. If we represent a program as
a digraph (program graph), these strategies correspond to the
problems of finding sets of source to sink paths, to be called
s-t paths, that cover the vertices or the edges of the digraph.
In view of the high cost of program testing [2], we are natu-
rally interested in finding path covers with the minimum num-
ber of paths. Krause et al. [3] suggested a method where the
path covering the maximum number of the remaining untested
elements is chosen as the next test path. Miller ez al. [4] pro-
posed a method where a program is decomposed into decision-
to-decision paths which are then combined to form optimal
test path covers. Both of these methods are used in automated
validation tools together with test data generation techniques
and neither is guaranteed to produce a minimum path cover

0098-5589/79/0900-0520$00.75 © 1979 IEEE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

